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Abstract

Inference is typically intractable in high-treewidth undirected graphical models,
making maximum likelihood learning a challenge. One way to overcome this is to
restrict parameters to a tractable set, most typically the set of tree-structured pa-
rameters. This paper explores an alternative notion of a tractable set, namely a set
of “fast-mixing parameters” where Markov chain Monte Carlo (MCMC) inference
can be guaranteed to quickly converge to the stationary distribution. While it is
common in practice to approximate the likelihood gradient using samples obtained
from MCMC, such procedures lack theoretical guarantees. This paper proves that
for any exponential family with bounded sufficient statistics, (not just graphical
models) when parameters are constrained to a fast-mixing set, gradient descent
with gradients approximated by sampling will approximate the maximum likeli-
hood solution inside the set with high-probability. When unregularized, to find a
solution ǫ-accurate in log-likelihood requires a total amount of effort cubic in 1/ǫ,
disregarding logarithmic factors. When ridge-regularized, strong convexity allows
a solution ǫ-accurate in parameter distance with effort quadratic in 1/ǫ. Both of
these provide of a fully-polynomial time randomized approximation scheme.

1 Introduction

In undirected graphical models, maximum likelihood learning is intractable in general. For exam-
ple, Jerrum and Sinclair [1993] show that evaluation of the partition function (which can easily be
computed from the likelihood) for an Ising model is #P-complete, and that even the existence of a
fully-polynomial time randomized approximation scheme (FPRAS) for the partition function would
imply that RP = NP.

If the model is well-specified (meaning that the target distribution falls in the assumed family) then
there exist several methods that can efficiently recover correct parameters, among them the pseu-
dolikelihood [3], score matching [16, 22], composite likelihoods [20, 30], Mizrahi et al.’s [2014]
method based on parallel learning in local clusters of nodes and Abbeel et al.’s [2006] method based
on matching local probabilities. While often useful, these methods have some drawbacks. First,
these methods typically have inferior sample complexity to the likelihood. Second, these all assume
a well-specified model. If the target distribution is not in the assumed class, the maximum-likelihood
solution will converge to the M-projection (minimum of the KL-divergence), but these estimators
do not have similar guarantees. Third, even when these methods succeed, they typically yield a
distribution in which inference is still intractable, and so it may be infeasible to actually make use
of the learned distribution.

Given these issues, a natural approach is to restrict the graphical model parameters to a tractable set
Θ, in which learning and inference can be performed efficiently. The gradient of the likelihood is
determined by the marginal distributions, whose difficulty is typically determined by the treewidth of
the graph. Thus, probably the most natural tractable family is the set of tree-structured distributions,
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where Θ = {θ : ∃tree T, ∀(i, j) 6∈ T, θij = 0}. The Chow-Liu algorithm [1968] provides an
efficient method for finding the maximum likelihood parameter vector θ in this set, by computing
the mutual information of all empirical pairwise marginals, and finding the maximum spanning tree.
Similarly, Heinemann and Globerson [2014] give a method to efficiently learn high-girth models
where correlation decay limits the error of approximate inference, though this will not converge to
the M-projection when the model is mis-specified.

This paper considers a fundamentally different notion of tractability, namely a guarantee that Markov
chain Monte Carlo (MCMC) sampling will quickly converge to the stationary distribution. Our
fundamental result is that if Θ is such a set, and one can project onto Θ, then there exists a FPRAS
for the maximum likelihood solution inside Θ. While inspired by graphical models, this result works
entirely in the exponential family framework, and applies generally to any exponential family with
bounded sufficient statistics.

The existence of a FPRAS is established by analyzing a common existing strategy for maximum
likelihood learning of exponential families, namely gradient descent where MCMC is used to gen-
erate samples and approximate the gradient. It is natural to conjecture that, if the Markov chain is
fast mixing, is run long enough, and enough gradient descent iterations are used, this will converge
to nearly the optimum of the likelihood inside Θ, with high probability. This paper shows that this is
indeed the case. A separate analysis is used for the ridge-regularized case (using strong convexity)
and the unregularized case (which is merely convex).

2 Setup

Though notation is introduced when first used, the most important symbols are given here for more
reference.

• θ - parameter vector to be learned

• Mθ - Markov chain operator corresponding to θ

• θk - estimated parameter vector at k-th gradient descent iteration

• qk = M
v
θk−1

r - approximate distribution sampled from at iteration k. (v iterations of the

Markov chain corresponding to θk−1 from arbitrary starting distribution r.)

• Θ - constraint set for θ

• f - negative log-likelihood on training data

• L - Lipschitz constant for the gradient of f .

• θ∗ = argminθ∈Θ f(θ) - minimizer of likelihood inside of Θ

• K - total number of gradient descent steps

• M - total number of samples drawn via MCMC

• N - length of vector x.

• v - number of Markov chain transitions applied for each sample

• C,α - parameters determining the mixing rate of the Markov chain. (Equation 3)

• Ra - sufficient statistics norm bound.

• ǫf - desired optimization accuracy for f

• ǫθ - desired optimization accuracy for θ

• δ - permitted probability of failure to achieve a given approximation accuracy

This paper is concerned with an exponential family of the form

pθ(x) = exp(θ · t(x)−A(θ)),

where t(x) is a vector of sufficient statistics, and the log-partition function A(θ) ensures normal-
ization. An undirected model can be seen as an exponential family where t consists of indicator
functions for each possible configuration of each clique [32]. While such graphical models motivate
this work, the results are most naturally stated in terms of an exponential family and apply more
generally.
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• Initialize θ0 = 0.

• For k = 1, 2, ...,K

– Draw samples. For i = 1, ...,M , sample

xk−1
i ∼ qk−1 := M

v
θk−1

r.

– Estimate the gradient as

f ′(θk−1) + ek ←
1

M

M
∑

i=1

t(xk−1
i )− t̄+ λθ.

– Update the parameter vector as

θk ← ΠΘ

[

θk−1 −
1

L
(f ′(θk−1) + ek))

]

.

• Output θK or 1
K

∑K
k=1 θk.

f (θ)

Θ

θ0

θ
∗

Figure 1: Left: Algorithm 1, approximate gradient descent with gradients approximated via
MCMC, analyzed in this paper. Right: A cartoon of the desired performance, stochastically finding
a solution near θ∗, the minimum of the regularized negative log-likelihood f(θ) in the set Θ.

We are interested in performing maximum-likelihood learning, i.e. minimizing, for a dataset
z1, ..., zD,

f(θ) = − 1

D

D
∑

i=1

log pθ(zi) +
λ

2
‖θ‖22 = A(θ)− θ · t̄+ λ

2
‖θ‖22, (1)

where we define t̄ = 1
D

∑D
i=1 t(zi). It is easy to see that the gradient of f takes the form

f ′(θ) = Epθ
[t(X)]− t̄+ λθ.

If one would like to optimize f using a gradient-based method, computing the expectation of t(X)
with respect to pθ can present a computational challenge. With discrete graphical models, the ex-
pected value of t is determined by the marginal distributions of each factor in the graph. Typ-
ically, the computational difficulty of computing these marginal distributions is determined by the
treewidth of the graph– if the graph is a tree, (or close to a tree) the marginals can be computed by the
junction-tree algorithm [18]. One option, with high treewidth, is to approximate the marginals with
a variational method. This can be seen as exactly optimizing a “surrogate likelihood” approximation
of Eq. 1 [31].

Another common approach is to use Markov chain Monte Carlo (MCMC) to compute a sample

{xi}Mi=1 from a distribution close to pθ, and then approximate Epθ
[t(X)] by (1/M)

∑M
i=1 t(xi).

This strategy is widely used, varying in the model type, the sampling algorithm, how samples are
initialized, the details of optimization, and so on [10, 25, 27, 24, 7, 33, 11, 2, 29, 5]. Recently,
Steinhardt and Liang [28] proposed learning in terms of the stationary distribution obtained from a
chain with a nonzero restart probability, which is fast-mixing by design.

While popular, such strategies generally lack theoretical guarantees. If one were able to exactly
sample from pθ, this could be understood simply as stochastic gradient descent. But, with MCMC,
one can only sample from a distribution approximating pθ, meaning the gradient estimate is not
only noisy, but also biased. In general, one can ask how should the step size, number of iterations,
number of samples, and number of Markov chain transitions be set to achieve a convergence level.

The gradient descent strategy analyzed in this paper, in which one updates a parameter vector θk
using approximate gradients is outlined and shown as a cartoon in Figure 1. Here, and in the rest
of the paper, we use pk as a shorthand for pθk , and we let ek denote the difference between the
estimated gradient and the true gradient f ′(θk−1). The projection operator is defined by ΠΘ[φ] =
argminθ∈Θ ||θ − φ||2.

We assume that the parameter set θ is constrained to a set Θ such that MCMC is guaranteed to mix
at a certain rate (Section 3.1). With convexity, this assumption can bound the mean and variance
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of the errors at each iteration, leading to a bound on the sum of errors. With strong convexity, the
error of the gradient at each iteration is bounded with high probability. Then, using results due to
[26] for projected gradient descent with errors in the gradient, we show a schedule the number of
iterations K , the number of samples M , and the number of Markov transitions v such that with high
probability,

f

(

1

K

K
∑

k=1

θk

)

− f (θ∗) ≤ ǫf or ‖θK − θ∗‖2 ≤ ǫθ,

for the convex or strongly convex cases, respectively, where θ∗ ∈ argminθ∈Θ f(θ). The total num-
ber of Markov transitions applied through the entire algorithm, KMv grows as (1/ǫf)

3 log(1/ǫf)
for the convex case, (1/ǫ2θ) log(1/ǫ

2
θ) for the strongly convex case, and polynomially in all other

parameters of the problem.

3 Background

3.1 Mixing times and Fast-Mixing Parameter Sets

This Section discusses some background on mixing times for MCMC. Typically, mixing times are
defined in terms of the total-variation distance ‖p−q‖TV = maxA |p(A)−q(A)|, where the max-
imum ranges over the sample space. For discrete distributions, this can be shown to be equivalent to
‖p− q‖TV = 1

2

∑

x |p(x)− q(x)|.
We assume that a sampling algorithm is known, a single iteration of which can be thought of an
operator Mθ that transforms some starting distribution into another. The stationary distribution is
pθ, i.e. limv→∞ M

v
θq = pθ for all q. Informally, a Markov chain will be fast mixing if the total

variation distance between the starting distribution and the stationary distribution decays rapidly in
the length of the chain. This paper assumes that a convex set Θ and constants C and α are known
such that for all θ ∈ Θ and all distributions q,

‖Mv
θq − pθ‖TV ≤ Cαv. (2)

This means that the distance between an arbitrary starting distribution q and the stationary distri-
bution pθ decays geometrically in terms of the number of Markov iterations v. This assumption is
justified by the Convergence Theorem [19, Theorem 4.9], which states that if M is irreducible and
aperiodic with stationary distribution p, then there exists constants α ∈ (0, 1) and C > 0 such that

d(v) := sup
q
‖Mvq − p‖TV ≤ Cαv. (3)

Many results on mixing times in the literature, however, are stated in a less direct form. Given a
constant ǫ, the mixing time is defined by τ(ǫ) = min{v : d(v) ≤ ǫ}. It often happens that bounds

on mixing times are stated as something like τ(ǫ) ≤
⌈

a+ b ln 1
ǫ

⌉

for some constants a and b. It

follows from this that ‖Mvq − p‖TV ≤ Cαv with C = exp(a/b) and α = exp(−1/b).
A simple example of a fast-mixing exponential family is the Ising model, defined for x ∈
{−1,+1}N as

p(x|θ) = exp





∑

(i,j)∈Pairs

θijxixj +
∑

i

θixi −A(θ)



 .

A simple result for this model is that, if the maximum degree of any node is ∆ and |θij | ≤ β for

all (i, j), then for univariate Gibbs sampling with random updates, τ(ǫ) ≤ ⌈ N log(N/ǫ)
1−∆tanh(β)⌉ [19]. The

algorithm discussed in this paper needs the ability to project some parameter vector φ onto Θ to find
argminθ∈Θ ||θ−φ||2. Projecting a set of arbitrary parameters onto this set of fast-mixing parameters
is trivial– simply set θij = β for θij > β and θij ← −β for θij < −β.

For more dense graphs, it is known [12, 9] that, for a matrix norm ‖·‖ that is the spectral norm ‖·‖2,
or induced 1 or infinity norms,

τ(ǫ) ≤
⌈

N log(N/ǫ)

1− ‖R(θ)‖

⌉

(4)
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where Rij(θ) = |θij |. Domke and Liu [2013] show how to perform this projection for the Ising
model when ‖ · ‖ is the spectral norm ‖ · ‖2 with a convex optimization utilizing the singular value
decomposition in each iteration.

Loosely speaking, the above result shows that univariate Gibbs sampling on the Ising model is fast-
mixing, as long as the interaction strengths are not too strong. Conversely, Jerrum and Sinclair
[1993] exhibited an alternative Markov chain for the Ising model that is rapidly mixing for arbitrary
interaction strengths, provided the model is ferromagnetic, i.e. that all interaction strengths are
positive with θij ≥ 0 and that the field is unidirectional. This Markov chain is based on sampling
in different “subgraphs world” state-space. Nevertheless, it can be used to estimate derivatives of
the Ising model log-partition function with respect to parameters, which allows estimation of the
gradient of the log-likelihood. Huber [2012] provided a simulation reduction to obtain an Ising
model sample from a subgraphs world sample.

More generally, Liu and Domke [2014] consider a pairwise Markov random field, defined as

p(x|θ) = exp





∑

i,j

θij(xi, xj) +
∑

i

θi(xi)−A(θ)



 ,

and show that, if one defines Rij(θ) = maxa,b,c
1
2 |θij(a, b)−θij(a, c)|, then again Equation 4 holds.

An algorithm for projecting onto the set Θ = {θ : ‖R(θ)‖ ≤ c} exists.

There are many other mixing-time bounds for different algorithms, and different types of models
[19]. The most common algorithms are univariate Gibbs sampling (often called Glauber dynamics
in the mixing time literature) and Swendsen-Wang sampling. The Ising model and Potts models are
the most common distributions studied, either with a grid or fully-connected graph structure. Often,
the motivation for studying these systems is to understand physical systems, or to mathematically
characterize phase-transitions in mixing time that occur as interactions strengths vary. As such,
many existing bounds assume uniform interaction strengths. For all these reasons, these bounds
typically require some adaptation for a learning setting.

4 Main Results

4.1 Lipschitz Gradient

For lack of space, detailed proofs are postponed to the appendix. However, informal proof sketches
are provided to give some intuition for results that have longer proofs. Our first main result is that
the regularized log-likelihood has a Lipschitz gradient.

Theorem 1. The regularized log-likelihood gradient is L-Lipschitz with L = 4R2
2 + λ, i.e.

‖f ′(θ)− f ′(φ)‖2 ≤ (4R2
2 + λ)‖θ − φ‖2.

Proof sketch. It is easy, by the triangle inequality, that ‖f ′(θ)−f ′(φ)‖2 ≤ ‖ dAdθ − dA
dφ ‖2+λ‖θ−φ‖2.

Next, using the assumption that ‖t(x)‖2 ≤ R2, one can bound that ‖ dAdθ − dA
dφ ‖2 ≤ 2R2‖pθ−pφ‖TV .

Finally, some effort can bound that ‖pθ − pφ‖TV ≤ 2R2‖θ − φ‖2.

4.2 Convex convergence

Now, our first major result is a guarantee on the convergence that is true both in the regularized case
where λ > 0 and the unregularized case where λ = 0.

Theorem 2. With probability at least 1− δ, at long as M ≥ 3K/ log(1δ ), Algorithm 1 will satisfy

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤ 8R2
2

KL

(

L‖θ0 − θ∗‖2
4R2

+ log
1

δ
+

K√
M

+KCαv

)2

.

Proof sketch. First, note that f is convex, since the Hessian of f is the covariance of t(X) when

λ = 0 and λ > 0 only adds a quadratic. Now, define the quantity dk = 1
M

∑M
m=1 t(X

k
m) −
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Eqk [t(X)] to be the difference between the estimated expected value of t(X) under qk and the
true value. An elementary argument can bound the expected value of ‖dk‖, while the Efron-Stein
inequality can bounds its variance. Using both of these bounds in Bernstein’s inequality can then

show that, with probability 1 − δ,
∑K

k=1 ‖dk‖ ≤ 2R2(K/
√
M + log 1

δ ). Finally, we can observe

that
∑K

k=1 ‖ek‖ ≤
∑K

k=1 ‖dk‖+
∑K

k=1 ‖Eqk [t(X)]−Epθk
[t(X)]‖2. By the assumption on mixing

speed, the last term is bounded by 2KR2Cαv . And so, with probability 1 − δ,
∑K

k=1 ‖ek‖ ≤
2R2(K/

√
M + log 1

δ ) + 2KR2Cαv. Finally, a result due to Schmidt et al. [26] on the convergence
of gradient descent with errors in estimated gradients gives the result.

Intuitively, this result has the right character. If M grows on the order of K2 and v grows on the
order of logK/(− logα), then all terms inside the quadratic will be held constant, and so if we set
K of the order 1/ǫ, the sub-optimality will on the order of ǫ with a total computational effort roughly
on the order of (1/ǫ)3 log(1/ǫ). The following results pursue this more carefully. Firstly, one can
observe that a minimum amount of work must be performed.

Theorem 3. For a, b, c, α > 0, if K,M, v > 0 are set so that 1
K (a+ b K√

M
+Kcαv)2 ≤ ǫ, then

KMv ≥ a4b2

ǫ3
log ac

ǫ

(− logα)
.

Since it must be true that a/
√
K + b

√

K/M +
√
Kcαv ≤ √ǫ, each of these three terms must also

be at most
√
ǫ, giving lower-bounds on K , M , and v. Multiplying these gives the result.

Next, an explicit schedule for K, M , and v is possible, in terms of a convex set of parameters
β1, β2, β3. Comparing this to the lower-bound above shows that this is not too far from optimal.

Theorem 4. Suppose that a, b, c, α > 0. If β1 + β2 + β3 = 1, β1, β2, β3 > 0, then setting

K = a2

β2

1
ǫ
, M = ( ab

β1β2ǫ
)2, v = log ac

β1β3ǫ
/(− logα) is sufficient to guarantee that 1

K (a + b K√
M

+

Kcαv)2 ≤ ǫ with a total work of

KMv =
1

β4
1β

2
2

a4b2

ǫ3

log ac
β1β3ǫ

(− logα)
.

Simply verify that the ǫ bound holds, and multiply the terms together.

For example, setting β1 = 0.66, β2 = 0.33 and β3 = 0.01 gives that KMv ≈ 48.4a4b2

ǫ3
log ac

ǫ
+5.03

(− logα) .

Finally, we can give an explicit schedule for K , M , and v, and bound the total amount of work that
needs to be performed.

Theorem 5. If D ≥ max
(

‖θ0 − θ∗‖2, 4R2

L log 1
δ

)

, then for all ǫ there is a setting of K,M, v such

that f( 1
K

∑K
k=1 θk)− f(θ∗) ≤ ǫf with probability 1− δ and

KMv ≤ 32LR2
2D

4

β4
1β

2
2ǫ

3
f(1 − α)

log
4DR2C

β1β3ǫf
.

[Proof sketch] This follows from setting K , M , and v as in Theorem 4 with a = L‖θ0 −
θ∗‖2/(4R2) + log 1

δ , b = 1, c = C, and ǫ = ǫfL/(8R
2
2).

4.3 Strongly Convex Convergence

This section gives the main result for convergence that is true only in the regularized case where
λ > 0. Again, the main difficulty in this proof is showing that the sum of the errors of estimated
gradients at each iteration is small. This is done by using a concentration inequality to show that the
error of each estimated gradient is small, and then applying a union bound to show that the sum is
small. The main result is as follows.

Theorem 6. When the regularization constant obeys λ > 0, with probability at least 1−δ Algorithm
1 will satisfy

‖θK − θ∗‖2 ≤ (1− λ

L
)K‖θ0 − θ∗‖2 +

L

λ

(
√

R2

2M

(

1 +

√

2 log
K

δ

)

+ 2R2Cαv

)

.
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Proof sketch. When λ = 0, f is convex (as in Theorem 2) and so is strongly convex when
λ > 0. The basic proof technique here is to decompose the error in a particular step as ‖ek+1‖2 ≤
‖ 1
M

∑M
i=1 t(x

k
i )− Eqk [t(X)]‖2 + ‖Eqk [t(X)]− Epθk

[t(X)]‖2. A multidimensional variant of Ho-

effding’s inequality can bound the first term, with probability 1 − δ′ by R2(1 +
√

2 log 1
δ )/
√
M ,

while our assumption on mixing speed can bound the second term by 2R2Cαv . Applying this to
all iterations using δ′ = δ/K gives that all errors are simultaneously bounded as before. This can
then be used in another result due to Schmidt et al. [26] on the convergence of gradient descent with
errors in estimated gradients in the strongly convex case.

A similar proof strategy could be used for the convex case where, rather than directly bounding the
sum of the norm of errors of all steps using the Efron-Stein inequality and Bernstein’s bound, one
could simply bound the error of each step using a multidimensional Hoeffding-type inequality, and
then apply this with probability δ/K to each step. This yields a slightly weaker result than that
shown in Theorem 2. The reason for applying a uniform bound on the errors in gradients here is
that Schmidt et al.’s bound [26] on the convergence of proximal gradient descent on strongly convex
functions depends not just on the sum of the norms of gradient errors, but a non-uniform weighted
variant of these.

Again, we consider how to set parameters to guarantee that θK is not too far from θ∗ with a minimum
amount of work. Firstly, we show a lower-bound.

Theorem 7. Suppose a, b, c > 0. Then for anyK,M, v such that γKa+ b√
M

√

log(K/δ)+cαv ≤ ǫ.

it must be the case that

KMv ≥ b2

ǫ2
log a

ǫ log
c
ǫ

(− log γ)(− logα)
log

(

log a
ǫ

δ(− log γ)

)

.

[Proof sketch] This is established by noticing that γKa, b√
M

√

log K
δ , and cαv must each be less

than ǫ, giving lower bounds on K , M , and v.

Next, we can give an explicit schedule that is not too far off from this lower-bound.

Theorem 8. Suppose that a, b, c, α > 0. If β1 + β2 + β3 = 1, βi > 0, then setting K =

log( a
β1ǫ

)/(− log γ), M = b2

ǫ2β2

2

(

1 +
√

2 log(K/δ)
)2

and v = log
(

c
β3ǫ

)

/(− logα) is sufficient

to guarantee that γKa+ b√
M
(1 +

√

2 log(K/δ)) + cαv ≤ ǫ with a total work of at most

KMV ≤ b2

ǫ2β2
2

log
(

a
β1ǫ

)

log
(

c
β3ǫ

)

(− log γ)(− logα)



1 +

√

2 log
log( a

β1ǫ
)

δ(− log γ)





2

.

For example, if you choose β2 = 1/
√
2 and β1 = β3 = (1 − 1/

√
2)/2 ≈ 0.1464, then this varies

from the lower-bound in Theorem 7 by a factor of two, and a multiplicative factor of 1/β3 ≈ 6.84
inside the logarithmic terms.

Corollary 9. If we choose K ≥ L
λ log

(

‖θ0−θ‖2

β1ǫ

)

, M ≥ L2R2

2ǫ2β2

2
λ2

(

1 +
√

2 log(K/δ)
)2

, and v ≥
1

1−α log (2LR2C/(β3ǫλ)), then ‖θK − θ∗‖2 ≤ ǫθ with probability at least 1 − δ, and the total

amount of work is bounded by

KMv ≤ L3R2

2ǫ2θβ
2
2λ

3(1 − α)
log

(‖θ0 − θ‖2
β1ǫθ

)

(

1 +

√

2 log

(

L

λδ
log

(‖θ0 − θ‖2
β1ǫθ

))

)2

.

5 Discussion

An important detail in the previous results is that the convex analysis gives convergence in terms of
the regularized log-likelihood, while the strongly-convex analysis gives convergence in terms of the
parameter distance. If we drop logarithmic factors, the amount of work necessary for ǫf - optimality

in the log-likelihood using the convex algorithm is of the order 1/ǫ3f , while the amount of work

necessary for ǫθ - optimality using the strongly convex analysis is of the order 1/ǫ2θ. Though these
quantities are not directly comparable, the standard bounds on sub-optimality for λ-strongly convex
functions with L-Lipschitz gradients are that λǫ2θ/2 ≤ ǫf ≤ Lǫ2θ/2. Thus, roughly speaking, when
regularized for the strongly-convex analysis shows that ǫf optimality in the log-likelihood can be
achieved with an amount of work only linear in 1/ǫf .
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Figure 2: Ising Model Example. Left: The difference of the current test log-likelihood from the
optimal log-likelihood on 5 random runs. Center: The distance of the current estimated parameters
from the optimal parameters on 5 random runs. Right: The current estimated parameters on one run,
as compared to the optimal parameters (far right).

6 Example

While this paper claims no significant practical contribution, it is useful to visualize an example.
Take an Ising model p(x) ∝ exp(

∑

(i,j)∈Pairs θijxixj) for xi ∈ {−1, 1} on a 4 × 4 grid with 5

random vectors as training data. The sufficient statistics are t(x) = {xixj |(i, j) ∈ Pairs}, and with

24 pairs, ‖t(x)‖2 ≤ R2 =
√
24. For a fast-mixing set, constrain |θij | ≤ .2 for all pairs. Since

the maximum degree is 4, τ(ǫ) ≤ ⌈ N log(N/ǫ)
1−4 tanh(.2)⌉ . Fix λ = 1, ǫθ = 2 and δ = 0.1. Though the

theory above suggests the Lipschitz constant L = 4R2
2 + λ = 97, a lower value of L = 10 is used,

which converged faster in practice (with exact or approximate gradients). Now, one can derive that

‖θ0 − θ∗‖2 ≤ D =
√

24× (2× .2)2, C = log(16) and α = exp(−(1 − 4 tanh .2)/16). Applying
Corollary 9 with β1 = .01, β2 = .9 and β3 = .1 gives K = 46, M = 1533 and v = 561. Fig. 2
shows the results. In practice, the algorithm finds a solution tighter than the specified ǫθ, indicating
a degree of conservatism in the theoretical bound.

7 Conclusions

This section discusses some weaknesses of the above analysis, and possible directions for future
work. Analyzing complexity in terms of the total sampling effort ignores the complexity of projec-
tion itself. Since projection only needs to be done K times, this time will often be very small in
comparison to sampling time. (This is certainly true in the above example.) However, this might not
be the case if the projection algorithm scales super-linearly in the size of the model.

Another issue to consider is how the samples are initialized. As far as the proof of correctness
goes, the initial distribution r is arbitrary. In the above example, a simple uniform distribution was
used. However, one might use the empirical distribution of the training data, which is equivalent to
contrastive divergence [5]. It is reasonable to think that this will tend to reduce the mixing time when
the pθ is close to the model generating the data. However, the number of Markov chain transitions
v prescribed above is larger than typically used with contrastive divergence, and Algorithm 1 does
not reduce the step size over time. While it is common to regularize to encourage fast mixing
with contrastive divergence [14, Section 10], this is typically done with simple heuristic penalties.
Further, contrastive divergence is often used with hidden variables. Still, this provides a bound for
how closely a variant of contrastive divergence could approximate the maximum likelihood solution.

The above analysis does not encompass the common strategy for maximum likelihood learning
where one maintains a “pool” of samples between iterations, and initializes one Markov chain at
each iteration from each element of the pool. The idea is that if the samples at the previous iteration
were close to pk−1 and pk−1 is close to pk, then this provides an initialization close to the current
solution. However, the proof technique used here is based on the assumption that the samples xk

i at
each iteration are independent, and so cannot be applied to this strategy.
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Appendix

8 Background

8.1 Optimization

The main results in this paper rely strongly on the work of Schmidt et al. [26] on the convergence of
proximal gradient methods with errors in estimated gradients. The first result used is the following
theorem for the convergence of gradient descent on convex functions with errors in the estimated
gradients.

Theorem 10. (Special case of [26, Proposition 1]) Suppose that a function f is convex with an
L-Lipshitz gradient (meaning ‖f ′(φ) − f ′(θ)‖2 ≤ L‖φ− θ‖2). If Θ is a closed convex set and one
iterates

θk ← ΠΘ

[

θk−1 −
1

L
(f ′(θk−1) + ek)

]

,

then, defining θ∗ ∈ argminθ∈Θ f(θ), for all K ≥ 1, we have, for AK :=
∑K

k=1
‖ek‖
L , that

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤ L

2K
(‖θ0 − θ∗‖2 + 2AK)2 .

This section will show that this is indeed a special case of .[26] To start with, we simply restate
exactly the previous result [26, Proposition 1], with only trivial changes in notation.

Theorem 11. Assume that:

• f is convex and has L-Lipschitz continuous gradient

• h is a lower semi-continuous proper convex function.

• The function r = f + h attains it’s minimum at a certain θ∗ ∈ R
n.

• θk is an ǫk-optimal solution, i.e. that

L

2
‖θk − y‖2 + h(θk) ≤ ǫk + min

θ∈Rn

L

2
‖θ − y‖2 + h(θ)

where

y = θk−1 −
1

L
(f ′(θk−1) + ek) .

Then, for all K ≥ 1, one has that

r

(

1

K

K
∑

k=1

θk

)

− r(θ∗) ≤ L

2K

(

‖θ0 − θ∗‖+ 2AK +
√

2BK

)2

with

AK =

K
∑

k=1

(

‖ek‖
L

+

√

2ǫk
L

)

, BK =

K
∑

k=1

ǫk
K

.

The first theorem follows from this one by setting h to be the indicator function for the set Θ, i.e.

h(θ) =

{

0 θ ∈ Θ

∞ θ 6∈ Θ

and assuming that ǫk = 0. By the convexity of Θ, h will be a lower semi-continuous proper convex
function. Further, from the fact that Θ is closed, r will attain its minimum. Now, we verify that this
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results in the theorem statement at the start of this section. θk takes the form

θk = arg min
θ∈Rn

L

2
‖θ − y‖2 + h(θ)

= argmin
θ∈Θ
‖θ − y‖

= argmin
θ∈Θ
‖θ − θk−1 +

1

L
(f ′(θk−1) + ek) ‖

= ΠΘ

[

θk−1 −
1

L
(f ′(θk−1) + ek)

]

.

We will also use the following result for strongly-convex optimzation. The special case follows from
the same construction used above.

Next, consider the following result on optimization of strongly convex functions, which follows
from [26] by a very similar argument.

Theorem 12. (Special case of [26, Proposition 3]) Suppose that a function f is λ-strongly convex
with an L-Lipshitz gradient (meaning ‖f ′(φ) − f ′(θ)‖2 ≤ L‖φ− θ‖2). If Θ is a closed convex set
and one iterates

θk ← ΠΘ

[

θk−1 −
1

L
(f ′(θk−1) + ek)

]

,

Then, defining θ∗ = argminθ∈Θ f(θ), for all K ≥ 1, we have, for Āk =
∑K

k=1(1− λ
L )

−k ‖ek‖
L that

‖θK − θ∗‖2 ≤ (1 − λ

L
)K
(

‖θ0 − θ∗‖2 + Āk

)

Corollary 13. Under the same conditions, if ‖ek‖ ≤ r for all k, then

‖θK − θ∗‖2 ≤ (1− λ

L
)K‖θ0 − θ∗‖2 +

rL

λ

Proof. Using the fact that
∑K

k=1 a
−k = a−K

∑K−1
k=0 ak ≤ a−K

∑∞
k=0 a

k = a−K

1−a , we get that

ĀK ≤ r

K
∑

k=1

(1 − λ

L
)−k ≤ r

L

λ
(1− λ

L
)−K ,

and therefore that

‖θK − θ∗‖2 ≤ (1 − λ

L
)K
(

‖θ0 − θ∗‖2 + r
L

λ
(1 − λ

L
)−K

)

.

8.2 Concentration Results

Three concentration inequalities, are stated here for reference. The first is Bernstein’s inequality.

Theorem 14. (Bernstein’s inequality) SupposeZ1, ..., ZK are independent with mean 0, that |Zk| ≤
c and that σ2

i = V[Zi]. Then, if we define σ2 = 1
K

∑K
k=1 σ

2
k,

P

[

1

K

K
∑

k=1

Zk > ǫ

]

≤ exp

(

− Kǫ2

2σ2 + 2cǫ/3

)

.

The second is the following Hoeffding-type bound to control the difference between the expected
value of t(X) and the estimated value using M samples.

Theorem 15. If X1, ..., XM are independent variables with mean µ, and ‖Xi − µ‖ ≤ c, then for
all ǫ ≥ 0, with probability at least 1− δ,

‖X̄ − µ‖ ≤
√

c

4M

(

1 +

√

2 log
1

δ

)

.
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Proof. Boucheron et al. [2013, Ex. 6.3] show that, under the same conditions as stated, for all
s ≥ √v,

P

[

‖X̄ − µ‖ > s

M

]

≤ exp

(

− (s−√v)2
2v

)

,

where v = cM
4 . We will fix δ, and solve for the appropriate s. If we set δ = exp(− (s−√

v)2

2v ), then

we have that s =
√

2v log 1
δ +
√
v, meaning that, with probability at least 1− δ,

‖X̄ − µ‖ ≤ 1

M

(
√

2
cM

4
log

1

δ
+

√

cM

4

)

,

which is equivalent to the result with a small amount of manipulation.

The third is the Efron-Stein inequality [4, Theorem 3.1].

Theorem 16. If X = (X1, ..., Xm) is a vector of independent random variables and f(X) is a
square-integrable function, then

V[f(X)] ≤ 1

2

M
∑

i=1

E

[

(

(f(X)− f(X(i))
)2
]

,

where X(i) is X with Xi independently re-drawn, i.e.

X(i) = (X1, ..., Xi−1, X
′
i′ , Xi+1, ..., Xm).

9 Preliminary Results

A result that we will use several times below is that, for 0 < α < 1, − 1
log(α) ≤ 1

1−α . This bound is

tight in the limit that α→ 1.

Lemma 17. The difference of two estimated mean vectors is bounded by

‖Eq[t(X)]− Ep[t(X)]‖2 ≤ 2R2‖q − p‖TV .

Proof. Let the distribution functions of p and q be P and Q, respectively. Then, we have that

‖E
p
[t(X)]− E

q
[t(X)]‖2 =

∥

∥

∥

∥

ˆ

x

t(x) (dP (x)− dQ(x))

∥

∥

∥

∥

2

≤
ˆ

x

|dP (x)− dQ(x)| · ‖t(x)‖2.

Using the definition of total-variation distance, and the bound that ‖t(x)‖2 ≤ R2 gives the result.

Lemma 18. If 1/a+ 1/b = 1, then the difference of two log-partition functions is bounded by

|A(θ) −A(φ)| ≤ Ra‖θ − φ‖b.

Proof. By the Lagrange remainder theorem, there must exist some γ on the line segment between θ
and φ such that A(φ) = A(θ)+ (φ− θ)T∇γA(γ). Thus, applying Hölder’s inequality, we have that

|A(φ) −A(θ)| = |(φ− θ)T∇γA(γ)| ≤ ‖φ− θ‖b · ‖∇γA(γ)‖a.
The result follows from the fact that ‖∇γA(γ)‖a = ‖Epγ

t(X)‖a ≤ Ra.

Next, we observe that the total variation distance between pθ and pφ is bounded by the distance
between θ and φ.

Theorem 19. If 1/a+ 1/b = 1, then the difference of distributions is bounded by

‖pθ − pφ‖TV ≤ 2Ra‖θ − φ‖b.
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Proof. If we assume that pθ is a density, we can decompose the total-variation distance as

||pθ − pφ||TV

=
1

2

ˆ

x

pθ(x)|1 −
pφ(x)

pθ(x)
|

=
1

2

ˆ

x

pθ(x) |1− exp ((φ− θ) · t(x)−A(φ) +A(θ))|

≤ 1

2

ˆ

x

pθ(x) |1− exp |(φ− θ) · t(x)−A(φ) +A(θ)|| .

If pθ is a distribution, the analogous expression is true, replacing the integral over x with a sum.

We can upper-bound the quantity inside exp by applying Hölder’s inequality and the previous
Lemma as

|(φ − θ) · t(x) −A(φ) +A(θ))|
≤ |(φ− θ) · t(x)|+ |A(φ) −A(θ))|
≤ 2Ra‖θ − φ‖b.

From which we have that

‖pθ − pφ‖TV ≤
1

2
|1− exp (2Ra‖θ − φ‖b)| .

If 2Ra‖θ − φ‖b > 1, the theorem is obviously true, since ‖ · ‖TV ≤ 1. Suppose instead that that
2Ra‖θ− φ‖b ≤ 1. If 0 ≤ c ≤ 1, then 1

2 |1− exp(c)| ≤ c e−1
2 . Applying this with c = 2Ra‖θ− φ‖b

gives that ||pθ−pφ||TV ≤ (e−1)R2||θ−φ||b. The result follows from the fact that 2 > (e−1).

10 Lipschitz Continuity

This section shows that the ridge-regularized empirical log-likelihood does indeed have a Lipschitz
continuous gradient.

Theorem 20. The regularized log-likelihood function is L-Lipschitz with L = 4R2
2 + λ, i.e.

‖f ′(θ)− f ′(φ)‖2 ≤ (4R2
2 + λ)‖θ − φ‖2.

Proof. We start by the definition of the gradient, with

‖f ′(θ)− f ′(φ)‖2 =

∥

∥

∥

∥

(

dA

dθ
− t̄+ λθ

)

−
(

dA

dφ
− t̄+ λφ

)∥

∥

∥

∥

2

= ‖dA
dθ
− dA

dφ
+ λ(θ − φ)‖2.

≤ ‖dA
dθ
− dA

dφ
‖2 + λ‖θ − φ‖2.

Now, looking at the first two terms, we can apply Lemma 17 to get that
∥

∥

∥

∥

dA

dθ
− dA

dφ

∥

∥

∥

∥

2

=
∥

∥Epθ
[t(X)]− Epφ

[t(X)]
∥

∥

2

≤ 2R2‖pθ − pφ‖TV .

Observing by Theorem 19 that ‖pθ − pφ‖TV ≤ 2R2‖θ − φ‖2 gives that

‖f ′(θ)− f ′(φ)‖2 ≤ 4R2
2‖θ − φ‖2 + λ‖θ − φ‖2

13



11 Convex Convergence

This section gives the main result for convergence this is true both in the regularized case where
λ > 0 and the unregularized case where λ = 0. The main difficulty in this proof is showing that the
sum of the norms of the errors of estimated gradients is small.

Theorem 21. Assuming that X1, ..., XM are independent and identically distributed with mean µ
and that ‖Xm‖2 ≤ R2, then

E

[

‖ 1

M

M
∑

m=1

Xm − µ‖2
]

≤ 2R2√
M

Proof. Using that E
[

Z2
]

= V [Z] +E [Z]2and the fact that the variance is non-negative (Or simply
Jensen’s inequality), we have

E

[

‖ 1

M

M
∑

m=1

Xm − µ‖2
]2

≤ E

[

‖ 1

M

M
∑

m=1

Xm − µ‖22

]

=
1

M
E
[

‖Xm − µ‖22
]

≤ 1

M
(2R2)

2

=
4R2

2

M
.

Taking the square-root gives the result.

Theorem 22. Assuming that X1, ..., XM are iid with mean µ and that ‖Xm‖ ≤ R2, then

V

[

‖ 1

M

M
∑

m=1

Xm − µ‖
]

≤ 2R2
2

M
.

Proof.

V

[

‖ 1

M

M
∑

m=1

Xm − µ‖
]

= V

[

‖ 1

M

M
∑

m=1

(Xm − µ)‖
]

=
1

M2
V

[

‖
M
∑

m=1

(Xm − µ)‖
]

Now, the Efron-Stein inequality tells us that

V[f(X1, ..., Xm)] ≤ 1

2

M
∑

m′=1

E

[

(

(f(X)− f(X(m′))
)2
]

where X(m′) is X with Xm′ independently re-drawn. Now, we identify f(X1, ..., Xm) =

‖∑M
m=1(Xm − µ)‖ to obtain that

V

[

‖
M
∑

m=1

(Xm − µ)‖
]

≤ 1

2

M
∑

m′=1

E





(

‖
M
∑

m=1

(Xm − µ)‖ − ‖
M
∑

m=1

(X(m′)
m − µ)‖

)2


 .

Further, since we know that

M
∑

m=1

(X(m′)
m − µ) =

M
∑

m=1

(Xm − µ) +X
(m′)
m′ −Xm′ ,
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we can apply that that (‖a+ b‖ − ‖a‖)2 ≤ ‖b‖2 to obtain that

(

‖
M
∑

m=1

(Xm − µ)‖ − ‖
M
∑

m=1

(X(m′)
m − µ)‖

)2

= ‖X(m′)
m′ −Xm′‖2,

and so

V

[

‖
M
∑

m=1

(Xm − µ)‖
]

≤ 1

2

M
∑

m′=1

E

[

‖X(m′)
m′ −Xm′‖2

]

.

And, since we assume that ‖Xm‖ ≤ R2, ‖X(m′)
m′ −Xm′‖ ≤ 2R2, which leads to

V

[

‖
M
∑

m=1

(Xm − µ)‖
]

≤ 2MR2
2,

from which it follows that

V

[

‖ 1

M

M
∑

m=1

Xm − µ‖
]

≤ 2R2
2

M
.

Theorem 23. With probability at least 1− δ,

K
∑

k=1

‖ 1

M

M
∑

i=1

t(xk
i )− Eqk [t(X)]‖2 ≤ Kǫ(δ) +

2R2K√
M

,

where ǫ(δ) is the solution to

δ = exp

(

− Kǫ2

4R2
2/M + 4R2ǫ/3

)

. (5)

Proof. Let dk = 1
M

∑M
i=1 t(x

k
i ) − Eqk [t(X)]. Applying Bernstein’s inequality immediately gives

us that

P

[

1

K

K
∑

k=1

(‖dk‖2 − E‖dk‖2) > ǫ

]

≤ exp

(

− Kǫ2

2σ2 + 2cǫ/3

)

.

Here, we can bound σ2 by

σ2 =
1

K

K
∑

k=1

σ2
k =

1

K

K
∑

k=1

V [‖dk‖2 − E‖dk‖2] =
1

K

K
∑

k=1

V [‖dk‖2] ≤
2R2

2

M
,

where the final inequality follows from Theorem 22. We also know that ‖dk‖ ≤ 2R2 = c, from
which we get that

P

[

1

K

K
∑

k=1

‖dk‖2 − E[‖dk‖2] > ǫ

]

≤ exp

(

− Kǫ2

4R2
2/M + 4R2ǫ/3

)

.

So we have that, with probability 1− δ

1

K

K
∑

k=1

‖dk‖2 − E[‖dk‖2] ≤ ǫ(δ)

1

K

K
∑

k=1

‖dk‖2 ≤ ǫ(δ) + E[‖dk‖2]

≤ ǫ(δ) +
2R2√
M

,

where the final inequality follows from Theorem 21.
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Corollary 24. If M ≥ 3K/ log(1δ ), then with probability at least 1− δ,

K
∑

k=1

‖ 1

M

M
∑

i=1

t(xk
i )− Eqk [t(X)]‖2 ≤ 2R2

(

K√
M

+ log
1

δ

)

.

Proof. Solving Equation 5 for ǫ yields that

ǫ(δ) =
2R2

3K



log
1

δ
+

√

(

log
1

δ

)2

+
9K log 1

δ

M



 .

Now, suppose that 3K
M ≤ log 1

δ , as assumed here. Then,

ǫ(δ) ≤ 2R2

3K



log
1

δ
+

√

(

log
1

δ

)2

+ 3(log
1

δ
)2





≤ 2R2

3K

(

log
1

δ
+ 2 log(

1

δ
)

)

=
2R2

K
log

1

δ
.

Substituting this bound into the result of Theorem 23 gives the result.

Now, we can prove the main result.

Theorem 25. With probability at least 1− δ, at long as M ≥ 3K/ log(1δ ),

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤ 8R2
2

KL

(

L‖θ0 − θ∗‖2
4R2

+ log
1

δ
+

K√
M

+KCαv

)2

.

Proof. Applying Theorem 10 gives that

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤ L

2K
(‖θ0 − θ∗‖2 + 2AK)

2
,

for AK = 1
L

∑K
k=1 ‖ek‖, where

ek =
1

M

M
∑

i=1

t(xk−1
i )− t̄+ λθk−1 − f ′(θk−1)

=
1

M

M
∑

i=1

t(xk−1
i )− Epk−1

[t(X)].

Now, we know that

K
∑

k=1

‖ek‖ ≤
K
∑

k=1

‖ 1

M

M
∑

i=1

t(xk−1
i )− Eqk−1

[t(X)]‖2 +
K
∑

k=1

‖Eqk−1
[t(X)]− Epk−1

[t(X)]‖2.

We have by Lemma 17 and the assumption of mixing speed that

‖Eqk−1
[t(X)]− Epk−1

[t(X)]‖2 ≤ 2R2‖qk−1 − pk−1‖TV ≤ 2R2Cαv .

Meanwhile, the previous Corollary tells us that, with probability 1− δ,

K
∑

k=1

‖ 1

M

M
∑

i=1

t(xk−1
i )− Eqk−1

[t(X)]‖2 ≤ 2R2

(

K√
M

+ log
1

δ

)

16



Thus, we have that

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤ L

2K

(

‖θ0 − θ∗‖2 +
2

L

(

2R2

(

K√
M

+ log
1

δ

)

+ 2R2KCαv

))2

=
L

2K

(

‖θ0 − θ∗‖2 +
4R2

L

(

K√
M

+ log
1

δ
+KCαv

))2

=
8R2

2

KL

(

L‖θ0 − θ∗‖2
4R2

+ log
1

δ
+

K√
M

+KCαv

)2

.

Now, what we really want to do is guarantee that f
(

1
K

∑K
k=1 θk

)

− f(θ∗) ≤ ǫ, while ensuring the

the total work MKv is not too large. Our analysis will use the following theorem.

Theorem 26. Suppose that a, b, c, α > 0. If β1 + β2 + β3 = 1, β1, β2, β3 > 0, then setting

K =
a2

β2
1ǫ

, M = (
ab

β1β2ǫ
)2, v =

log ac
β1β3ǫ

(− logα)

is sufficient to guarantee that 1
K

(

a+ b K√
M

+Kcαv
)2

≤ ǫ with a total work of

KMv =
1

β4
1β

2
2

a4b2

ǫ3

log ac
β1β3ǫ

(− logα)
.

Proof. Firstly, we should verify the ǫ bound. We have that

a+ b
K√
M

+Kcαv = a+ b
a2

β2
1ǫ

β1β2ǫ

ab
+

a2

β2
1ǫ

c
β1β3ǫ

ac

= a+ a
β2

β1
+ a

β3

β1
,

and hence that

1

K

(

a+ b
K√
M

+Kcαv

)2

=
a2

K

(

1 +
β2

β1
+

β3

β1

)2

=
1

K

a2

β2
1

(β1 + β2 + β3)
2

≤ ǫ.

Multiplying together th terms gives the second part of the result.

We can also show that this solution is not too sub-optimal.

Theorem 27. Suppose that a, b, c, α > 0. If K,M, v > 0 are set so that

1
K

(

a+ b K√
M

+Kcαv
)2

≤ ǫ, then

KMv ≥ a4b2

ǫ3
log ac

ǫ

(− logα)
.

Proof. The starting condition is equivalent to stating that

a√
K

+ b

√

K

M
+
√
Kcαv ≤

√
ǫ.

17



Since all terms are positive, clearly each is less than
√
ǫ. From this follows that

K ≥ a2

ǫ

M ≥ b2a2

ǫ2

v ≥ log ac
ǫ

(− logα)
.

Multiplying these together gives the result.

Theorem 28. If D ≥ max
(

‖θ0 − θ∗‖2, 4R2

L log 1
δ

)

, then for all ǫ there is a setting of KMv such

that f
(

1
K

∑K
k=1 θk

)

− f(θ∗) ≤ ǫf with probability 1− δ and

KMv ≤ 32LR2
2D

4

β4
1β

2
2ǫ

3
f (1− α)

log
4DR2C

β1β3ǫf

= O
(

LR2
2D

4

ǫ3f (1− α)
log

1

ǫf

)

= Õ
(

LR2
2D

4

ǫ3f (1− α)

)

.

Proof. So, we apply this to the original theorem. Our settings are

f

(

1

K

K
∑

k=1

θk

)

− f(θ∗) ≤ 8R2
2

KL

(

L‖θ0 − θ∗‖2
4R2

+ log
1

δ
+

K√
M

+KCαv

)2

.

a =
L‖θ0 − θ∗‖2

4R2
+ log

1

δ

b = 1

c = C

ǫ =
ǫfL

8R2
2

Note that, by the definition of D, a ≤ LD
2R2

and so ac ≤ LDC
2R2

. Thus, the total amount of work is

KMv =
1

β4
1β

2
2

a4b2

ǫ3
log β1β3ǫ

ac

logα

=
1

β4
1β

2
2

a4b2

ǫ3

log ac
β1β3ǫ

− logα

≤ 1

β4
1β

2
2

1

ǫ3

(

LD

2R2

)4 log LDC
β1β32R2ǫ

logα

=
1

β4
1β

2
2

83R6
2

ǫ3fL
3

(

LD

2R2

)4 log
LDC8R2

2

β1β32R2ǫfL

logα

=
1

β4
1β

2
2

32LD4R2
2

ǫ3f

log 4DR2C
β1β3ǫf

logα

≤ 32LD4R2
2

β4
1β

2
2ǫ

3(1− α)
log

4DR2C

β1β3ǫ
.

18



12 Strongly Convex Convergence

This section gives the main result for convergence this is true both only in the regularized case where
λ > 0. Again, the main difficulty in this proof is showing that the sum of the norms of the errors
of estimated gradients is small. This proof is relatively easier, as we simply bound all errors to be
small with high probability, rather than jointly bounding the sum of errors.

Lemma 29. With probability at least 1− δ,

‖ek+1‖2 ≤
R2√
M

(

1 +

√

2 log
1

δ

)

+ 2R2Cαv

Proof. Once we have the difference of the distributions, we can go after the error in the gradient
estimate. By definition,

‖ek+1‖2 = ‖ 1

M

M
∑

i=1

t(xk
i )− Epθk

[t(X)]‖2

≤ ‖ 1

M

M
∑

i=1

t(xk
i )− Eqk [t(X)]‖2

+ ‖Eqk [t(X)]− Epθk
[t(X)]‖2.

Consider the second term. We know by Lemma 17 and the assumption of mixing speed

‖Eqk [t(X)]− Epk
[t(X)]‖2 ≤ 2R2‖qk − pk‖TV ≤ 2R2Cαv. (6)

Now, consider the first term. We know that Eqk [t(X)] is the expected value of 1
M

∑M
i=1 t(x

k
i ). We

also know that ||t(xk
i ) − Eqk [t(X)]|| ≤ 2R2. Thus, we can apply Theorem 15 to get that, with

probability 1− δ,
∥

∥

∥

∥

∥

1

M

M
∑

i=1

t
(

xk
i

)

− Eqk [t(X)]

∥

∥

∥

∥

∥

≤ R2√
M

(

1 +

√

2 log
1

δ

)

. (7)

Adding together Equations 6 and 7 gives the result.

Theorem 30. With probability at least 1− δ,

‖θK − θ∗‖2 ≤ (1 − λ

L
)K‖θ0 − θ∗‖2 +

L

λ

(
√

R2

2M

(

1 +

√

2 log
K

δ

)

+ 2R2Cαv

)

Proof. Apply the previous Lemma to bound bound on ‖ek+1‖2 with probability at least 1−δ′ where
δ′ = δ/K . Then, plug this into the main optimization result in Corollary 13.

Theorem 31. Suppose a, b, c > 0. Then for any K,M, v such that γKa+ b√
M

√

log K
δ + cαv ≤ ǫ.

it must be the case that

KMv ≥ b2

ǫ2
log a

ǫ log
c
ǫ

(− log γ)(− logα)
log

(

log a
ǫ

δ(− log γ)

)

Proof. Clearly, we must have that each term is at most ǫ, yielding that

K ≥ log ǫ
a

log γ

M ≥ b2

ǫ2
log

K

δ
≥ b2

ǫ2
log

log ǫ
a

δ log γ

v ≥ log(c/ǫ)

(− logα)
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From this we obtain that

KMv ≥ b2

ǫ2
log a

ǫ log(c/ǫ)

(− log γ)(− logα)
log

(

log a
ǫ

δ(− log γ)

)

.

Theorem 32. Suppose that a, b, c, α > 0. If β1 + β2 + β3 = 1, βi > 0, then setting

K = log(
a

β1ǫ
)/(− log γ)

M =
b2

ǫ2β2
2

(

1 +

√

2 log
K

δ

)2

v = log

(

c

β3ǫ

)

/(− logα)

is sufficient to guarantee that γKa+ b√
M
(1 +

√

2 log K
δ ) + cαv ≤ ǫ with a total work of at most

KMV ≤ b2

ǫ2β2
2

log
(

a
β1ǫ

)

log
(

c
β3ǫ

)

(− log γ)(− logα)



1 +

√

2 log
log( a

β1ǫ
)

δ(− log γ)





2

Proof. We define the errors so that

γKa = ǫβ1

b√
M

(1 +

√

2 log
K

δ
) = ǫβ2

cαv = ǫβ3.

Solving, we obtain that

K = log(
a

β1ǫ
)/(− log γ)

M =
b2

ǫ2β2
2

(

1 +

√

2 log
K

δ

)2

v = log

(

c

β3ǫ

)

/(− logα).

This yields that the final amount of work is

KMv ≤
log
(

a
β1ǫ

)

log
(

c
β3ǫ

)

(− log γ)(− logα)

b2

ǫ2β2
2



1 +

√

2 log
log( a

β1ǫ
)

δ(− log γ)





2

Remark 33. For example, you might choose β2 = 1
2 , β1 = 1

4 and β3 = 1
4 , in which case the total

amount of work is bounded by

KMv ≤ 4b2

ǫ2
log
(

4a
ǫ

)

log
(

4c
ǫ

)

(− log γ)(− logα)



1 +

√

2 log
log(4aǫ )

δ(− log γ)





2

=
4b2

ǫ2

(

log
(

a
ǫ

)

+ log 4
)

(log
(

4c
ǫ

)

+ log 4)

(− log γ)(− logα)

(

1 +

√

2 log
log(aǫ ) + log 4

δ(− log γ)

)2

Or, if you choose β2 = 1/
√
2 and β1 = β3 = (1− 1/

√
2)/2 ≈ 0.1464, then you get the bound of

KMV ≤ 2b2

ǫ2

(log
(

a
ǫ

)

+ 1.922)(log
(

c
β3

)

+ 1.922)

(− log γ)(− logα)

(

1 +

√

2 log
log(aǫ ) + 1.922

δ(− log γ)

)2

which is not too much worse than the lower-bound.
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Corollary 34. If we choose

K ≥ L

λ
log

(‖θ0 − θ‖2
β1ǫ

)

M ≥ L2R2

2ǫ2β2
2λ

2

(

1 +

√

2 log
K

δ

)2

v ≥ 1

1− α
log

(

2LR2C

β3ǫλ

)

then ‖θK − θ∗‖2 ≤ ǫ with probability at least 1− δ, and the total amount of work is bounded by

KMv ≤ 1

ǫ2

(

L

λ

)3
R2

2β2
2(1− α)

log

(‖θ0 − θ‖2
β1ǫ

)

(

1 +

√

2 log

(

L

λδ
log

(‖θ0 − θ‖2
β1ǫ

))

)2

Proof. Apply the previous convergence theory to our setting. We equate

(1−λ

L
)K‖θ0−θ∗‖2+

L

λ

(
√

R2

2M

(

1 +

√

2 log
K

δ

)

+ 2R2Cαv

)

= γKa+
b√
M

(1+

√

2 log
K

δ
)+cαv.

This requires the constants

γ = 1− λ

L
a = ‖θ0 − θ‖2

b =
L

λ

√

R2

2
c = 2LR2C/λ

Thus, we will make the choices

K = log(
a

β1ǫ
)/(− log γ)

≤ log(
‖θ0 − θ‖2

β1ǫ
)/(1− γ)

=
L

λ
log(
‖θ0 − θ‖2

β1ǫ
)

M =
b2

ǫ2β2
2

(

1 +

√

2 log
K

δ

)2

=
L2R2

2ǫ2β2
2λ

2

(

1 +

√

2 log
K

δ

)2

v = log

(

c

β3ǫ

)

/(− logα)

= log

(

2LR2C

β3ǫλ

)

/(− logα)

≤ 1

1− α
log

(

2LR2C

β3ǫλ

)

This means a total amount of work of

KMv = =
L

λ
log(
‖θ0 − θ‖2

β1ǫ
)

L2R2

2ǫ2β2
2λ

2(1 − α)

(

1 +

√

2 log

(

L

λδ
log

(‖θ0 − θ‖2
β1ǫ

))

)2

log

(

2LR2C

β3ǫλ

)

=
1

ǫ2

(

L

λ

)3
R2

2β2
2(1 − α)

log

(‖θ0 − θ‖2
β1ǫ

)

(

1 +

√

2 log

(

L

λδ
log

(‖θ0 − θ‖2
β1ǫ

))

)2

.
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