
Applied Information Theory 650

http://www.cs.umass.edu/∼elm/Teaching/650 F14/

Assignment: Estimating Information Theoretic Quantities from Data

In this assignment, we will explore various methods for estimating entropy, KL-divergence, and mutual
information.

1 Estimating differential entropy

We will start by estimating the entropy of a continuous one-dimensional distribution from which we have
been given a sample. Suppose that the distribution has a density f(x). In this part of the assignment, we
will explore the difference between estimating entropy using a plug-in estimator based on a non-parametric
density estimate and a more direct entropy estimator, the m-spacings estimate of entropy proposed by
Vasicek.

1.1 Plug-in estimates of entropy

The idea of a plug-in entropy estimator is simple. First estimate the density p̂(x) of the data. Then estimate
the entropy of the density estimate. We will use a non-parametric density estimator to estimate the density.
This estimator is also called a Parzen window density estimator.

1.1.1 Non-parametric density estimator

The idea of a non-parametric density estimate is illustrated in the diagram below. Given a sample from
a one-dimensional distribution (shown as tick marks on the x-axis), a Gaussian kernel is placed on each
sample point. The Gaussian kernels are shown as dotted lines, with one Gaussian over each sample point.
The kernels are summed up at each point, leading to the top solid line, which is the non-parametric density
estimate.
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(figure copied from http://www.mvstat.net/tduong/research/seminars/seminar-2001-05/)

Let the sample of size n of the unknown distribution be denoted by the set {x1, x2, ..., xn}. Furthermore,
assume that we use a Gaussian kernel with standard deviation σ at each sample location. Note that this
implies that the mean of the ith Gaussian is just xi. The value of the non-parametric density estimate at a
new location x is given by

p̂(x) =
1

n

n∑
i=1

N(x;xi, σ).

where N(x;xi, σ) is the density of the point x under a Gaussian distribution with mean xi and standard
deviation σ.

Expanding our notation with the formula for a Gaussian distribution, we obtain:

p̂(x) =
1

n

n∑
i=1

1√
2πσ

e−
(x−xi)

2

2σ2 .

In words the idea is this. The density at a new point is simply the average of the contributions to that
point by all of the kernels. If the new sample point x is near to a sample point xi, it will get a big contribution
from that xi’s kernel. If it is far from another point xj , then it will get a very small contribution from xj ’s
kernel.

Function 1. Write a function
p = densEst(xs, x, sigma).

that takes 3 arguments, the original sample points xs organized as a column vector, the point x at which
the density is to be evaluated, and the standard deviation sigma of the kernel, and returns p, the density of
the kernel density estimate at the point x.
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1.1.2 Leave-one-out point estimates

A leave-one-out estimate is a way of evaluating the bandwidth (or standard deviation) σ of a non-parametric
density estimate. Given a sample x = {x1, x2, ..., xn}, the leave-one-out estimate of a point xj that is one of
the original sample points is the density estimate of xj using all of the points in x except for xj itself:

looPoint(x, j, σ) = densEst(x \ xj , xj , σ),

where j is the index of the point to be evaluated, and x \ xj means all of the elements of the set x except
for xj .

Function 2. Write the function looPoint described above. The function prototype should be:
p = looPoint(xs, j, sigma)

1.1.3 Leave-one-out sample likelihood

We will generate the leave-one-out-sample-likelihood by finding the average log likelihood of a sample using
the leave-one-out point estimates. In other words, we will take each point of a sample, get its likelihood
using the leave-one-out point estimate, and take the average of the log of these leave-one-out estimates. This
will give us a sense of how “good” a given σ is for a particular sample.

Function 3. Write the function looAvgLogLike described above. The function prototype should be:
avgLogLike = looAvgLogLike(xs, sigma).

1.1.4 Optimizing the kernel bandwidth

Finally, we would like to find the value of σ that gives us the highest average log likelihood of the leave-one-
out estimate. It is usually impractical to optimize over all possible values of σ. Instead, you should try a
fixed set of sigmas, starting from something small and going to something big. For example, you could start
at the shortest distance between any two samples (a reasonable lower bound on σ) and go up to the largest
distance between samples (a reasonable upper bound on σ), stepping by factors of 1.1 (or more if you like)
along the way. I will leave it to you on how to decide on a set of σ’s to try.

Function 4. Write a function findBestSigma to find the best sigma for a given set of samples, using the
looAvgLogLike function. The function prototype should be:

bestSigma = findBestSigma(xs, S)

Here S is a set of values of σ that you want to try. (Try at least 10 values of σ.)

1.2 Estimating the entropy of a given non-parametric density estimate.

Now that you have a way of finding the best value of σ over some set, you can turn a given sample and the
optimal σ into a reasonably good non-parametric density estimate. The next goal is to estimate the entropy
of this density.

1.2.1 Monte Carlo estimate of entropy from a density

Since differential entropy is an expectation (of the negative log probability density), we can estimate it by
sampling from a distribution and forming an empirical average of the negative log probability density. This
empirical average will converge to the true differential entropy by the law of large numbers.

Writing a function that draws a single sample point from a non-parametric density estimate is simple.
All you have to do is choose one of the original sample points with uniform probability. Then choose a
random Gaussian deviation from this sample point, scaling by the appropriate σ. For example, suppose my
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original sample has 10 points. I choose one of these points randomly, perhaps point 7. I then add a random
Gaussian offset to this point by using the function randn in matlab and scaling by the appropriate factor for
σ. The original point x7 plus the random Gaussian offset gives me a valid sample from the non-parametric
density estimate. I use my non-parametric density estimate function (function 1 in this homework) to get
the density of this point, take the log, and add it to my cumulative sum.

Function 5. Write a function to generate a single sample point from a non-parametric density estimate.
It takes as arguments the original list of points and the kernel standard deviation σ. It returns a single
sample.

x = sampleNPDE(xs, sigma)

Function 6. Now write a function to estimate the entropy of a non-parametric density estimate by sam-
pling as described above:

ent = samplingEntropyEst(xs, N, sigma)

Here N is the number of times to sample in the Monte Carlo procedure.

1.3 The m−spacings estimate of entropy

Write a function to compute the m−spacings estimate of entropy. Use the formula for the m−spacings
estimate given in class. For the value of m, just use the nearest integer value to the square root of n, the
number of sample points. (There are other ways to choose m, but this one should work fine.)

Function 7. The function prototype should be:
ent = mspacingsEntropyEst(xs)

2 Experiments with entropy estimators

Functions 6 and 7 above are two different entropy estimators. You will do some experiments to look at bias,
variance, and speed of computation for some standard distributions.

For each of the entropy estimates above, try estimating the entropy of the following distributions:

1. Uniform distribution on the interval [0, 1].

2. Uniform distribution on the interval [0, 8].

3. Uniform distribution on the interval [0, 0.5].

4. Gaussian distribution with mean 0 and standard deviation 1.

5. Gaussian distribution with mean 0 and standard deviation 100.

6. Exponential distribution with mean 1.

7. Exponential distribution with mean 100.

You will need to figure out how to draw samples from each of these distributions. (Note, this is easy in
matlab, as it supports sampling from all of these distributions.)

For each of these distributions, you should do the following:

• Give the true entropy in bits. (You can look up the formula for these in the book or on the web.)

• Run experiments for both entropy estimators.

• For each entropy estimator, estimate the entropy based on samples of 4 different sizes: 10,100,1000,10000.
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• For each estimator, distribution, and sample size, run the entropy estimator 10 different times. This
will allow you to get the variance of the entropy estimate.

• Calculate the mean and standard deviation of the entropy estimate.

• Record running times for all experiments.

Summarize and analyze your results. What are the pros and cons of each estimator?
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