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ABSTRACT
An important class of networked systems is emerging that involve
very large numbers of small, low-power, wireless devices. These
systems offer the ability to sense the environment densely, offer-
ing unprecedented opportunities for many scientific disciplines to
observe the physical world. In this paper, we argue that a data
handling architecture for these devices should incorporate their ex-
treme resource constraints - energy, storage and processing - and
spatio-temporal interpretation of the physical world in the design,
cost model, and metrics of evaluation. We describe DIMENSIONS,
a system that provides a unified view of data handling in sensor net-
works, incorporating long-term storage, multi-resolution data ac-
cess and spatio-temporal pattern mining.

1. INTRODUCTION
Wireless Sensor Networks offer new opportunities for pervasive

monitoring of the environment and ultimately for studying previ-
ously unobservable phenomena. Using traditional techniques, the
data handling requirements of these systems will overwhelm the
stringent resource constraints on sensor nodes [1]. In this paper, we
describe DIMENSIONS, a system to enable scientists to observe,
analyze and query distributed sensor data at multiple resolutions,
while exploiting spatio-temporal correlation.

Application Observed phenomena
Building Health Monitoring [2] response to earthquakes, strong winds
Contaminant Flow Concentration pattern, pooling of con-

taminants, plume tracking
Habitat micro-climate monitoring [3] spatial and temporal variations

Table 1: Example Scientific Applications

Sensor networks place several requirements on a distributed stor-
age infrastructure. These systems are highly data-driven (Table 1):
they are deployed to observe, analyze and understand the physi-
cal world. A data handling architecture must, therefore, reconcile
conflicting requirements:

• A fully centralized data collection strategy is infeasible given
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the energy constraints on sensor node communication, and
inefficient given that sensor data has significant redundancy.

• Many queries over these systems will be spatio-temporal in
nature. The storage system should support efficient spatio-
temporal querying and mining for events of interest. Such
events exist at specific spatio-temporal scales, and therefore
in order to extract information from data, one has to perform
interpretation over a certain region. Local processing alone
is not sufficient. For example, identifying pooling of con-
taminants in a region.

• Users will routinely require compressed summaries of large
spatio-temporal sensor data. However, periodically or occa-
sionally, users will require detailed datasets from a subset of
sensors in the network.

In addressing the storage challenges of sensor networks, one
question immediately comes to mind:can we use existing dis-
tributed storage systems for our purpose?. We argue that there are
fundamental differences in the cost models, nature of the data, and
intended forms of use of sensor networks, that motivate new ap-
proaches and metrics of evaluation.

• Hierarchical web caches [4] are designed to lower latency,
network traffic and load. The cost models that drive their
caching strategy is based on user web access patterns, strate-
gically placing web pages that are frequently accessed. Peer-
to-peer systems are designed for efficient lookup of files in
a massively distributed database. These systems do not cap-
ture key challenges of sensor networks: (a) they are designed
for a much less resource constrained infrastructure, unlike in
sensor networks, where communication of every bit should
be accounted for (b) they are optimized for bandwidth which,
while limited, is a non-depletable resource, unlike energy on
sensor nodes (c) the atomic unit of storage is a file, and un-
like sensor data, different files are not expected to exhibit
significant spatio-temporal correlations.

• Geographic Information Systems (GIS) deal with data that
exhibit spatial correlations, but the processing is centralized,
and algorithms are driven by the need to reduce search cost,
typically by optimizing disk access latency.

• Streaming media in the internet uses a centralized approaches
to compression of spatio-temporal streams such as MPEG-2,
and are optimized for different cost functions. Consider the
problem of compressing a 3 dimensional datacube (dimen-
sions:x,y,time) corresponding to data from a single sensor
type on a grid of nodes on a plane, much like a movie of



sensor data. MPEG-2 compresses first along the spatial axes
(x,y), and uses motion vectors to compress along the tem-
poral axis. The cost model driving such an approach is per-
ceptual distortion and transmission latency. Communication
constraints in sensor networks drive a time first, space next
approach to compressing the datacube, since temporal com-
pression is local and far cheaper than spatial compression.

• Wavelets [5, 6] are a popular signal processing technique for
lossy compression. In a centralized setting, compression us-
ing wavelets can use entropy-based metrics to tradeoff com-
pression benefit with reconstruction error. In a sensor net-
work setting, pieces of the data are distributed among nodes
in the network, and communication constraints force local
cost metrics that tradeoff thecommunication overheadwith
the compression benefit.

Thus, large scale, untethered devices sensing the physical world
call for building systems that incorporate their extreme resource
constraints and spatio-temporal interpretation of the physical world
in the design, cost model, and metrics of evaluation of a data han-
dling architecture. DIMENSIONS constrains traditional distributed
systems design with the need to make every bit of communication
count, incorporates spatio-temporal data reduction to distributed
storage architectures, introduces local cost functions to data com-
pression techniques, and adds distributed decision making and com-
munication cost to data mining paradigms. It provides unified view
of data handling in sensor networks incorporating long-term stor-
age, multi-resolution data access and spatio-temporal pattern min-
ing.

2. DESIGN GOALS
The following design goals allow DIMENSIONS to minimize

the bits communicated:
Multi-Resolution Data Storage: A fundamental design goal

of DIMENSIONS is the ability to extract sensor data in a multi-
resolution manner from a sensor network. Such a framework of-
fers multiple benefits (a) it allows users to look at low-resolution
data from a larger region cheaply, before deciding to obtain more
detailed and potentially more expensive datasets (b) Compressed
low-resolution sensor data from large number of nodes can often
be sufficient for spatio-temporal querying to obtain statistical esti-
mates of a large body of data [7].

Distributed: Design goals of distributed storage systems such
as [8, 9] of designing scalable, load-balanced, and robust systems,
are especially important for resource constrained distributed sensor
networks. We have as a goal that the system balances communi-
cation and computation load of querying and multi-resolution data
extraction from the network. In addition, it should leverage dis-
tributed storage resources to provide a long-term data storage capa-
bility. Robustness is critical given individual vulnerability of sensor
nodes. Our system shares design goals of sensor network protocols
that compensate for vulnerability by exploiting redundancy in com-
munication and sensing.

Adapting to Correlations in sensor data: Correlations in sen-
sor data can be expected along multiple axes: temporal, spatial and
between multiple sensor modalities. These correlations can be ex-
ploited to reduce dimensionality. While temporal correlation can be
exploited locally, the routing structure needs to be tailored to spa-
tial correlation between sensor nodes for maximum data reduction.
The correlation structure in data will vary over time, depending on
the changing characteristics of the sensed field. For example, the
correlation in acoustic signals depend on the source location and
orientation, which can be time-varying for a mobile source. The

storage structure should be able to adapt to the correlation in sen-
sor data.

3. APPROACH
The key components of our design are (a) temporal filtering (b)

wavRoute, our routing protocol for spatial wavelet subband decom-
position (c) distributed long-term storage through adaptive wavelet
thresholding. We outline key features of the system, and discuss
cost metrics that tradeoff communication, computation, storage com-
plexity, and system performance. A few usage models of the stor-
age system are described, including multi-resolution data extrac-
tion, spatio-temporal data mining, and feature routing. To facilitate
the description, we use a simplified grid topology model, whose pa-
rameters are defined in Table 2. We expect to relax this assumption
in future work (Section 8).

The approach to DIMENSIONS is based on wavelet subband
coding, a popular signal processing technique for multiresolution
analysis and compression [5, 6]. Wavelets offer numerous advan-
tages over other signal processing techniques for viewing a spatio-
temporal dataset (a) ability to view the data at multiple spatial and
temporal scales (b) ability to extract important features in the data
such as abrupt changes at various scales thereby obtaining good
compression (c) easy distributed implementation and (d) low com-
putation and memory overhead. The crucial observation behind
wavelet thresholding when applied to compression is that for typ-
ical time-series signals, a few coefficients suffice for reasonably
accurate signal reconstruction.

n Number of Nodes in the network
R Region participating in the wavelet decomposition. Sim-

plified model assumes grid placement of
√
nx
√
n nodes

λ Number of levels in the spatial wavelet decomposition.√
n = 2λ andλ = 1

2 logn
(Xapex, Yapex) Location of the apex of the decomposition pyramid

D0 Time-series data at each node, before the spatial decom-
position

Huffman Entropy encoding scheme used

Table 2: Parameters

3.1 Temporal decomposition
Temporal data reduction is cheap since it involves only computa-

tion at a single sensor, and incurs no communication overhead. The
first step towards constructing a multi-resolution hierarchy, there-
fore, consists of each node reducing the time-series data as much as
possible by exploiting temporal redundancy in the signal and apri-
ori knowledge about signal characteristics. By reducing the tem-
poral datastream to include only potentially interesting events, the
communication overhead of spatial decomposition is reduced.

Consider the example of a multi-resolution hierarchy for build-
ing health monitoring (Table 1). Such a hierarchy is constructed
to enable querying and data extraction of time-series signals cor-
responding to interesting vibration events. The local signal pro-
cessing involves two steps: (a) Each node performs simple real-
time filtering to extract time-series that may represent interesting
events. The filtering could be a simple amplitude thresholding i.e.
events that cross a pre-determinedSNR threshold. The threshold-
ing yields short time-series sequences of building vibrations. (b)
These time-series snippets are compressed using wavelet subband
coding to yield a sequence that capture as much energy of the sig-
nal as possible, given communication, computation or error con-
straints.
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Figure 1: Grid Topology Model

Algorithm 1: ClusterWaveletTransform
Data : R: co-ordinates of region;λ: number of decomposition levels;t -

current time
Result : Spatial wavelet decomposition ofλ levels
/* Location of apex of the pyramid */;
(Xapex, Yapex) = HashInRegion(R,t);
l = 1 /* initialize level */;
while l ≤ λ do

(Xl, Yl) = LocateClusterHead (l, (Xapex, Yapex));
if I am clusterhead for levell− 1 then

GeoRoute Coefficients to(Xl, Yl);
current section becomes this one;

if I am clusterhead for levell then
Get coefficients from clusterheads at levell− 1;
Perform a 2 dimensional Wavelet transform;
Store Coefficients and Deltas Locally. Save Coefficients for next it-
eration;

3.2 wavRoute: A Routing Protocol for Spatial
Wavelet Decomposition

Spatial data reduction involves applying a multi-level 2D wavelet
transform on the coefficients obtained from 1D temporal data re-
duction described in Section 3.1. Our goals in designing this rout-
ing protocol are twofold: (a) minimize the communication over-
head of performing a spatial wavelet decomposition (b) balance the
communication, computation and storage load among nodes in the
network.wavRouteuses a recursive grid decomposition of a phys-
ical space into tiles (such as the one proposed in [10]), in conjunc-
tion with geographic routing [11, 12] as shown in Algorithm 1. At
each level of the decomposition, data from four tiles at the previ-
ous level are merged at a chosen node, which stores it in its local
store. The merged streams are further subband coded, thresholded,
and quantized to fit within specified optimization criteria (discussed
in Section 3.4). The compressed stream is sent to the next higher
level of the hierarchy as shown in Figure 2. The algorithm is exe-
cuted recursively (Figure 1(a)): all nodes in the network participate
in Step 1, in following steps, only clusterheads from the previous
step participate. In the following sections, we elaborate on the al-
gorithm used to the select clusterhead location and the geographic
forwarding protocol used.

Algorithm 2: LocateClusterHead
Data : l: current level of decomposition;(Xapex, Yapex): location of

apex of Pyramid

Result : (Xch, Ych): Co-ordinates of clusterhead location for leveli tile

X0 tile = bXmy
2l
c;X1 tile = X0 tile + 2l;

Y0 tile = bYmy
2l
c; Y1 tile = Y0 tile + 2l;

Compute Centroid of Tile;
Compute Euclidean Shortest Path Vector L from Centroid to Storage Node;
(Xsn, Ysn) = Intersection Between Path Vector L and Tile boundary;

Send Coefficients To
Level l+1 clusterhead Encoder Quantizer

Huffman

3D Wavelet

on tile
subband coding

Local
Storage

Level l−1 clusterheads
Get Coefficients From

Decoder
DequantizerHuffman

Figure 2: Protocol at clusterhead at depth i

Clusterhead Selection: To minimize communication cost, the
choice of clusterhead should be tied into the routing structure. We
use a simple clusterhead selection procedure that gives us good
complexity properties (described in Section 5). First, the apex of
the decomposition pyramid is first chosen by hashing into the geo-
graphic region,R (Figure 1(a)). Then, for each tile, the euclidean
shortest path between the centroid of the tile and the apex location
((Xapex, Yapex)) is computed. The point where this path intersects
the tile boundary is chosen to be the location of the clusterhead.
Since each node can independently calculate the location of the tile
based on its own geographic co-ordinates, the clusterhead location
can be independently computed by each node.

Modified GPSR: We use a modified GPSR approach proposed
in [11] to route packets to clusterheads. A brief review of the
approach is described below, details can be obtained from [12] and
[11]. GPSR is astrongly geographicrouting protocol that takes a
location rather than an address to deliver packets. [11] propose a
modified GPSR protocol that ensures that packets are delivered to
the nodeclosestto the destination location.

3.3 Long-term Storage
Long term storage is provided in DIMENSIONS by exploiting

the fact that thresholded wavelet coefficients lend themselves to
good compression benefit [5, 6]. Our rationale in balancing the
need to retain detailed datasets for multi-resolution data collection
and to provide long-term storage is that if scientists were interested
in detailed datasets, they would extract it within a reasonable in-
terval (weeks). Long-term storage is primarily to enable spatio-
temporal pattern mining, for which it is sufficient to store key fea-
tures of data. Thus, the wavelet compression threshold is aged pro-
gressively as shown in Figure 3, lending older data to progressively
better compression, but retaining key features of data.

increasing lossy compression

period of lossless storage

Fresh sensor data

Figure 3: Long term storage

3.4 Choosing an Appropriate Cost Metric
An appropriate cost metric must weight multiple parameters: (a)

communication overhead (b) query performance (c) error or sig-
nal distortion from lossy compression (d) computation overhead (e)
storage cost . Combinations of the above parameters can be tuned
to specific sensor network deployments.

We have explored configurations that compress based primarily
on either communication cost or error. Bounding the communica-
tion cost at each level of the hierarchy ensures that clusterheads do



not incur significantly higher communication overhead than other
nodes in the network. The compression error can, however, vary
depending on the spatio-temporal correlation in the data. For ex-
ample, an area with high correlation may be described with low
error within the specified communication bound, but a region with
low correlation would incur greater error. Conversely, bounding
the compression error would result in the compression adapting to
the correlation in different regions, but unbounded communication
overhead if the data is highly uncorrelated. We are exploring joint
optimization criteria that include both these parameters.

In a different scenario, a sensor network might consist of low-
end, highly resource constrained devices (such as motes [13]),
where computation, memory and storage are highly constrained, in
additional to energy. In these networks, the hierarchy can be con-
structed by propagating approximation coefficients of the wavelet
transform, which is computationally less expensive than subband
coding.

3.5 Load Balancing and Robustness
Due to space constraints, we will introduce only a flavor of tech-

niques that we are exploring in this area. As discussed above,
bounding the communication overhead at each level of the decom-
position can reduce the uneven distribution of energy consumption.
Additional load-balancing can be provided by periodically hashing
to a new apex location, implicitly changing the choice of cluster-
heads at different levels.

A strictly hierarchical configuration (as described above) is vul-
nerable to node failures, since loss of a node cuts off data from
any of its children. We are therefore exploring decentralized, peer-
based structures. One approach we are considering communicates
summarized data to all members of the next higher level, rather than
to just the clusterhead. Such an approach will have higher overall
energy consumption and will require greater data compression, but
it becomes immune to node failure and is naturally load balanced
since data is replicated equally to all nodes.

4. USAGE MODELS
A distributed multi-resolution storage infrastructure benefits search

and retrieval of datasets that exhibit spatial correlation, and appli-
cations that use such data.

Multi-Resolution Data Extraction: Multi-resolution data ex-
traction can proceed along the hierarchical organization by first ex-
tracting and analyzing low-resolution data from higher level clus-
terheads. This analysis can be used to obtain high-resolution data
from sub-regions of the network if necessary.

Querying for Spatio-Temporal features: The hierarchical or-
ganization of data can be used to search for spatio-temporal pat-
terns efficiently by reducing the search space. For example, con-
sider the search for pooling of contaminant flow. Such a feature
has a large spatial span, and therefore significant energy benefit
can be obtained by querying only a few clusterheads rather than
the entire network. Temporal patterns can be efficiently queried by
drilling down the wavelet hierarchy by eliminating branches whose
wavelet coefficients do not partially match the pattern, thereby re-
ducing the number of nodes queried. Summarized coefficients that
result from wavelet decomposition have been found to be excellent
for approximate querying [14, 7], and to obtain statistical estimates
from large bodies of data (Section 6).

Feature Routing and Edge Detection: Target tracking and
routing along spatio-temporal patterns such as temperature con-
tours, have been identified as compelling sensor network applica-
tions. The problem of edge detection has similar requirements, and
is important for applications like geographic routing, localization,

beacon placement and others, where explicit knowledge of edges
can improve performance of the algorithm. Our architecture can
be used to assist these applications, since it good at identifying dis-
continuities. By progressively querying for the specific features,
communication overhead of searching for features can be restricted
to only a few nodes in the network.

Debugging: Debugging data is another class of datasets that ex-
hibits high correlation. Consider packet throughput data: through-
put from a specific transmitter to two receivers that are spatially
proximate are closely correlated; similarly, throughput from two
proximate transmitters to a specific receiver are closely correlated.
Our system serves two purposes for these datasets: (a) they can be
used to extract aggregate statistics (Section 6) with low commu-
nication cost, and (b) discontinuities represent network hotspots,
deep fades or effects of interference, which are important protocol
parameters, and can be easily queried.

5. COMMUNICATION, COMPUTATION AND
STORAGE COMPLEXITY

In this section, we provide a back-of-the-envelope comparison
of the benefits of performing a hierarchical wavelet decomposi-
tion over a centralized data collection strategy. Our description will
only address the average and worst case communication load on the
nodes in the network, while Table 3 provides a more complete sum-
mary of the communication, computation and storage complexity.

A square grid topology withn nodes is considered (
√
n side as

shown in Figure 1(b)), where
√
n = 2λ. Clusterheads at each step

are selected to be the one closest to the lower left-corner of the tile.
Communication is only along edges of the grid, each of which is
of length 1 unit. The cost of transmission and reception of one unit
of data along a link of length 1, costs 1 unit of energy. The chosen
cost metric is communication bandwidth, and each clusterhead is
constrained transmit at mostD0 data. While realistic topologies are
far from as regular as the one proposed [15], and the cost model can
be more complicated, the simple case captures essential tradeoffs
in construction of multi-resolution hierarchies.

Communication Overhead: The overhead forcentralizedde-
composition can be computed from the total number of edges tra-
versed on the grid (n(

√
n − 1) for a

√
nx
√
n grid) The total cost,

therefore, isn(
√
n − 1)D0, giving anAverage-casecommunica-

tion complexity ofO(
√
nD0). The worst communication overhead

is the storage node itself, or the sensor node(s) closest to the stor-
age node, if the storage node is not power constrained. Thus, the
Worst-casecommunication complexity isO(n1.5D0).

To compute the overhead of thehierarchicaldecomposition, we
use the fact that at levell of the decomposition, a communica-
tion edge is of length2l−1, and there are22λ−2l tiles (computed
asArea of Region

Area of Tile
), giving a communication overhead of22λ+1−l.

Overλ levels of decomposition, the total cost is, thus,
∑

0≤l≤λ 22λ+1−l =

2λ+1(2λ − 1). Thus, the total communication cost isO(nD0)
and theAverage-casecommunication cost isO(D0). In the worst
case, a node is on the forwarding path at every level of the hi-
erarchy. Since there areλ levels and each level forwards data
3D0 to a clusterhead, worst case data passing through a node is
3λD0 = 3D0 logn. Thus,Worst-caseCommunication Complexity
=O(D0 logn).

6. SAMPLE DATA ANALYSIS
Our system is currently under development, but following are

some initial results from offline analysis of experimental data. We
provide initial results from two different sensor datasets to demon-



Centralized Hierarchical
Avg. Case Worst Case Avg. Case Worst Case

Communication O(
√
nD0) O(n1.5D0) O(D0) O(D0 logn)

Computation O(D0 logD0) O(nD0) O(D0 logD0) O(D0 log(nD0))
Storage O(D0) O(nD0) O(D0) O(D0 logn)

Table 3: Communication, Computation, and Storage Overhead

strate the practical applicability of our system.

6.1 Precipitation Dataset
The first sensor dataset that we consider is a geospatial dataset

that provides 50 km resolution daily precipitation for the Pacific
NorthWest from 1949-1994 [16]. While the dataset is at a sig-
nificantly larger scale than densely deployed sensor networks, the
data exhibits spatio-temporal correlations, providing a useful per-
formance case study.

The setup comprises a 15x12 grid of nodes, each recording daily
precipitation values. A wide set of queries can be envisaged on such
a dataset: (a) range-sum queries, such as total precipitation over
a specified period from a single node or a region; (b) drill-down
max queries, to efficiently access the node or region that receives
maximum precipitation over a specified period; (c) drill-down edge
queries, to efficiently access and query nodes on an edge between
a high-precipitation and low-precipitation region.

The hierarchy construction proceeds as outlined in Section 3,
with nodes at level0 performing a one-dimensional temporal wavelet
subband decomposition, and clusterheads at other levels combining
data from the previous level, and performing a three-dimensional
decomposition. We use communication bandwidth as the cost met-
ric for the compression. Thus, at leveli, data from four leveli− 1
nodes are combined, subband coded, thresholded, quantized, and
losslessly compressed using Run-Length encoding and Huffman
encoding to fit within the specified target bandwidth. An approx-
imate target communication bandwidth is chosen since it is com-
putationally intensive to choose parameters to exactly fit the target
bandwidth.

In the following example, we look at the performance of the hi-
erarchy for a specific range-sum query: “Find the annual precipita-
tion between 1949-1994 for each sensor node”. We use two perfor-
mance metrics:

• Compression Ratioat level i is ratio of number of bits of
transmitted data to the raw data size. Table 4 shows that the
number of bits transmitted is approximately the same at each
level of the hierarchy, giving us large compression ratios, es-
pecially at higher levels since more data is combined into the
target bandwidth.

• Query errorat leveli is calculated as|measured−true|
true

. This
metric corresponds to the accuracy in the response for the
range-sum query when clusterheads at leveli are queried.
While the error increases at higher levels of the hierarchy,
it is still reasonably low at all layers. For example, 80% of
measurements are within 30% of the true answer for level
1, and 80% of measurements are within 50% at level3. We
suggest that that such error is sufficient to make preliminary
searchs and then, if desired, drill-down with more detailed
queries.

6.2 PacketLoss Dataset
We now look at the performance of our system on a packet through-

put dataset from a 12x14 grid of nodes with grid spacing 2 feet

Level Raw data size
(Kbits)

Mean data sent to
next level (Kbits)

Compression Ratio (Ratio
of raw data size to trans-
mitted data size)

1 262.5 5.6 46.8
2 984.4 3.8 257.2
3 3937.7 4.0 987
4 11813.2 5.2 2286.2

Table 4: Compression Result for Sum Query
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(detailed descriptions can be obtained from [15]). Each node has
throughput data from all other transmitters, for twenty different set-
tings of transmit signal strength from each node. Two forms of cor-
relations can be exploited to reduce size of data: (a) correlation in
throughput between adjacent transmitters to a particular receiver,
and (b) correlation in throughput from a single transmitter to adja-
cent receivers.

Figure 5 shows the results of a query to obtain the throughput vs
distance map from the compressed data. The error is small in the
approximated data, and gives us large compression benefit. These
results show that our algorithm works for a broad class of data with
different correlation characteristics.
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7. RELATED WORK
In building this system, we draw from significant research in in-

formation theory [5, 6, 17], databases [7, 14], spatio-temporal data
mining [18, 19], and previous work in sensor networks [11, 20].
[14] and others have used wavelet-based synopsis data structures
for approximate querying of massive data sets. Quadtrees are popu-
larly used in image processing and databases [19], and resemble the
hierarchies that we build up. Other data structures such as R-trees,
kd-trees and their variants [18] are used for spatial feature index-
ing. Triangular Irregular Networks (TIN [18]) is used in for multi-
layered processing in cartography, and other geographical datasets.
Some of these structures could find applicability in our context, and
will be considered in future work. [11] proposes a sensor network
storage architecture that leverage the excellent lookup complexity
of distributed hash tables (DHT) for event storage. DHTs are useful
when queries are not spatio-temporal in nature, while our system
organizes data spatially to enable such queries.

8. SUMMARY AND RESEARCH AGENDA
This paper made the case for DIMENSIONS, a large-scale dis-

tributed multi-resolution storage system that exploits spatio-temporal
correlations in sensor data. Many important research issues still
need to be addressed:

What are the benefits from temporal and spatial data compres-
sion? To fully understand correlations in sensor data, and the
benefits provided by temporal and spatial compression, we are de-
ploying large scale measurement infrastructure, for sensor data col-
lection in realistic settings,

What processing should be placed at different levels of the hi-
erarchy? The clusterheads at various levels of the hierarchy can
interpret the data at different scales, to obtain information about
spatio-temporal patterns. A challenging problem is the develop-
ment of algorithms for spatio-temporal interpretation of data.

How can we increasing compression benefit without sacrificing
query performance?Our system can be augumented with other
compression techniques such as delta coding, and recent work on
blind source coding [17], to obtain better data compression. Cor-
relation statistics can be learnt by clusterheads, and exploited to
reduce data at the source.

How can we obtain energy savings from distributed compres-
sion? Better compression doesn’t necessarily translate into en-
ergy savings in communication since the cost of passive listening is
comparable to transmission [1]. Obtaining energy savings in com-
munication of data involves (a) reducing size of data to be transmit-
ted (b) scheduling communication to minimize listen time as well
as transmit time. How do we schedule communication to translate
compression benefit to energy benefit?

How can this research be applied to other networked systems?
These techniques may have relevance to other systems where data
is correlated, and massive distributed datasets need to be queried,
such as scientific applications of Grid Computing [21].
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