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This paper in one slide

Variational Inference (VI): Approximate p(z|x) with g (z) by solving

max ELBO(w), —ELBO(w)=— E logp(z,x)+ E logquw(z)

Z~qw Z~qw

Energy term /(w) Neg-Entropy term h(w)

This paper: If p(z,x) is nice then /(w) is also nice (for Gaussian gy )

@ logp(z,x) smooth over z = I(w) smooth

@ logp(z,x) strongly concave over z = /(w) strongly convex

Implications: If you can do MAP inference, then you can do VI, as long as
you're careful.



Motivation

Black-Box VI. Do SGD on ELBO(w).

Example Problem: Three different initializations, three different step

sizes. (Exact gradients)

ELBO suboptimality

Co=10"°1 Co=10"21 Co=10'1
10® 1
10
10* N
102 4
w4 T e step = 0.0005
tep = 0.001
1072 4 sep
---- step = 0.0015
1074 T — b T b T T
10° 10! 102 10° 101 102 10° 10t 102
iterations iterations iterations



Goals

Black-Box VI often works, but also often fails!

To give a convergence guarantee for SGD you need two things:
@ A bound on the gradient estimator's variance.

@ A proof that the objective is smooth or (strongly) convex (or both).



Main Result: Smoothness

@ ¢(x) is M-smooth if |[Vo(x)—Ve(x')|, < M|x—x'||,.

Theorem: Say g, is a location-scale family with a standardized base
distribution (e.g. a Gaussian) and f(z) is M-smooth. Then,

I(w)= E f(z2)

Z~qw

is also M-smooth.

Proof: Define inner-product space + Bessel's inequality + several laborious
exact calculations for location-scale families.



Secondary Result: Strong Convexity

o ¢(x) c-strongly convex if ¢(y) > ¢(x)+Vo(x)T(y —x)+ S|y —x|3

Theorem: Say g, is a location-scale family with a standardized base
distribution (e.g. a Gaussian) and f(z) is c-strongly convex. Then,

I(w)= E f(z2)

Z~qw

is also c-strongly convex.

Proof: Comparatively easy.



Convergence Considerations

Say log p(z,x) is M-smooth. Want to opt. —ELBO(w) = /(w)+ h(w).

Main result: /(w) is M-smooth.
Problem: h(w) is not smooth.

One solution:
o Define #), = {W‘COV of gw = ﬁ}
@ Result: Optimum of ELBO is in #).

@ Result: h(w) is M-smooth over #) (so |+ h is 2M-smooth)
@ So projected gradient descent works.

Another solution: Do proximal gradient descent.



Demonstration

Compare three algorithms:

@ Projected optimization (step 1/(2M))
@ Proximal optimization (step 1/M)
@ Naive optimization (step 1/M)

Initialize gy, with mean 0 and covariance p?/ where p is a scaling factor.
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