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Abstract Inertial sensors embedded in commercial smartwatches and fitness
bands have the potential to greatly enhance our ability to monitor human
behavior. This is because humans perform a variety of daily activities that
impacts their health, and many of these activities involve use of hands and
have some characteristic hand gesture associated with it. For example, activi-
ties like eating food or smoking a cigarette require the direct use of hands and
involve a set of seemingly unique hand gestures. However, recognizing these
behaviors is a challenging task because we have inertial measurements from
a single point on the wrist as opposed to the entire arm. In addition, hand
gestures associated with these activities occur sporadically over the course of
a day, and need to be separated from a large number of irrelevant hand ges-
tures. In this chapter, we will look at approaches designed to detect behaviors
involving sporadic hand gestures. These approaches involve two main stages:
i) spotting the relevant hand gestures in a continuous stream of sensor data,
and ii) recognizing the high-level activity from the sequence of recognized
hand gestures. We will describe and discuss the various categories of ap-
proaches used for each of these two stages, and conclude with a discussion
about open questions that remain to be addressed.

1 Introduction

Human behaviors related to health such as eating, smoking, and physical ac-
tivity levels, are widely regarded as among the best predictors of health and
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quality of life. An exciting opportunity that has emerged as a consequence
of the growing popularity of wearable devices such as fitness bands, smart-
watches, and smartphones is the ability to recognize and track these behav-
iors in a non-intrusive and ubiquitous manner. In turn, such real-time track-
ing has the potential to enable personalized and timely intervention mecha-
nisms to alleviate addictive and unhealthy behavior.

A central question that needs to be addressed to enable this vision is
whether we can reliably detect a broad range of behaviors using wearable
devices. While many fitness bands monitor physical activity patterns such as
walking, jogging, and running, this only represents a fraction of the range of
behaviors we would like to monitor. Ideally, we should be able to use wrist-
worn wearables to also detect patterns of hand movement that correspond
to other key behaviors such as smoking and eating. Intuitively, this should
be possible since behaviors that we perform with our hands involve charac-
teristic hand gestures. For example, activities like eating food with a fork or
smoking a cigarette seem to have a set of distinct hand-to-mouth gestures.
For the case of eating, the distinct gesture is when a person takes the food
from the plate using a fork towards the mouth, takes a food bite, and puts
back the arm containing the fork to a relaxed position. Similarly, a set of
distinct gestures appear to be present for the case of smoking a cigarette.

But the challenge is how to detect these gestures using the set of sensor
modalities on a smartwatch, in particular, its inertial sensors (accelerometer,
gyroscope, and compass). Our visual system can easily distinguish various
hand gestures since it has the contextual information about the whole body.
However, the inertial sensors on smartwatches and fitness bands only provide
the movement patterns of the wrist, with no additional contextual informa-
tion. Thus, the central challenge in recognizing gestures using a wrist-worn
wearable arises from the need for gesture spotting i.e. matching a meaningful
pattern for a gesture type in a continuous stream of sensor signals. While
recognition of gestures from inertial sensors is commonplace in gaming de-
vices (e.g. Nintendo Wii), these assume structured environments where the
user intentionally makes a gesture that the system can interpret. In contrast,
we need to spot gestures in natural settings where there are a wide range of
hand movement patterns.

This raises three key challenges. The first is that there are many confound-
ing gestures that have very similar arm movement patterns as the behavior
that we want to detect. For example, a smoking gesture can be confounded
by other gestures that involve hand-to-mouth movements such as eating and
drinking. The second is that there are many irrelevant hand gestures that
need to be filtered. For example, during an eating session, a person may em-
ploy a variety of hand gestures such as cutting food with a knife, switching
knife and fork between hands, grabbing a bowl to fetch food, serving the
food on plate and conversational gestures. The third is that hand gestures as-
sociated with the health-related activities like eating or drinking are sporadic
in nature. For example, an eating session may last for half an hour and yet a
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person may have taken less than 25 food bites scattered across the session,
with hundreds of irrelevant gestures in between. Fourth is that even for a
single individual, there is variability in the gesture corresponding to the tar-
get activity due to the contextual circumstances, for example, smoking while
walking, driving, or standing still.

In this chapter, we survey state-of-the-art approaches for robust detection
of behaviors such as smoking and eating from the continuous stream of sig-
nals generated by the embedded inertial sensors on a smartwatch. There
are many pieces to this puzzle including extraction of distinguishing features
from inertial signals (e.g. speed, acceleration and displacement of the arm or
angular velocity, roll angle about the fore arm), robust methods to segment
the data streams into potential gesture windows, and classification methods
that leverage domain knowledge regarding the pattern of wrist movements
corresponding to smoking or eating.

2 Gesture-driven activity recognition: An overview

The high level goal of gesture-driven behavior recognition is to find a tempo-
ral partition of a given time-series of sensor signals and assign a set of labels
to each partition representing activities performed during that interval. Fig-
ure 1 gives an overview of the general computation pipeline used in detecting
hand gestures and extracting sessions of high level activities. At the lowest
layer of the pipeline is a sensing layer that obtains data from one or more
inertial sensors, typically worn on the wrist for the hand gesture recognition
task.

The second layer in the pipeline is the segmentation layer that extracts
segments containing candidate gestures from the continuous time-series of
raw sensor signals, and filters out extraneous data. This is a non-trivial prob-
lem since the gesture durations can vary even for a single individual, hence
canonical fixed window-based segmentation methods are inadequate. The
window sizes need to be carefully chosen for each gesture to ensure that
the extracted segments are neither too short to contain a complete gesture
nor too large and contain extraneous gesture data, both of which can lead
to classification errors. This layer should also act as an early-stage filter to
remove segments containing gestures that are unlikely to be relevant for the
higher-level activity recognition.

The third layer of the pipeline is a gesture recognition layer that recog-
nizes and outputs the label for the recognized gesture type. This layer first
computes a feature vector for each segment identified earlier, consisting of
features that can discriminate hand gestures relevant to the target activity
(smoking, eating, drinking, etc.) from a large number of other confounding
gesture candidates. This layer computes the feature vector from the avail-
able sensor signals such as acceleration, angular velocity, etc. and from the
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Fig. 1 Gesture-driven activity recognition pipeline

derived signals such as roll and pitch (refer Sec. 3). The feature vector is
then provided as an input to a supervised classification algorithm, that out-
puts the label for the type of gesture present in a segment (“smoking”,“eating
with a fork”,“eating with a spoon”, etc.) and a probability associated with the
output.

The top-most layer in the processing pipeline is an activity recognition
layer that identifies the whole sessions of recognized activities from a se-
quence of recognized gestures. The key intuition behind this layer is that
each session of an activity such as smoking involves a continuous sequence
of smoking gestures. Sessions for gesture-driven activities like eating and
smoking are often characterized by features such as inter-gesture interval,
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session length, and number of relevant gestures in a session. This layer uti-
lizes such session characteristics to detect activity sessions and its boundaries
(the start and the end of a session). Further, the detected activity sessions are
used to filter out spurious and isolated gestures recognized at the lower layer,
making the entire pipeline more accurate and robust.

Table 1 gives an overview of the state of the art approaches used in spot-
ting hand gestures and the algorithms used in the different stages of the com-
putational pipeline discussed above. However, not all the approaches follow
the computational pipeline exactly as shown in figure 1. For example, the ap-
proach used by Dong et al. [6] does not require explicit segmentation or the
feature extraction. In some cases, one may use the classification algorithms
like Hidden Markov Model (HMM) that can operate over the continuous sen-
sor signals without the need to extract features. We discuss these variants
when we get into details of each layer in the computational pipeline. We
also note that some approaches employ multiple sensing modalities such as
a microphone, a RIP sensor that monitors breathing waveforms, or multiple
on-body inertial sensors. However, we limit our focus on techniques relevant
to gesture spotting using commercial smartwatches i.e. using only the inertial
sensors worn on a wrist.

3 Sensing Layer

The term inertial sensors is often used to represent a suite of sensors consist-
ing of an accelerometer, gyroscope, compass and an altimeter (also known
as barometer). An electronic device embedding a subset of inertial sensors is
referred as an Inertial Measurement Unit (IMU). The term IMU is widely used
to refer to a device containing 3-axis accelerometers and 3-axis gyroscopes.
However, IMUs including 3-axis magnetometer(also called compass) and 1-
axis barometer are increasingly available in the market. Most commercial
smartwatches come fitted with IMUs including accelerometers, gyroscopes
and often, magnetometers.

3.1 Frame of Reference

Let us first understand the frame of reference used by the inertial sensors
before we get into the details of signals captured by these sensors. Figure 2
shows the frame of reference used by commercially available smartwatches
based on the Android-wear operating system. This frame is defined relative
to the screen/face of the watch and has 3 mutually perpendicular axes. The
x and y axis are along the screen surface whereas the z axis points away from
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Table 1 State of the art approaches in gesture spotting

Reference Activity
Classes

Segmen
tationa

Gesture
Recogni-
tion

Activity
Recognition

Sensors (sensor
placement)

Parate
et al. [12]

smoking, eating KB Random
Forests

Conditional
Random
Fields

accel, gyro, com-
pass (wrist)

Saleheen
et al. [14]

smoking KB SVM Rule-based accel, gyro, RIP
(wrist and chest)

Varkey
et al. [18]

daily activities in-
cluding smoking

TB SVM SVM accel, gyro (wrist,
ankle)

Tang
et al. [16]

smoking SB Random
Forests

Distribution
score based

accel (2 wrists)

Thomaz
et al. [17]

eating SB Random
Forests

DBSCAN accel (wrist)

Amft
et al. [2]

drinking, eating TB HMM n/a accel, gyro (2
wrists, 2 upper
arms)

Junker
et al. [8]

activities including
drinking and eat-
ing

TB HMM n/a accel, gyro (2
wrists, 2 upper
arms, torso)

Amft
et al. [3]

dietary activities:
eating, chewing,
swallowing

TB HMM n/a accel, gyro, com-
pass (2 wrists, 2
upper arms), mi-
crophone (ear, col-
lar), EMG (collar)

Amft
et al. [1]

drinking TB Feature
Similarity

n/a accel, gyro, com-
pass (wrist)

Scholl
et al. [15]

smoking SB GMM Rule-based accel (wrist)

Dong
et al. [6]

eating n/ab Rule-based n/a gyro (wrist)

a Segmentation techniques can be knowledge-based (KB), training-based (TB), fixed size
sliding window-based(SB)
b These techniques do not require prior segmentation.
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Fig. 2 Figure showing
the frame of reference
and the axis orientations
used in Android-wear OS
based smartwatches. The
x and y axis of the frame
of reference are along the
face of the watch and are
mutually perpendicular
to each other. The z axis
points towards the outside
of the face of the watch.
The coordinates behind
the screen have negative z
values.

the screen. This frame of reference is local and is fixed with respect to the
body of the watch.

3.2 Sensor Signals

An inertial measurement unit captures signals observing the linear transla-
tion as well as the rotation experienced by it. An accelerometer measures the
physical acceleration experienced by an object. An object at rest experiences
an acceleration equal to the earth’s gravity (g = 9.8m/s2) in the direction
pointing away from the ground. On the other hand, a gyroscope sensor mea-
sures the angular velocity or the rate of rotation about an axis, expressed in
radians/second or degrees/second. A compass measures the ambient magnetic
field using µT as the unit of measurement. An IMU measures these signals
along each of the three axis in its local frame of reference.

Table 2 Feature signals computed from the accelerometer signals 〈ax,ay,az〉.

Signal Notation Definition

Tilt ρ arccos az√
a2

x+a2
y+a2

z

Pitch φ arctan ay
az

Roll θ arctan ax√
a2

y+a2
z
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Tilt, Pitch, Roll, Yaw

Apart from the raw sensor signals, we can derive more useful signals using
one or more of the inertial sensors. For example, tilt i.e. the angle ρ between
the z axis of the device and the direction of the gravity, can be computed
using the accelerometer signals. Roll, pitch and yaw are the angles that cap-
ture the orientation of a device in a 3D space. Yaw(ψ), pitch(φ) and Roll (θ)
angles at a particular orientation indicate the amount of rotation around z,y
and x axis respectively applied in that order to reach the particular orienta-
tion from the default orientation of the device. Pitch and roll angles can be
computed using the accelerometer signals when there is no linear acceler-
ation i.e. the device is stationary. Yaw angle can be computed using sensor
fusion algorithms [11] that combine the signals from accelerometer, gyro-
scope and compass (optional) to accurately obtain all the orientation angles.
Table 2 gives the mathematical functions to compute these signals using the
accelerometer signals.

Android wear operating system provide APIs to obtain the sig-
nals such as tilt and orientation using several combinations
of inertial sensors. Use SensorManager with the appropri-
ate sensor type to get these signals. For example, sensor type
Sensor.TYPE GEOMAGNETIC ROTATION VECTOR uses accelerom-
eter and compass, Sensor.TYPE GAME ROTATION VECTOR
uses accelerometer with gyroscope whereas
Sensor.TYPE ROTATION VECTOR uses accelerometer, gyroscope
and compass to compute the same orientation information.

3.3 An example of sensor signals for a hand gesture

Figure 3 shows the sensor signals obtained using an Android-wear smart-
watch for a hand gesture representing taking a cigarette puff. We can break
this gesture into the following three stages: i) the arm carrying the cigarette
begins from a relaxing position and moves to bring the cigarette towards the
mouth, ii) the arm remains stationary at the mouth when the person holding
the cigarette takes a puff, and iii) the arm falls back to the original relaxing
position. The watch is worn on the person’s dominant hand (right hand in
this case). At the beginning of this gesture, the arm is hanging vertically down
such that the positive X axis of the smartwatch is in the direction opposite
to the gravity, the acceleration along Y and Z axis is close to zero as the arm
is not moving and these axes being parallel to the ground do not experience
any gravity, and the angular velocities measured by the gyroscope are close
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Fig. 3 Sensor signals observed for smoking a cigarette puff hand gesture. The value triplets
〈ax,ay,az〉, 〈gx,gy,gz〉 and 〈cx,cy,cz〉 present the signals of accelerometer, gyroscope and
compass respectively. The first gray shaded area marks the interval when the hand holding
the cigarette is moving towards the mouth. The second gray shaded area marks the interval
when the hand falls back to a resting position. The period in between the two areas is when
a person is taking a puff without moving the hands.

to zero as the arm is not moving. We make the following observations about
the three stages of this gesture:

• The acceleration along the watch’s X axis goes from value closer to +g to
a value close to −g when the arm reaches the mouth. The same transition
is observed in reverse when the arm moves away from the mouth and falls
back to the relaxing position.

• The acceleration along Y and Z axis hovers around zero except for the
transitions when the arm is moving between the relaxed position and the
mouth. The transition when arm is moving towards the mouth is similar
but in the reverse order of the transition when the arm is moving away
from the mouth.

• The angular velocities reach its peak when the arm is moving between
the two positions. The reverse of the towards-mouth movement trend is
observed when the arm goes away from the mouth. However, the sign of
the angular velocity changes because the angular movement is now in the
opposite direction.
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• The transitions are similarly visible in the magnetometer readings. How-
ever, unlike accelerometer and gyroscope signals, the values of the signals
depend on the direction the person is facing. If the person repeats the
exact same gesture once facing north and once facing east, the accelerom-
eter and the gyroscope signals will look the same but the signals from the
magnetometer will look very different.

4 Time-series segmentation of sensor signals

In this section, we present a survey of techniques used in the extraction of
segments from the time-series containing raw sensor signals. The aim of the
segmentation process is to identify temporal segments that are likely to con-
tain candidate gestures and filter out any extraneous data. This is a critical
step in the gesture-driven activity recognition pipeline because if segments
are too long, they result in noisy features, and if segments are too short,
they result in inaccurate features. In the following, we look at the various
categories of segmentation approaches studied in the literature.

4.1 Knowledge based Segmentation

Some of the most promising approaches for recognizing behavioral activi-
ties such as smoking and eating, rely on the domain knowledge about the
gestures in the activities being observed. In general, hand-to-mouth gestures
such as smoking a cigarette, taking a food bite, or drinking from a cup tend to
have different characteristics in terms of the duration of the gesture and the
pace of the wrist movement while performing the gesture. But one common
characteristic is that a person performing the gesture starts from “a rest po-
sition” in which the arm is relaxed, then move their arm towards the mouth,
keep the arm stationary at the mouth for a short duration, and finally, move
their arm back to a possibly different rest position in the end. Thus, hand to
mouth gestures tend to lie between these resting positions. In the following,
we discuss the two approaches that use this observation to extract gesture
segments.

Parate et al. [12] use the characteristic property of hand-to-mouth ges-
tures in the extraction of segments containing gestures like taking a food bite
or taking a cigarette puff. In this approach, the authors track the rest positions
of an arm by computing the spatio-temporal trajectory taken by the wrist in
a 3D space from the wrist orientation data. Figure 4(a) shows an example
of a spatio-temporal trajectory of the wrist performing a smoking gesture.
Using this spatio-temporal trajectory, the rest point can be identified as the
centroid of the extremely slow moving points in the trajectory time series.
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Fig. 4 A person performing the smoking gesture starts from “a rest position” in which
the arm is relaxed, then move their arm towards the mouth, and move their arm back
to a possibly different rest position in the end. Thus, hand to mouth gestures tend to lie
between these resting positions. (a) The segment between the resting positions can be
identified from the time-series of wrist-coordinates by tracking the periods of large arm
movements. (b) The period of large arm movements can also be obtained by using two
moving averages of the gyroscope magnitude computed over windows of sizes 0.8 s and 8
seconds respectively.

In any hand-to-mouth gesture, the spatial distance of the wrist from the rest
point first increases rapidly when the arm is moving towards the mouth and
away from the rest point, plateaus for a short period when the hand is at the
mouth, and then decreases rapidly when the arm falls back to the rest point.
Thus, we can extract the segments containing a hand-to-mouth gesture by
computing a time-series of spatial distance of the wrist from the rest point
and looking for a tell-tale pattern of rise, plateau and fall in the time-series.

Saleheen et al. [14] identify the periods of quick arm movements before
and after the smoking puff from the accelerometer and the gyroscope sig-
nals. They use the observation that the arm movements around the stationary
smoking puff period is associated with a change in the angular velocity and
can be observed as peaks in gyroscope signals. The example of such peaks
can be seen in the gyroscope signals in Fig. 3. In this approach, the task of
extracting segments between two consecutive peaks in gyroscope is accom-
plished using two moving averages computed over windows of different sizes
to detect the rise and fall in the gyroscope magnitude given by

√
g2

x +g2
y +g2

z ).

The first moving average is computed over a small window (0.8 seconds) that
adapts to the changing values faster than the second slower moving average
computed over a larger window of 8 seconds. Figure 4(b) shows an example
of these moving averages for the example smoking gesture from the Fig. 3.
Next, the segment extraction is done by identifying the following points: i)
PR: time when the fast moving average drops below the slow moving average,
and ii) PF : time when the fast moving average rises above the slow moving
average. In a smoking gesture, PR marks the event when the cigarette reaches
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the mouth and PF marks the event when the cigarette moves away. Thus, the
segment between consecutive PF and PR gives a potential stationary-at-mouth
segment of the hand-to-mouth gesture. An additional check is made to en-
sure that the arm is facing up during the identified segment by verifying that
the acceleration along the x axis is negative.

4.2 Training based segmentation

In this section, we look at a set of approaches towards segmentation that
extract dynamic size segments by learning the segment characteristics from
the training data. The main intuition behind the approaches in this category
is that one can exhaustively search for a candidate gesture segment among
all the possible segments of varying sizes in a time series of sensor signals.
The candidate gesture segment can be identified by matching each possible
segment with the characteristics of true gesture segments observed in the
training data. Segments with a matching score higher than a certain thresh-
old can be selected as the candidate gesture segment. However, an exhaustive
search over all the segments is not practical as a time-series containing n data
points can have n(n− 1)/2 segments. Thus, we need to limit the number of
segments to search. In the following, we look at the approaches describing i)
a segment search-space reduction method, and ii) an algorithm to compute
a matching score for a segment.

4.2.1 Search-space reduction

We first look at the ways we can reduce the segment search space.

Tmin
Tmax

Large Window, W

T
T

T
T

T
T

t t+∆ t+2∆ t+3∆ t+4∆ t+5∆

Small windows of size 
T = Tmin + h × δ 

starting at times t + k × δ 

where h ∈ [0, (Tmax −Tmin)/δ +1] 

k ∈ [0, (Tmax−T)/∆] 

Fig. 5 The search space for segments is reduced by limiting the size of the segment and
the points where these segments can begin.
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Varkey et al. [18] propose a simple way to reduce the search space by lim-
iting the size of the segments being considered. Most gestures have a lower
bound Tmin and an upper bound Tmax on the duration needed to complete a
gesture. Thus, we can search the segments of duration T where the value of
T begins with Tmin and is incremented by a value δ . This limits the number of
possible sizes to (Tmax−Tmin)/δ +1. Initially, this approach restricts the search
of segments in a larger window W in the time series of sensor signals where
the size of window W is equal to Tmax. Within this window, the segments of
size T can be obtained by starting from various possible positions. The num-
ber of such positions can still be large leading to a large number of segments
to search from. To further reduce the search space, we avoid the segments
that are too close to each other. This is done by selecting the starting points
for the segments shifted by a period ∆ . This approach limits the number of
segments of size T to bTmax−T

∆
+1c. Figure 5 illustrates the segment generation

process.

Fig. 6 Motion segments
generated using the SWAB
algorithm [9] over x-axis
acceleration observed for a
smoking gesture. A gesture
segment is composed of
two or more consecutive
motions segments.
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Amft et al. [2] use a technique based on the natural partitioning of a
gesture into “motion segments”. These smaller segments are described as
non-overlapping, atomic units of human movement, characterized by their
spatio-temporal trajectories. For example, a smoking gesture can be divided
into 3 natural partitions: hand approaching the mouth, hand remaining sta-
tionary at the mouth, and hand moving down towards a relaxed position.
Thus, a gesture segment is composed of two or more consecutive motion
segments. Hence, the search for a gesture segment can be limited to those
candidate segments in the data whose boundaries coincide with the bound-
aries of the motion segments. To divide a continuous stream of data into non-
overlapping consecutive atomic segments, an algorithm by Keogh et al. [9]
called sliding-window and bottom-up (SWAB) algorithm is used. This algo-
rithm partitions a time series into segments such that each segment can be
approximated using a line segment. Figure 6 shows an example of such par-
titioning obtained from the time-series of acceleration along the x axis of a
wrist band for a smoking gesture. Each segment in this figure can be approxi-
mated using a line segment such that the error in the approximation is below
a chosen threshold.
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Having identified the motion segments, a coarse search based on the mo-
tion segment boundaries can be used to efficiently find sections that contain
relevant gestures. The search is performed by considering each motion seg-
ment’s endpoint as a potential end of a gesture. For each endpoint, potential
start points can be derived from preceding motion segment boundaries. To
further confine the search space, the following two constraints learnt from
the gesture training data are used to limit the section to be searched:

1. The duration T of a section spanning consecutive motion segments must
lie in the range [Tmin,Tmax] given by the minimum and the maximum dura-
tion for a gesture observed in the training data.

2. The number of motion segments n in a section must lie in the range
[nmin,nmax] where nmin and nmax give the minimum and maximum number
of motion segments observed for the gesture in the training data.

4.2.2 Segment Matching

In the previous sub-section, we described how to obtain a reduced num-
ber of segments from the large search space. Now, we look at the process
of obtaining a score for these segments to be used for identifying the ges-
ture segments. As we described earlier, this approach requires training data
with labeled gesture segments. Since we have the labeled gesture segments,
we can potentially use any supervised classification approach. For example,
Varkey et al. [18] use a support vector machine (SVM) classification algo-
rithm for identifying segments containing gestures for activities like smoking,
eating, and brushing teeth. The trained SVM classier can be used to compute
a matching score, d, as follows:

d(w,b;x) =
w.x+b
||w||

where x is a feature vector computed for a segment and w is a normal vector
learnt using the training data. The segment with the best score is extracted
as the gesture segment.

Another popular approach for matching segments is using a score based
on the feature similarity. To accomplish this, a feature vector f = f1, f2, .., fk
is computed from the sensor data for the search segment. Using the training
data, the parameters µi and σi representing the mean and the standard devi-
ation of the ith element of the feature vector of a true gesture are obtained.
Now, a distance metric d is computed as follows:

d(f; µ,σ) =

√√√√ k

∑
i=1

( fi−µi

σi

)
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Any segment with distance less than the pre-computed threshold is accepted
as a candidate gesture segment. The threshold is typically chosen using the
sensitivity analysis over the training data containing relevant as well as ir-
relevant gestures. A lower value of threshold reduces the number of false
positive segments but discards many true gesture segments. A larger value of
threshold improves the number of true gesture segments identified but also
increases the number of false positive segments. A threshold that results in
highest recall of true gestures segments with minimum number of false pos-
itives is chosen. The choice of features is dependent on the type of sensors
being used and the target gesture activity [1–3, 8]. For example, Junker et
al [8] used relatively simple features such as minimum and maximum values
for pitch and roll angles obtained from the four on-body sensors (1 sensor
on each wrist and 1 sensor on each upper arm) for drinking and eating de-
tection. Amft et al. [1] used a set of 200 features derived from the 3-axis
accelerometer, 3-axis gyroscope, and 3-axis compass signals.

4.3 Sliding Window based segmentation

Some recent efforts have studied the problem from a gesture containment
perspective i.e. they seek to verify if a given segment of data contains a partial
or a complete gesture. Unlike the previous two segmentation approaches, this
approach does not give us the precise boundary of the gestures but just seeks
to contain it.

In this approach, a segment is obtained by placing a window of size |W |
at the beginning of the sensor signal stream and selecting the data from that
window as the segment. The next segment is obtained by sliding the window
over the sensor signal stream by a parameter ∆ . This results in removal of the
oldest data and adds new data to the latest segment.The process is continued
to get more segments. Typically the value of ∆ is chosen to be smaller than
the window size |W |, and hence, the consecutive segments obtained using
this protocol overlap with each other. One limitation of this segmentation
approach is that if two consecutive segments are recognized to contain a
gesture, one cannot estimate if these segments contain two distinct gestures
or one gesture spread across both the segments. Although this limitation does
not impact activity recognition performance, it can result in mis-counting the
number of gestures.

Selecting the sliding window size

The size of a sliding window is an important parameter as it can impact the
performance of later stages in the activity recognition pipeline. For example,
a very small window size may not be sufficient to capture enough gesture
characteristics to solve the gesture containment problem. In [17], Thomaz
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et al. use an approach where the sensitivity of the window size is analyzed.
In this approach, the window size is varied between the minimum and the
maximum duration of the gesture observed in the training data. The window
size that results in the best classification results over the training data is
chosen as the window size to be used on the test data. Scholl et al. [15] use a
window of size 5.4 seconds to generate non-overlapping segments to detect
smoking gestures. The window size is fixed based on the domain knowledge
and is equal to the mean length of two subsequent hand-to-mouth gestures
(raising a hand to take a cigarette to the mouth).

5 Gesture Classification

Having discussed approaches to extract relevant segments from the contin-
uous time-series signals from the inertial sensors, we now look at the third
layer in the gesture-driven activity recognition pipeline. In this layer, we rec-
ognize the gesture contained in a segment extracted from the lower layer.
This gesture recognition task can be executed by first extracting a feature
vector for each segment and then, by using a supervised classification algo-
rithm to get the label of the gesture in the segment represented by the feature
vector.

5.1 Features

In table 3, we describe the set of features proposed in literature for the ges-
ture recognition task using the inertial sensors.

Acceleration-based features: Many state of the art approaches for detect-
ing eating and smoking gestures use a 3-axis accelerometer. Most of these
features are generic features that have been shown to be useful in a range
of activity recognition contexts (e.g. statistical features and zero-crossings).
Some look for correlations across axes and crossings between axes that are
observed during hand-to-mouth gestures.

Orientation and angular velocity based features: Wrist orientation, i.e.
pitch and roll, is often used to extract a range of features. One key challenge
in extracting these features is to determine the specific window during which
they need to be computed — for example, [12] computes these features dur-
ing the ascending stage (when the hand is moving towards the mouth) and
the descending stage ( when the hand is moving away from the mouth),
and [14] computes features over the period when the hand is stationary at
mouth. Several approaches also extract information about wrist rotation that
is useful for gesture-based detection.
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Table 3 The set of features proposed in the literature for gesture classification using iner-
tial sensors. The table describes each feature type and gives the relevant references.

Feature Set

Acceleration Features
Statistical Mean, variance, maximum, minimum, median, kurtosis, skew,

signal-to-noise ratio (SNR), root mean square (RMS) computed
for each axis.

[1, 16–
18]

Peak-peak
amplitude

This feature gives the difference between the maximum and the
minimum acceleration observed over a window. This feature is
computed for each axis.

[16,18]

Correlation
coefficients

This feature measures the correlation between the acceleration
readings for any pair of axes.

[16]

Mean-level
crossing rate

This feature computes the rate at which the signal crosses the
mean value over a segment.

[1]

Crossing rate
between axes

This feature is computed for each pair of axes and can be com-
puted as the number of times accelerometer readings in these
axes cross each other. The crossing behavior is often observed
for hand-to-mouth gestures.

[16]

Regression
features

Slope, mean squared error (MSE), R-squared are used as the fea-
tures capturing the relative trend change within a segment.

[16]

Angular Velocity Features
Statistical Mean, variance, maximum, minimum, median, quartile devia-

tion computed for each axis. [14] computes these features for
the magnitude of the angular velocity (l2-norm of the 3 veloc-
ities) as well. Parate et al. [12] compute a subset of these fea-
tures separately for the ascending stage (when the hand is mov-
ing towards the mouth) and the descending stage ( when the
hand is moving away from the mouth).

[2, 8,
12,14]

Orientation Features
Statistical Mean, variance, maximum, minimum, median, quartile devia-

tion, 9 decile features from the distribution computed for the
orientation values (pitch and roll).

[2, 3, 8,
12,14]

Net change
in roll

This feature computes the net angular change about the axis of
the arm while performing a gesture. [2,8,12]

Duration Features
Gesture
duration

Gesture duration is found to be useful in defining the search
space for the segments [15, 18], and for early filtering of the
candidate segments that lack relevant gestures [2, 3, 8, 14, 17].
In [12], Parate et al. found that the duration of a sub-gesture
when the arm is ascending towards the mouth is a useful fea-
ture to distinguish between smoking and eating gestures.

[2, 3, 8,
12, 14,
17]

Trajectory Features
Velocity
features

In [12], Parate et al. use the spatio-temporal trajectory to com-
pute the instantaneous speeds of the wrist. Using these, they
extract mean, maximum, and variance of the wrist speed for
the various stages in a gesture as features.

[12]

Displacement
features

maximum vertical and horizontal displacement of the wrist dur-
ing a hand-to-mouth gesture.

[12]

Gesture duration based features: Gesture duration is an important fea-
ture and is found to be useful in the segmentation: either to define the search
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space for the segments [15, 18] or for early filtering of the candidate seg-
ments that lack relevant gestures [2, 3, 8, 14, 17]. For example, Parate et
al. [12] found that the duration of the sub-gestures can be a useful feature
in hand-to-mouth gesture classification.

Trajectory-based features: This class of features were studied in [12]
where the explicit trajectory of the wrist performing the gestures in a 3D
space is computed. From the 3D trajectory, several features were extracted
corresponding to different segments of a hand-to-mouth gesture.

5.2 Gesture classification

We now look at some of the classification algorithms used in recognizing
gestures using the feature vectors computed for a gesture segment. In gen-
eral, many popular classification methods including random forests, support
vector machines, and hidden markov models have been used for the classifi-
cation task.

Random Forest: A Random Forest [5] is a popular classification method
and has been shown to achieve high gesture recognition accuracy in many
gesture classification scenarios [12, 16, 17]. This is because hand gestures
show variations in the shape and duration even when performed by the same
person. Thus, the type of gestures are likely to be correlated with a certain
range of values of segment features, which makes decision tree-based meth-
ods a good choice. Unfortunately, fitting a single decision tree to the training
data results in poor performance for gesture recognition when used across
the general population. The reason is that a single decision-tree yields pre-
dictions that are suited only for segments whose features are very similar to
the ones of the training segments. However, there exist small variations in
the way gestures are performed across the population. Thus, the decision-
making thresholds used in a single decision tree do not work for the general
population. Random Forests offer a popular alternative i.e. to build an en-
semble of decision trees where each decision tree is fitted to small different
random subsets of the training data. This leads to decorrelating the indi-
vidual tree predictions and, in turn, results in improved generalization and
robustness [5]. This ensemble of decision trees is called random forest clas-
sifier.

Support Vector Machine (SVM): SVM [4] is another popular supervised
classification algorithm and has been used in some work on gesture recog-
nitions [14, 16, 18]. In general, SVM is a good choice where the types of
classes can be separated by a set of hyperplanes in a finite-dimensional space
defined by the features i.e. where the training instances of classes are linearly
separable. However, this is not the case with gesture recognition tasks as the
several types of gestures cannot be separated linearly in a space defined by
the features. To address this problem, a kernel function is used that maps
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the original finite-dimensional space into a much higher-dimensional space
where a set of hyperplanes can be found to perform the linear separation,
but this method increases computational complexity.

Hidden Markov Model (HMM): HMM is a statistical Markov model that
can be applied to analyzing time-series data with spatial and temporal vari-
ability. Hand gestures typically have a relatively strict temporal order of sub-
gestures in it but the same gesture, when repeated by an individual, shows
some variability in the shape of the hand trajectory and in the duration of the
sub-gestures. Since HMMs allow a wide range of spatio-temporal variability,
it is a good fit for matching the gesture data with the reference patterns.
Moreover, with a long history of use in various domains, HMM has elegant
and efficient algorithms for learning and recognition.

s1 s2 s3 s4 s5
a12 a23 a34 a45

a22 a33 a44

a13 a24 a35

(a) Left-Right Model

s1 s2 s3 s4 s5
a12 a23 a34 a45

a22 a33 a44

(b) Left-Right Banded Model

Fig. 7 Left to Right HMM models are a popular choice for gesture recognition due to the
temporal ordering of sub-gestures observed in a hand gesture. ai j gives the probability of
state transition from si to s j.

While there are various topologies used for modeling HMM states, for the
task of gesture recognition, a left-to-right topology (Figure 7(a)) is used. In
this topology, a state can transition to itself or can go forward to the following
states on the right but can never go back to a previously visited state. This
topology is suitable for hand gesture modeling as it imposes the temporal
order observed for hand gestures. Another frequently used topology is a left-
right-banded topology (Figure 7(b)) in which a state can transition to itself
or to the next state only. The skipping of states is not allowed in this topology.

One important parameter in a HMM is the number of hidden states. In
general, the number of states depends upon the complexity of the gesture
being modeled and is empirically determined. For instance, Amft et al. [2]
varied the number of states between 3 to 10 for drinking and eating gestures.
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They observed that the recognition performance increased marginally with
more than 5 states. Similarly Junker et al. [8] trained a Left-right-banded
model with 4 to 10 states for various daily activity gestures where the optimal
number of states varied with the type of gestures.

We note that unlike previously mentioned classification models like Ran-
dom Forests and SVM where a single feature vector is extracted to represent
a segment, HMM operates on a time-series of feature signals for a gesture
segment. For example, the time series of instantaneous pitch and roll were
used as the feature signals by Amft et al [2,3,8].

Heuristic methods: In addition to classification-based methods, other
heuristic-based approaches have also been proposed for gesture recogni-
tion. BiteCounter [6] is based on recognizing a sequential event pattern in a
stream of roll-velocity signals obtained using a gyroscope (refer Fig. 8). Re-
call that the roll velocity is given by the angular velocity measured around
the wrist as its axis. The event pattern is based on the following observation
while taking a food bite.

• The angular velocity about the wrist increases in magnitude and crosses a
threshold (t1) when the hand takes the food towards the mouth. The time
of crossing the threshold marks the event e1.

• After taking the food bite, the hand falls back and retraces its steps in
the opposite direction i.e. the angular velocity about the wrist increases in
magnitude but in the opposite direction and crosses a threshold (t2). The
time of crossing this threshold marks the event e2.

• The time elapsed between events e1 and e2 during the food-intake gesture
is greater than some threshold (δ1). This threshold represents the mini-
mum time needed to take a food bite.

• The time elapsed between events e2 for a food-intake gesture and the event
e1 for the subsequent intake gesture is greater than some threshold (δ2).
This threshold is chosen because humans cannot have very rapid bites in
succession as the chewing and swallowing of food takes time.

A food-intake gesture is detected upon observing the above mentioned pat-
tern, and can be tracked without the need to buffer the sensor signals. Using
the Android wear’s frame of reference, the velocity around the wrist is given
by the angular velocity measured around the x axis by the gyroscope. For
event e1, the velocity will become increasingly negative whereas for event e2,
the velocity will increase beyond a positive threshold. The values for various
thresholds in this pattern is selected empirically from the training data such
that it maximizes a score given as 4

7× precision + 3
7× recall. Note that simi-

lar characteristics can be observed for other hand-to-mouth gestures such as
the puffing gesture while smoking a cigarette (See Figure 3). However, the
values t1, t2,δ1,δ2 characterizing a smoking gesture will differ from that of an
eating gesture.
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Fig. 8 BiteCounter [6] observes a sequential pattern of threshold-crossing events in the
roll-velocity of a wrist to detect a food-intake gesture. The thresholds t1, t2,δ1,δ2 are learnt
empirically.

6 Activity recognition

As we explained in the previous section, gesture classification is done for each
segment independently and can yield noisy gesture label predictions. Thus,
recognizing a high-level activity from the noisy labels can lead us to falsely
detect an activity and give us an incorrect estimation of the activity duration
and its boundaries. In this section, we give an overview of the approaches
to perform joint classification of all the segments to recognize the activity.
The activity recognized in this step can provide a feedback to the gesture
classification module and correct some of the noisy gesture labels predicted
earlier. In the following, we describe the key intuition behind some of the
activity recognition approaches and give an overview of some of the state of
the art approaches.

6.1 Temporal cluster of gestures in activity sessions

Gesture-driven activities like eating and smoking typically involve repeated
gestures in each session (See Fig 9). Thus, gestures that appear isolated in
the time-series are unlikely to be a part of a true activity session. On the other
hand, a gesture that is preceded by at least a few gestures of the same type
in the vicinity is likely to be a part of an on-going activity. This observation
forms the basis of approaches in the literature that cluster a group of detected
gestures to identify an activity session and its boundaries.
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Fig. 9 In a typical session of gesture-driven activity like smoking, the characteristic ges-
tures (e.g. taking a cigarette puff) form a temporal cluster i.e. the gestures are repeated at
least a few times, and are found relatively close to each other in time. From the time-series
of recognized gestures, we can extract these temporal clusters to identify an activity ses-
sion. Any isolated recognized gesture that is not a member of any cluster can be discarded
as a false positive.

6.1.1 DBSCAN clustering algorithm

Thomas et al [17] use a clustering algorithm called Density-based spatial
clustering of applications with noise (DBSCAN) for recognizing eating activ-
ity session from the noisy gesture labels. DBSCAN has three characteristics
that make it useful for gesture-based activity recognition; 1) there is no need
to specify the number of clusters ahead of time, 2) it is good for data that
contains clusters of similar density, and 3) it is capable of identifying outliers
(e.g. food intake gestures) in low-density regions. DBSCAN requires two pa-
rameters: the minimum number of points required to form a dense region
(minPts), and a temporal distance measure given as a temporal neighbor-
hood ε. Using these parameters, DBSCAN algorithm finds clusters that have
at least minPts within the timespan covered by ε. Any detected gesture that
does not belong to any of the clusters identified by the DBSCAN algorithm is
considered to be a false positive, and ignored.

6.1.2 Rule-based Activity Recognition

Saleheen et al. [14] use a rule-based approach to recognize the session
boundaries for a smoking activity and to filter out isolated puffing gestures
that are likely to be false positives. In their approach, a detected puff is con-
sidered an isolated puff if no other puff is within two standard deviations of
the mean inter-puff duration ( 28±18.6 seconds learnt from the training data
across 61 subjects). After removing isolated puffs, they are left with clusters
of (2 or more) puffs in the data stream. A simple rule-based method is pro-
posed to declare a cluster of puffs as a smoking session, i.e., if it contains at
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least mp (minimum puff count) puffs. The appropriate value for mp is ob-
tained by analyzing the recall rate for the true smoking sessions and the false
smoking session detection rate. The best result was achieved when mp = 4. A
similar set of rules can be learnt for other activities such as eating.

6.2 Temporal consistency of activity sessions

One observation that can be used in determining activity boundary is that
most activities have some temporal consistency [13] i.e. they last for a rea-
sonably long time period. In other words, a person who is currently perform-
ing a certain activity is likely to continue with the same activity in the next
time instant. This observation has been used to smooth out and correct in-
termittent misclassifications made at the lower classification layer. Unlike a
standard activity recognition task, the modeling of temporal consistency in
a gesture-driven activity is not straightforward as the output of the lower
classification layer is a gesture label and not the activity label. Now, we look
at two such approaches used specifically for the problem of gesture-driven
activity recognition.

Fig. 10 Most human activities exhibit temporal consistency i.e. a person currently per-
forming a certain activity is likely to continue with the same activity in the near future. In
a gesture-driven activity, this means that the consecutive segments in a sequence are more
likely to have the same rather than different activity labels while the gesture labels may
change. Conditional Random Fields (CRF) is a model that takes into account this temporal
consistency and outputs smooth and consistent activity labels based on the input sequence
of gesture labels.

6.2.1 Conditional Random Fields

Parate et al. [12] use a graphical model-based approach that uses Condi-
tional Random Fields (CRF) to jointly classify the sequence of segments (fig-



24 Abhinav Parate and Deepak Ganesan

ure 10). This model introduces random variables (shown as top-level nodes
in the figure) representing the type of activity for each segment obtained at
the segmentation layer of the computational pipeline. The edges connecting
these random variables are associated with pairwise factors that model the
consistency of activity labels in the connected graph. The input to this model
is a sequence of gesture labels generated at the gesture recognition layer. The
gesture labels along with the classifier’s confidence scores are given as input.
The edge connecting the gesture label node with the activity label node is
associated with a factor that models the consistency between a gesture label
and the activity label. The CRF model outputs a smooth sequence of activity
labels identifying the activity session and its boundaries. The activity labels
are used to correct some of the false positives generated in the gesture clas-
sification stage. For example, if the CRF predicts that there is no smoking ac-
tivity within a time-interval then any smoking gesture (i.e. taking a cigarette
puff) recognized within this interval is a false positive and can be corrected.

6.2.2 Weighted scores for variable length windows

Tang et al. [16] propose a heuristic-based approach that predicts the state of
smoking at the current time point, using the most recent history of 3 specific
lengths: 1 minute, 4 minutes and 8 minutes. The longest history length is set
to represent the average smoking session duration observed in the training
data. For each history window, the puff frequency is calculated by counting
the number of puffs detected. Then the score of smoking for the current
window is estimated using the Gamma distribution of puff frequency. Lastly
a weighted average of the scores of smoking for the three different window
lengths is computed as the final score of smoking at the current time point.
This approach models continuity by using a larger weight for the most recent
1 minute period in time. The detector uses a threshold on the smoking score
to output the current state.

6.2.3 HMM-based model for gesture recognition

Another approach for activity recognition is to use hidden markov models
(HMMs). The intuition behind this method is that a gesture is always fol-
lowed by one or more non-relevant gestures before the relevant gesture is
observed again. Thus, we can construct a gesture spotting HMM by com-
bining HMM models that recognizes relevant gestures, with another HMM
called garbage model that recognizes all the possible non-relevant gestures,
in a cyclical manner. However, training a garbage model is a difficult job
since there are infinite number of meaningless or non-relevant gestures. Lee
et al [10] addresses this problem by introducing a new model called thresh-
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Fig. 11 A non-gesture model constructed using the gesture models. ST and ET are the
start and the end dummy states respectively.

old model that consists of the state copies of all the trained gesture-specific
models.

Let us understand this model using an example. A typical gesture model
trained to recognize a specific type of gesture is usually modeled as a left-
to-right model. In another words, a state in this model can transition next to
itself or to the following states in the model. This is true for most gestures
as there exist a temporal order in the sub-gestures within a gesture. Lee et al
construct a non-gesture model (called threshold model) by collecting all the
states of all the gesture-specific models. This model is constructed such that
it is possible to transition from any state to any other state. Figure 11 shows
an example of a non-gesture model constructed from all the gesture models.
This model is a weak model for all the trained gestures and represents every
possible pattern. The likelihood of a true gesture computed using this model
is always smaller than the dedicated model for the given gesture.

Having constructed a non-gesture model, we now show how a model for
gesture spotting is constructed. In a continuous human motion, gestures are
sporadic with non-gestures in between. There is no specific order among dif-
ferent gestures. One way to define the alternating sequence of gestures and
non-gestures is to construct a cascade connection of gesture models and a
non-gesture model. A more effective structure is a circular interconnection
of models: gesture models and then a non-gesture model which is then con-
nected to the start of the gesture HMMs. An example of a construction of the
gesture spotting model is shown in Figure 12.

A potential weakness of using a threshold model is the spotting speed. The
threshold model usually has a large number of states in proportion to the
number of the gesture models in the system. Accordingly, the computational
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Fig. 12 A gesture spotting model

requirement increases exponentially and the spotting speed slows down. This
problem can be alleviated by reducing the number of states of the threshold
model as described in [10].

7 Conclusions

This chapter provides an overview of a wide spectrum of approaches that
have been proposed for behavior detection from wrist-worn inertial sensors.
We discussed the challenges in segmenting the time-series stream from iner-
tial sensors on the wrist to deal with the temporal dynamics in the gestural
pattern, identifying key features from the inertial sensors, classifying the ges-
tures into hand-to-mouth gestures of different types, and finally identifying
repeated patterns of gestures that are aggregated to robustly detect the be-
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havior (e.g. eating or smoking session). We describe many recent efforts that
address some of these challenges.

While existing work has answered several questions, many remain to be
addressed in coming years. While much work has been done in gesture-based
behavior recognition, substantial work that remains to be done in scaling
these methods to the population and dealing with a wider range of con-
founders in the field. We also need to understand how these methods can
execute efficiently on power-constrained devices such as fitness bands, to re-
duce the burden of frequently charging these devices. Finally, there are also
many questions regarding usability to answer. One question in particular is
whether the public is willing to wear fitness bands (or smartwatches) in their
dominant hand to allow such gesture detection to work accurately. We expect
that these questions will be answered in coming years as gesture-based be-
havior detection methods mature and are integrated into smartwatches and
fitness bands in the same way that step detection is integrated into these
devices.
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