Provable Smoothness Guarantees for Black-Box Variational Inference

Justin Domke

College of Information and Computer Sciences, UMass Amherst

This paper in one slide

Variational Inference (VI): Approximate p(z|x) with $q_w(z)$ by solving

$$\max_{\mathbf{w}} \text{ ELBO}(\mathbf{w}), \quad -\text{ELBO}(\mathbf{w}) = \underbrace{-\underset{\mathbf{z} \sim q_{\mathbf{w}}}{\mathbb{E}} \log p(\mathbf{z}, \mathbf{x})}_{\text{Energy term } l(\mathbf{w})} + \underbrace{\underset{\mathbf{z} \sim q_{\mathbf{w}}}{\mathbb{E}} \log q_{\mathbf{w}}(\mathbf{z})}_{\text{Neg-Entropy term } h(\mathbf{w})}.$$

This paper: If p(z,x) is nice then l(w) is also nice (for Gaussian q_w)

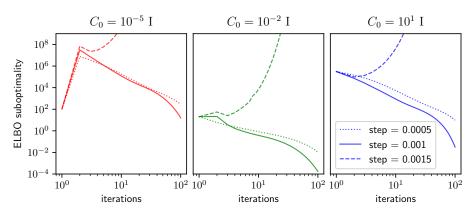
- $\log p(z, x)$ smooth over $z \Rightarrow l(w)$ smooth
- $\log p(z,x)$ strongly concave over $z \Rightarrow l(w)$ strongly convex

Implications: If you can do MAP inference, then you can do VI, as long as you're careful.

Motivation

Black-Box VI. Do SGD on ELBO(w).

Example Problem: Three different initializations, three different step sizes. (Exact gradients)



Goals

Black-Box VI often works, but also often fails!

To give a convergence guarantee for SGD you need two things:

- A bound on the gradient estimator's variance.
- A proof that the objective is smooth or (strongly) convex (or both).

Main Result: Smoothness

• $\phi(x)$ is M-smooth if $\|\nabla\phi(x) - \nabla\phi(x')\|_2 \le M \|x - x'\|_2$.

Theorem: Say q_w is a location-scale family with a standardized base distribution (e.g. a Gaussian) and f(z) is M-smooth. Then,

$$I(\mathbf{w}) = \underset{\mathsf{z} \sim q_{\mathbf{w}}}{\mathbb{E}} f(\mathsf{z})$$

is also M-smooth.

Proof: Define inner-product space + Bessel's inequality + several laborious exact calculations for location-scale families.

Secondary Result: Strong Convexity

ullet $\phi(m{x})$ c-strongly convex if $\phi(m{y}) \geq \phi(m{x}) +
abla \phi(m{x})^{ op} (m{y} - m{x}) + rac{c}{2} \|m{y} - m{x}\|_2^2$

Theorem: Say q_w is a location-scale family with a standardized base distribution (e.g. a Gaussian) and f(z) is c-strongly convex. Then,

$$I(\mathbf{w}) = \underset{\mathsf{z} \sim q_{\mathbf{w}}}{\mathbb{E}} f(\mathsf{z})$$

is also *c*-strongly convex.

Proof: Comparatively easy.

Convergence Considerations

Say $\log p(z, x)$ is *M*-smooth. Want to opt. -ELBO(w) = l(w) + h(w).

Main result: $I(\mathbf{w})$ is M-smooth. Problem: $h(\mathbf{w})$ is not smooth.

One solution:

- Define $\mathscr{W}_M = \left\{ \mathbf{w} \middle| \text{Cov of } q_{\mathbf{w}} \succeq \frac{1}{M} \right\}.$
- Result: Optimum of ELBO is in \mathcal{W}_M .
- Result: $h(\mathbf{w})$ is M-smooth over \mathcal{W}_M (so l+h is 2M-smooth)
- So projected gradient descent works.

Another solution: Do proximal gradient descent.

Demonstration

Compare three algorithms:

- Projected optimization
- Proximal optimization
- Naive optimization

(step 1/(2M))

(step 1/M)

(step 1/M)

Initialize $q_{\mathbf{w}}$ with mean 0 and covariance $\rho^2 I$ where ρ is a scaling factor.

