
Statistical Machine Learning Notes 4

Basis Expansions

Instructor: Justin Domke

1 Bias Terms

We have defined our linear methods as

f(x) = w · x.

Many machine learning textbooks, however, introduce linear methods with an explicit inter-
cept1 term w0, as something like

f(x) = w0 + w · x. (1.1)

In learning, both the parameters w and w0 need to be adjusted. We have not bothered with
this because our original model can be made equivalent by “tacking” a constant term onto
x. Define the function φ which just takes the vector x, and prepend a constant of 1 by

φ(x) = (1,x). (1.2)

Then, if we take all our training data, and replace each element (ŷ, x̂) by (ŷ, φ(x̂)), then we
will have done the equivalent of adding an intercept term.

This is a special example of a straightforward but powerful idea known as “basis expansion”.
Take the input x, and add “expand” it to make whatever method you are using more powerful.

Unfortunately, using a basis expansion as in Eq. 1.2 isn’t always exactly equivalent to
adding an intercept term. The difference comes about when we introduce regularization. It
is common, with models of the form in Eq. 1.1, to regularize w only, leaving w0 free to be
as large or small as it wants, with no penalty. There are good reasons to think that this will
give somewhat better performance. (Namely, the variance penalty for leaving the intercept
unregularized is likely to be smaller than the rewards we reap it terms of decreased bias,

1The terminology “bias” is more common, but we will stick to “intercept”, since this has nothing to do

with the “bias” we discuss in the bias-variance tradeoff.

1



Basis Expansions 2

since most linear models do have some nonzero intercept.) Nevertheless, for simplicity, we
won’t worry about this.

Protip: A quick and dirty way to approximate an unregularized intercept term is to add a
very large constant instead of 1. If we use, say, φ(x) = (106,x), a very small weight can be
used with almost no regularization penalty, since the equivalent of an intercept of a can be
accomplished with a weight coefficient of only a/106. This doesn’t work for an l0 penalty,
however.

2 Polynomials

In the first notes, we looked at fitting polynomials of a scalar input like

f(x) = w0 + w1x + w2x
2 + ... + wpx

p.

This was done not by using some specialized polynomial fitting algorithm, but just by stan-
dard least-squares regression, with the basis expansion

φ(x) = (1, x, x2, ..., xp).

The way to understand this is to plot φi(x) for a degree five expansion:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ3



Basis Expansions 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ5

Then by simply mixing these curves with weights wi, we can represent any degree five
polynomial. For example, if we do a least-squares fit to the data from the cross-validation
notes, we recover the fit

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

with w ≈ (.58,−.39, .31,−2.53, .11,−2.55)T .

We notice the first glimpse of something interesting here. Let x
′ = φ(x). Then, what looks

like a linear model to x
′ is a highly nonlinear model in the original space x.

This can also be done in higher-dimensions. If x is a vector input, a quadratic expansion

of x is a model of the form

φm(x) = xixj .

One can, of course, define higher-order, e.g. cubic expansions, like

φm(x) = xixjxk.



Basis Expansions 4

Now, the main problem with higher order expansions like this is that if x has N dimensions,
φ(x) will have Np dimensions, where p is the degree of the polynomial. Thus, for high-
dimensional x, this quickly gets out of hand, both in terms of computational expense, and
in terms of the amount of data needed to accurately fit the weights. It is actually common
to first reduce dimensionality through a method like PCA before increasing it again through
a polynomial expansion like this.

In general, if using a higher-order expansion, it is a good idea also to include lower-order
expansions as well. Usually, one gets “more predictive accuracy per parameter” with a linear
model than with a quadratic one.

3 Splines

Another very natural way to proceed for one dimensional models would be a basis expansion
of the form

φ1(x) = I[x < ξ1]

φ2(x) = I[ξ1 ≤ x < ξ2]
...

φp(x) = I[ξp−1 ≤ x]

where 0 < ξ1 < ξ2 < ... < ξp−1 < 1. Here we assume that 0 ≤ x ≤ 1. Fitting a linear model
to this is equivalent to fitting a piecewise constant model with discontinuities at ξi.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ3

If we fit this to our scatter data, we get the fit



Basis Expansions 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

with w ≈ (.49, .38, .48)T .

A natural way to improve this would be to fit a piecewise linear model. This can be done
by tacking on extra basis functions like

φp+1(x) = xI[x < ξ1]

φp+2(x) = xI[ξ1 ≤ x < ξ2]
...

φ2p(x) = xI[ξp−1 ≤ x].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ6

If we fit this to our scatter data, we get the fit



Basis Expansions 6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

with w ≈ (0.567, .39,−.03,−.32,−.01, .56)T .

This works, but it has one seeming downside: as a function of x, the model that is fit is
still discontinuous. One way to enforce continuity would be to incorporate some constraints
on the weights while fitting w. This can work, but it a bit messy. It turns out that one
can instead create a basis expansion that incorporates these constraints into it. This can be
done with the basis expansion

φ1(x) = 1

φ2(x) = x

φ3(x) = (x − ξ1)+

φ4(x) = (x − ξ2)+

...

φp+1(x) = (x − ξp−1)+. (3.1)

The notation (a)+means max(a, 0).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ2



Basis Expansions 7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ4

We claim two things here:

1. Any mixture of these basis functions will be continuous. This is pretty clear, since
each of the basis functions themselves is continuous.

2. We can represent any piecewise constant function, with “ties” at ξ1, ξ2, ..., ξp−1. Let’s
convince ourselves of this. To start out with, in the region where x ≤ ξ1, we just have
a generic linear function w1 + w2x, which can match any linear function. Then, at
ξ1, the new function (x − ξ1)+ “kicks in”. So, in the region ξ2 ≤ x ≤ ξ3, we have the
function w1 + w2x + w3(x − ξ1). Clearly, by setting w3 appropriately, we can achieve
any slope in that region, while remaining continuous at x = ξ1. Similarly, when the
function (x − ξ2)+ “kicks in” at x = ξ2, we can change slope again.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

with w ≈ (.58,−.45, .34, .98)T .

Notice here that as well as enforcing continuity in the function, we have also reduced the
number of free parameters, and so presumably reducing variance.

A model f(x) = w · φ(x) with φ as in Eq. 3.1 is known as a linear spline. There
are extensions that fit higher-order models (quadratic or cubic) while enforcing not just



Basis Expansions 8

continuity at the knot value ξi, but also continuous first or second-order derivatives. It is
rare to go above a third-degree model, known as a “cubic spline”.

4 Conclusions

Basis expansions are most commonly used with linear methods, though they can also be
applied with neural networks, decision trees, etc. Some methods, such as neural networks,
can be seen as adaptively finding a basis expansion, as we will discuss later.

We will see a great deal more about basis expansions when we discuss support vector ma-
chines. Under one interpretation, SVMs can be seen as fitting linear models for certain basis
expansions with an infinite number of components.

For real-world problems, use of basis expansions can be something of a black art. What
particular expansion performs well depends hugely on the problem at hand. Many people
believe that hand-engineered “features” are the single-most important factor in getting good
real-world performance. Because there is essentially no restriction on what features can
be used, there is great room for creativity. Many research papers are written, essentially
proposing new basis expansions. (Though they usually aren’t phrased that way.)

An excellent example is David Lowe’s SIFT features, proposed for computer vision. Roughly
speaking, these consist of histograms of the directions of image gradients, at multiple scales.
These perform amazingly well in practice, and are possibly the most influential idea in
computer vision in the last 15-20 years.

Because basis expansions are so application specific, there isn’t too much we can say in
general. However, this does not mean that these methods always work better. Rather than
using a fancy method, you carefully consider using smart basis expansions instead.


