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Overview
Variational inference gives both a lower-bound on the log-likelihood
and an approximate posterior.

Easy to get other lower-bounds. Do they also give approximate
posteriors?

This work: A general theory connecting likelihood bounds to posterior
approximations.



p(z, x)

−→
z

Take p(z ,x) with x fixed.

Observation: If ER = p(x), then E logR ≤ logp(x).

Example: Take R = p(x ,z)
q(z) for z∼ q Gaussian, optimize q.

Decomposition: KL(q(z)‖p(z |x)) = logp(x)−E logR.

Likelihood bound: X
Posterior approximation: X
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p(z, x)

Recent work: Better Monte Carlo estimators R .

Antithetic Sampling: Let T (z) “flip” z around mean of q.

R =
1
2

(
p(z ,x)+p(T (z),x)

q(z)

)

Likelihood bound: X
Posterior approximation: ×××

This paper: Is some other distribution close to p?
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Contribution of this paper: Given estimator with ER = p(x), we show
how to construct Q(z) such that

KL(Q(z)‖p(z |x))≤ logp(x)−E logR.

logR ′ = 0.060
p(z, x)
q(z), antithetic

logR ′ = 0.060
p(z, x)
Q(z), antithetic



Contribution of this paper: Given estimator with ER = p(x), we show
how to construct Q(z) such that

KL(Q(z)‖p(z |x))≤ logp(x)−E logR.

logR ′ = 0.060
p(z, x)
q(z), antithetic

logR ′ = 0.060
p(z, x)
Q(z), antithetic



Contribution of this paper: Given estimator with ER = p(x), we show
how to construct Q(z) such that

KL(Q(z)‖p(z |x))≤ logp(x)−E logR.
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Contribution of this paper: Given estimator with ER = p(x), we show
how to construct Q(z) such that

KL(Q(z)‖p(z |x))≤ logp(x)−E logR.

logR ′ = 0.021
p(z, x)
q(z), antithetic within strata

logR ′ = 0.021
p(z, x)
Q(z), antithetic within strata



Contribution of this paper: Given estimator with ER = p(x), we show
how to construct Q(z) such that

KL(Q(z)‖p(z |x))≤ logp(x)−E logR.

How?



Contribution of this paper: Given estimator with ER = p(x), we show
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Unbiased estimator: Where is z?

E
ω
R(ω) = p(x)

We suggest: Need a coupling:

E
ω
R(ω)a(z |ωωω)︸ ︷︷ ︸

coupling

= p(z ,x)

Then, exist augmented distributions s.t.

KL(Q(z ,ωωω)‖p(z ,ωωω|x)) = logp(x)−E logR
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Contribution of this paper: Given estimator with ER = p(x), we show
how to construct Q(z) such that

KL(Q(z)‖p(z |x))≤ logp(x)−E logR.

Summary:
Tightening a bound logp(x)−E logR is equivalent to VI in an
augmented state space (ωωω,z).

To sample from Q(z) draw ω then z∼ a(z|ω).

Paper gives couplings for:

I Antithetic sampling
I Stratified sampling
I Quasi Monte Carlo
I Latin hypercube sampling
I Arbitrary recursive combinations of above



Implementation: Different sampling methods with Gaussian q.

Figure 5: Different sampling methods applied to Gaussian VI. Top row: Different methods to sample
from the unit cube. Middle row: these samples transformed using the “Cartesian” mapping. Bottom
row: Same samples transformed using the “Elliptical” mapping.

5 Implementation and Empirical Study

Our results are easy to put into practice, e.g. for variational inference with Gaussian approximating
distributions and the reparameterization trick to estimate gradients.. To illustrate this, we show a
simple but general approach. As shown in Fig. 5 the idea is to start with a batch of samples !1 · · ·!M

generated from the unit hypercube. Different sampling strategies can give more uniform coverage of
the cube than i.i.d. sampling. After transformation, one obtains samples z1 · · · zM that have more
uniform coverage of the Gaussian. This better coverage often manifests as a lower-variance estimator
R. Our coupling framework gives a corresponding approximate posterior Q(z).

Formally, take any distribution Q(!1, · · · ,!M ) such that each marginal Q(!m) is uniform over the
unit cube (but the different !m may be dependent). As shown in Fig. 5, there are various ways to
generate !1 · · ·!M and to map them to samples z1 · · · zM from a Gaussian q(zm). Then, Fig. 6 gives
algorithms to generate an estimator R and to generate z from a distribution Q(z) corresponding to a

valid coupling. We use mappings ! F�1

! u
T✓! z where t✓ = T✓ � F�1 maps ! ⇠ Unif([0, 1]d) to

t✓(!) ⇠ q✓ for some density q✓. The idea is to implement variance reduction to sample (batches of)
!, use F�1 to map ! to a “standard” distribution (typically in the same family as q✓), and then use
T✓ to map samples from the standard distribution to samples from q✓.

The algorithms are again derived from Thm. 3 and Thm. 4. Define Q0(!) uniform on [0, 1]d, R0(!) =
p(t✓(!), x)/q✓(t✓(!)) and a0(z|!) = �(z � t✓(!)). These define a valid estimator-coupling pair.
Let Q(!1, · · · ,!M ) be as described (uniform marginals) and m uniform on {1, · · · , M}. Then
Q(!1, · · · ,!M , m) satisfies the assumptions of Thm. 3, so we can use that theorem then Thm. 4 to
Rao-Blackwellize out m. This produces the estimator-coupling pair in Fig. 6.

Algorithm (Generate R)
• Generate !1, · · · ,!M from any distribution

where !m is marginally uniform over [0, 1]
d.

• Map to a standard dist. as um = F�1(!m).
• Map to q✓ as zm = T✓(um).

• Return R = 1
M

PM
m=1

p(zm,x)
q✓(zm)

Algorithm (Sample from Q(z))
• Generate z1, · · · zM as on the left.

• For all m compute weight wm = p(zm,x)
q✓(zm) .

• Select m with probability wmPM
m0=1

wm0
.

• Return zm

Figure 6: Generic methods to sample R (left) and Q(z) (right). Here, Q(!1, · · · ,!M ) is any
distribution where the marginals Q(!m) are uniform over the unit hypercube.
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Experiments confirm: Better likelihood bounds ⇔ better posteriors

Figure 7: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both. First row: the
common case where a simple Gaussian posterior is already very accurate. Here, only a tiny improve-
ment in the ELBO is possible, and improvement in the posterior is below the level detectable when
comparing to MCMC. The other rows show cases where larger improvements are possible.
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