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This paper in one slide

Variational Inference (VI): Approximate p(z |x) with qw (z) by solving

max
w

ELBO(w), −ELBO(w)=− E
z∼qw

logp(z,x)︸ ︷︷ ︸
Energy term l(w)

+ E
z∼qw

logqw (z)︸ ︷︷ ︸
Neg-Entropy term h(w)

.

This paper: If p(z ,x) is nice then l(w) is also nice (for Gaussian qw )

logp(z ,x) smooth over z ⇒ l(w) smooth

logp(z ,x) strongly concave over z ⇒ l(w) strongly convex

Implications: If you can do MAP inference, then you can do VI, as long as
you’re careful.



Motivation

Black-Box VI. Do SGD on ELBO(w).

Example Problem: Three different initializations, three different step
sizes. (Exact gradients)
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Goals

Black-Box VI often works, but also often fails!

To give a convergence guarantee for SGD you need two things:
A bound on the gradient estimator’s variance.
A proof that the objective is smooth or (strongly) convex (or both).



Main Result: Smoothness

φ(x) is M-smooth if ‖∇φ(x)−∇φ(x ′)‖2 ≤M ‖x−x ′‖2 .

Theorem: Say qw is a location-scale family with a standardized base
distribution (e.g. a Gaussian) and f (z) is M-smooth. Then,

l(w) = E
z∼qw

f (z)

is also M-smooth.

Proof: Define inner-product space + Bessel’s inequality + several laborious
exact calculations for location-scale families.



Secondary Result: Strong Convexity

φ(x) c-strongly convex if φ(y)≥ φ(x)+∇φ(x)>(y −x)+ c
2 ‖y −x‖22

Theorem: Say qw is a location-scale family with a standardized base
distribution (e.g. a Gaussian) and f (z) is c-strongly convex. Then,

l(w) = E
z∼qw

f (z)

is also c-strongly convex.

Proof: Comparatively easy.



Convergence Considerations

Say logp(z ,x) is M-smooth. Want to opt. −ELBO(w) = l(w)+h(w).

Main result: l(w) is M-smooth.
Problem: h(w) is not smooth.

One solution:
Define WM =

{
w
∣∣∣Cov of qw � 1

M

}
.

Result: Optimum of ELBO is in WM .
Result: h(w) is M-smooth over WM (so l +h is 2M-smooth)
So projected gradient descent works.

Another solution: Do proximal gradient descent.



Demonstration

Compare three algorithms:
Projected optimization (step 1/(2M))

Proximal optimization (step 1/M)

Naive optimization (step 1/M)

Initialize qw with mean 0 and covariance ρ2I where ρ is a scaling factor.
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