A Divergence Bound for Hybrids of MCMC and VI and an application to Langevin Dynamics and SGVI

Justin Domke, UMass Amherst

Introduction

Variational inference (VI):
\[\min_{q} KL(q(Z|w)||p(Z)) \]

Markov chain Monte Carlo (MCMC):
Sample from \(p(z) \)

This paper:
Something in the middle

VI and MCMC both seek high probability \(z \).
Different coverage strategies.
- VI: include entropy \(H(w) = -\int q(z|w) \log q(z|w) \) in objective.
- MCMC inject randomness.

Idea: Random walk over \(w \). Trade off:
- "How random" the walk is
- "How much" \(H(w) \) is favored

Easy to imagine... but what are we doing?

Minimizer of the bound

Thm: Choose \(p(w|z) = r(w)q(z|w)/r_z \) where \(r_z = \int r(w)q(z|w) \) is constant. Then, \(D_p \) minimized by

\[
q^*(w) = \exp(u(w) - A)
\]

\[
s(w) = \log r(w) - \log \phi
\]

\[
A = \log \int \exp(u(w))
\]

Furthermore, the divergence at \(q^* \) is \(D_p^* = -\beta A \).

Algorithms

Langevin (MCMC):
\[z \rightarrow z + \frac{\lambda}{2} \nabla \log p(z) + \sqrt{2\eta} \]

(Stochastic) Gradient VI:
\[w \rightarrow w - \frac{\lambda}{2} \nabla \log p(Z|w) + [1 - \beta^{-1} - \log q(z|w)] \]

Hybrid (this paper):
Apply Langevin to \(q^* \) and scale \(\epsilon \)

\[w \rightarrow w + \frac{\lambda}{2} \left(-KL(q(Z|w)||p(Z)) - \beta H(w) + \beta \log q(w) \right) + \sqrt{2\eta} \]

Intuition

Becomes VI when \(\beta \rightarrow 0 \) (VI easy)
Becomes Langevin (on \(z \)) when \(\beta = 1 \)

- \(\beta \) likes \(w \) where \(q(Z|w) \) concentrates.

Divergence Bounds

Goal: Choose \(q(w) \) so \(q(z) = \int p(w)q(z|w) = p(z) \).

Impossible: minimize \(KL(q(Z)||p(Z)) = \int q(z)\log \frac{q(z)}{p(z)} \)

1st bound: (conditional divergence)

\[
KL(q(Z)||p(z)) \leq \int q(w) \int q(z|w) \log \frac{q(z|w)}{p(z|w)} = D_p
\]

2nd bound: (joint divergence) "Augment" with \(p(w|z) \).

\[
KL(q(Z)p(z)) \leq \int q(w) \int q(z|w) \log \frac{q(z|w)p(z)}{p(z|w)} = D_p
\]

Use convex combination: \(D_p = (1 - \beta)D_1 + \beta D_1 \)

Algorithmic details

- Use a diagonal Gaussian for \(q(z|w) \), with \(w = (\mu, \nu), v_i = \log \sigma_i \).
- To estimate gradient, use standard tricks from SGVI:
 - For Bayesian inference, estimate \(\nabla \log p(z) \) using subsampling.
 - Reparameterization trick: \(\nabla \log p(Z) = \nabla \log p_\beta(\log Z) \).
 - Then sample \(\beta \) and apply autodiff.
 - Use closed form for entropy \(q(w) = -\log q(w) \).

- Use (improper) \(\gamma(z|w) \propto \prod_{i=1}^N |v_i| |u_i| \). Numerically optimize \(u_i \) to minimize \(D_p^* \) when \(p(z) \) is a standard Gaussian.

Toy 2-D Example

Toy 1-D Visualization

Logistic Regression

- a1
- Australian
- ionosphere
- sonar