
Assignment: Supervised learning for digit classification

Erik G. Learned-Miller and Cheni Chadowitz

March 6, 2014

Due: Friday March 14, 2014 by 11:59pm by email to the TA

In this assignment, you will explore both the K-Nearest Neighbors classifier and the maximum a posteriori
(MAP) classifier for handwritten digits. You will use the supervised learning paradigm, in which you are
given some examples of two different classes: handwritten 3’s and handwritten 5’s.

First, you will explore a few variations on the simple K-Nearest Neighbors classifier covered in lecture
by implementing a weighting scheme. Second, you will compute the mutual information and use it to select
optimal feature pixels for classification.

1. Setup

(a) Download the data file digits.mat:

http://people.cs.umass.edu/~elm/Teaching/Data/digits.mat

Put the file in your current working directory. Use the command ’load digits.mat’ to load it into
matlab. Type ’whos’ to see the variables that are defined in it. You should see four variables
named train threes, train fives, test threes, and test fives. They are each a group of 50 images
stored in a three-dimensional array. Try plotting a few of the images using imagesc to make sure
they appear as you expect.

(b) Download the starter code:

http://people.cs.umass.edu/~cheni/370/CS370-Assignment3-StarterCode.zip

and place it in your current working directory. You should be able to run the provided function
knnStandard by passing in the training and test data for both the threes and fives (see the
source code for more details, or run “help knnStandard”). It will output an accuracy of 0.90 for
all the test images as specified in the comments (and help).

2. K-Nearest Neighbor In this part, we explore the effects of using a weighting scheme in conjunction
with a K-Nearest Neighbor classifier. Recall the formula for Euclidean distance between two points p
and q in N dimensions:

D(p,q) =
√

(p1 − q1)2 + (p2 − q2)2 + ... + (pN − qN )2.

Also, recall from lecture that we can change the distance function into a weighted Euclidean distance
function by applying a different “weight” to each term of the sum under the square root sign:

Dweighted(p,q) =
√

w1(p1 − q1)2 + w2(p2 − q2)2 + ... + wN (pN − qN )2.

(a) Write a function called knnWeighted based on the provided knnStandard function. It should
take the same arguments as knnStandard, as well as an additional parameter (sigma). The
knnWeighted function should classify each test image (both threes and fives) using a 128x128 size
Gaussian distribution as a weighting scheme across the image. In other words, you should weight

1

http://people.cs.umass.edu/~elm/Teaching/Data/digits.mat
http://people.cs.umass.edu/~cheni/370/CS370-Assignment3-StarterCode.zip


the pixels near the center of the image highest, and the pixels near the edges of the image lowest.
You may use the MATLAB function ’fspecial’ to generate the appropriate Gaussian (use “help
fspecial” for more details). Once you’ve generated a 128x128 Gaussian called “gaussian”, you can
plot it using “imagesc(gaussian)” to see how a particular sigma affects the distribution. You may
copy and adapt knnStandard, but be sure to make the appropriate changes so that knnWeighted
uses the weighting scheme described above.

(b) Using your new knnWeighted function, explore how various values of sigma change the accuracy.
Find a value for sigma that produces a higher accuracy than the knnStandard method. You should
be able to find a sigma that produces an accuracy of 0.93 or higher. Report the sigma and accuracy
you found. In one or two sentences, explain why the Gaussian generated using this sigma produced
a higher accuracy in classifiying the test image than the standard (unweighted) K-NN method.

If you’d like to plot your accuracies, you can use the “plot()” command in MATLAB. For example,
if you have a vector y = [5, 2, 4, 3], you can plot these values by executing “plot(y)”.

3. Mutual Information In this part, we will use mutual information to determine which pixel features
to pick that provide the most useful information about the image, as described in class.

First, we will write a number of small functions to help us extract the single pixel location with the
highest mutual information.

(a) Write a function called computeLikelihoods which estimates the likelihoods for every pixel in
each class (“threes” and “fives”), using the training data. That is, it should return two 128x128x2
matrices of likelihoods. In each likelihoods matrix, the first 128x128 layer should contain the
likelihoods for when the pixels are off (they have a value of 0.5), and the second layer should
contain the likelihoods for when the pixels are on (they have a value of 255.5) (e.g. P (white|A)
and P (black|A)). You may base this on the likeFromTraining example function covered in class.

(b) Write a function called computeJoints which computes the joint probabilities for each pixel and
each class using the likelihoods you computed and the priors [0.5, 0.5]. That is, it should return
two 128x128x2 matrices of joint probabilities. In each joint probability matrix, the first 128x128
layer should contain the joint probabilities of the pixels being off and the class, and the second
layer should contain the joint probabilities of the pixels being on and the class (e.g. P (black,A)
and P (white,B)).

(c) Write a function called computeMarginals which computes the marginal probabilities for each
pixel across the entire training set, using the joint probabilities you computed. It should return
a 128x128x2 matrix of marginal probabilities, where the first 128x128 layer should contain the
marginal probabilities for when the pixels are off, and the second layer should contain the marginal
probabilities for when the pixels are on.

(d) Write a function called computeMutInfo which uses the previous functions to compute the
mutual information at each pixel with each class. It should return a 128x128 matrix. You will be
using this to extract the single pixel location with the highest mutual information. You can use
imagesc() to visualize the mutual information at each pixel location. Determine the location of the
maximum mutual information and report it here, along with the value of the mutual information
at that location. Recall that in some cases, you may have a value like 0 ∗ log(0), which is 0 when
using limits, although MATLAB will compute as NaN (“not a number”). You can get around this
by checking if the joint or marginal probability at a given pixel location is 0 and substituting in
0 in your summation, instead of 0 ∗ log(0). You can also replace all 0’s in your joint and marginal
probabilities with a suitably small value (e.g. 10−12), which will not have a noticeable effect on
the outcome.

(e) Use this pixel location as input to the provided MAP classifier (classifyTestData) and report the
accuracy. See the comments in classifyTestData for more details, or run ”help classifyTestData”.

2



Next, we will do the same to extract the second pixel location with the highest mutual information,
given the first location:

I(X2;C|X1).

This will maximize the information gained by including the mutual information of the second pixel
location. To do this, instead of computing the conditional information defined above directly, we will
compute

I(X2;C|X1) = I(X1, X2;C)− I(X1;C).

The right side of the equation is computed by first computing the joint mutual information between
the pair (X1, X2) and the class label C:

I(X1, X2;C)

and then subtracting off the single pixel mutual information

I(X1;C).

Here are detailed steps about how to do this.

(a) Make a copy your computeLikelihoods function called computeLikelihoods2. This function
should take an additional argument called “pixel” which will be a 2x1 vector containing the
location of the pixel you found in the previous part. It should return two matrices of likelihoods
of size 128x128x4. For each matrix, the first layer should contain the likelihoods for when both the
provided (“first”) pixel and the query pixel is off (the “0,0” case from lecture), the second layer
should contain the likelihoods for when the first pixel is off and the second pixel is on (“0,1”), the
third layer should contain the likelihoods for when the first pixel is on and the second pixel is off
(“1,0”), and the fourth layer should contain the likelihoods for when the first and second pixels
are both on (“1,1”). You should again have one 128x128x4 matrix for each class (“threes” and
“fives”).

(b) Check your computeJoints function to determine if it will correctly compute the joint proba-
bilities using the likelihoods computed by computeLikelihoods2. If not, you may either rewrite
computeJoints to handle both types of likelihoods, or make a copy called computeJoints2 that
will handle the likelihoods computed by computeLikelihoods2. It should be capable of accepting
two 128x128x4 matrices of likelihoods as arguments and return two 128x128x4 matrices of joint
probabilities (one for each class).

(c) Similarly, check your computeMarginals function to determine if it will correctly compute the
marginal probabilities using the joint probabilities computed above.

(d) Finally, make a copy of your computeMutInfo called computeMutInfo2 that computes the joint
mutual information between the pair of pixels (X1, X2) and the class C, where X1 is the most
informative pixel from the first step and X2 is a candidate second pixel. Just as in the previous
section, use the output from the previous functions to compute these mutual informations. This
should return a single 128x128 matrix of joint mutual informations. Use the same trick as
before to deal with cases like 0 ∗ log(0).

(e) Information Gain Now that we have the mutual informations of single pixels I(X1;C), and the
mutual information of single pixels paired with the first pixel I(X1, X2;C), we can compute
the information gain:

I(X2;C|X1) = I(X1, X1;C)− I(X1;C).

Find the pixel location that maximizes the information gain given the first pixel. Report the
location and information gain at the location.

3



You can visualize the mutual information and information gain (or any “layer” of the output you have
produced) by using imagesc(). In particular, generate images of

• The image of mutual informations for one pixel.

• The image of joint mutual informations for the best pixel from the first step paired with each
possible second pixel.

• The image of the information gain from the second pixel given the first pixel. This should just be
the difference of the first two images.

What to turn in

• Every matlab function you were asked to create. If a function can handle both types of input (e.g.
computeJoints.m or computeMarginals.m), note it as a comment in the function.

• A single PDF containing all your code, and the values you are asked to report, and the 3 images you
produced in part 3. It should be named lastnameFirstname assign3.pdf.

Email these files as a zip named lastnameFirstname assign3.zip to the TA.

4


