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We consider the joint optimization of sensor placement and transmission structure for data

gathering, where a given number of nodes need to be placed in a field such that the sensed data

can be reconstructed at a sink within specified distortion bounds while minimizing the energy

consumed for communication. We assume that the nodes use either joint entropy coding based

on explicit communication between sensor nodes, where coding is done when side information is

available, or Slepian-Wolf coding where nodes have knowledge of network correlation statistics.

We consider both maximum and average distortion bounds. We prove that this optimization is

NP-complete since it involves an interplay between the spaces of possible transmission structures

given radio reachability limitations, and feasible placements satisfying distortion bounds.

We address this problem by first looking at the simplified problem of optimal placement in

the one-dimensional case. An analytical solution is derived for the case when there is a simple

aggregation scheme, and numerical results are provided for the cases when joint entropy encod-

ing is used. We use the insight from our 1-D analysis to extend our results to the 2-D case

and compare it to typical uniform random placement and shortest-path tree. Our algorithm for

two-dimensional placement and transmission structure provides two to three fold reduction in

total power consumption and between one to two orders of magnitude reduction in bottleneck

power consumption. We perform an exhaustive performance analysis of our scheme under varying

correlation models and model parameters and demonstrate that the performance improvement

is typical over a range of data correlation models and parameters. We also study the impact of

performing computationally-efficient data conditioning over a local scope rather than the entire

network. Finally, we extend our explicit placement results to a randomized placement scheme and

show that such a scheme can be effective when deployment does not permit exact node placement.

Categories and Subject Descriptors: H.1.1 [MODELS AND PRINCIPLES]: Systems and Information Theory
– Information theory; C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Distrib-
uted Systems – Distributed applications

General Terms: Algorithms, Performance, Design, Theory

Additional Key Words and Phrases: Sensor networks, Data gathering, Information theory, Sensor
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1. INTRODUCTION

Wireless sensor networks are often envisaged to comprise thousands of nodes accomplish-
ing a sensing task. Yet, the realities of economies of scale in manufacturing and the high
cost of many sensors themselves mean that these nodes are currently significantly more
expensive than predicted. Therefore, typical deployed networks (e.g. habitat monitoring
[Hamilton ]) comprise a few hundred of nodes, each with cost of a few hundreds of dol-
lars. While we await a future with ubiquitous cheap sensor nodes, a problem that is both
immediate and necessary is to accomplish the required taskswith a limited number of
resource-constrained sensor nodes.

We consider the problem of deploying a finite number of sensornodes in a geographic
area, and choosing a communication structure among the nodes of the corresponding net-
work. A single sink is responsible for gathering the sensor data, for storage or control
purposes. Since sensor nodes have limited battery power, animportant goal is to mini-
mize the total power consumption of data gathering, while keeping the sensing distortion
within specified bounds. An important characteristic of typical sensor networks, that can
be exploited for reducing the power consumption, is that thedata measured at nodes is
correlated.

Several algorithms have been proposed for energy efficient data gathering [Lindsey et al.
2001; Heinzelman et al. 2000; Intanagonwiwat et al. 2000]. However, these works do not
take into consideration the correlation in the data. Recentstudies on the joint rate allo-
cation and transmission structure optimization for sensornetworks with correlated data
can be found in [Goel and Estrin 2003; Cristescu et al. 2004].In particular, the result of
[Cristescu et al. 2004] is similar in that it considers optimal tree structures for data gath-
ering that exploit correlation in the measured data. Our work adds new constraints to this
problem by allowing node placement to be varied, thus introducing tough distortion con-
straints. This results in a more complex problem that both requires a different approach to
solve and produces novel results. Node placement for optimal coverage is a well-studied
(and difficult) problem (e.g. [Eidenbenz 2002]). The work of[Dasgupta et al. 2003] con-
siders the problem of energy-efficient topology aware placement. That work does not
exploit the correlation present in the data measured; also,the placement constraints con-
sidered in that work are rather event driven than related to the distortion of measurement.
Recently, [Cheng et al. 2004] studied the problem of energy-optimized node placement in
two-dimensions with the goal of network lifetime. Our work makes a significantly more
comprehensive study of the placement problem, both under different coding schemes as
well as under different correlation models. This work is an extended version of prior re-
sults that were published in [Ganesan et al. 2004].

A commonly used method for deploying sensor networks is the uniform random place-
ment, since such a deployment is often the easiest and cheapest. However, we believe that
there are compelling reasons for understanding the interactions between the node place-
ment and the data and transmission structures, and the effect of these interactions on the
efficiency of utilization. First, studying the impact of placements lets us understand if
other easy-to-deploy configurations of sensor nodes can give important gains in power
consumption. As we show in this paper, this is likely to be thecase. Second, controlled
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Sink

Fig. 1. The Voronoi cells (solid lines) represent the distortion ineach cell. The tree structure (dotted
lines) represents a possible transmission structure.

placement will be necessary for applications which have to deploy limited numbers of ex-
pensive nodes (such as seismic nodes which need high precision) and hence the location
of sensors has to be optimized.

In this work, we are particularly interested in the relationbetween the data reconstruction
distortion that results from the node placement, and the power requirements of data gath-
ering from the sensors. An instance of the problem is shown inFig. 1 where the Voronoi
cells represent the distortion, and the dotted lines describe a possible tree structure to be
used for data gathering.

More specifically,N nodes need to be deployed over a finite geographic regionA, whose
two-dimensional area isA. Each of these nodes takes samples from a three dimensional
random fieldX(u, v, t), where(u, v) is the spatial location andt is the time-axis. Each
sensor transmits periodically its sensed data, through multi-hop routing, to a sink located
at the center ofA. The sink can reconstruct the sensor field in the region within speci-
fied maximum and average distortion bounds (Dmax andDavg respectively). We assume
that sampling in the time domain is sufficiently high (above Nyquist frequency) for the
sink to fully reconstruct the time-axis. Thus, we only need to consider the distortion in
reconstructing snapshots along the spatial axes,X(u, v).

To enable data gathering, the sensor nodes build a routing tree rooted at the sink, and
transmit data along this tree. Note that there are situations where tree structures are not
optimal, but for the sake of simplicity we will limit our study to data gathering trees. The
data gathering procedure is periodic and originates at the leaves, proceeding iteratively to-
wards the sink through multihop forwarding. We consider twokinds of coding schemes to
exploit correlations in sensor data. The first is joint entropy coding with explicit communi-
cation, where at each iteration, a junction node receives data from its children, decodes the
received data, jointly codes the decoded data with its own data, and forwards the encoded
data to its parent on the tree. The second coding scheme is Slepian-Wolf [Slepian and
Wolf 1973], where the correlated data generated at nodes canbe coded with a total rate
not exceeding the joint entropy, even without nodes explicitly communicating with each
other (under some constraints on the rates, given by the so-called Slepian-Wolf region). Ex-
plicit communication and Slepian-Wolf coding offer different computation-communication
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Fig. 2. Two possible placement and structure configurations of nodes A and B that satisfy specified
sampling distortion bounds are shown.A1 andB1 transmit their data over shorter cumulative dis-
tances thanA2 andB2 respectively, butB2 can code its data with that ofA2 to exploit their high data
correlation as a result of their proximity. Thus, determining the more power-efficient configuration
among many possible ones that satisfy distortion bounds is difficult due to the interplay of placement
and transmission structure.

tradeoffs. While coding is simpler in the case of joint entropy coding model with explicit
communication, Slepian-Wolf typically offers larger communication gains [Cristescu et al.
2005].

We use a simple but relevant energy related cost function to study the interplay between
placement (which determines locations of nodes) and transmission structure (which deter-
mines how sources on the tree are connected). Namely, the total cost of data gathering over
the tree structure described above can be written as

N
∑

i=1

Rate(i) × CommunicationCost(i) (1)

whereRate(i) is the total amount of data transmitted by node i, andCommunication-
Cost(i) is the per-bit transmission cost from nodei to its parent on the tree. Since the data
at nodes is correlated, the rate at nodei, Rate(i) depends on the particular set of sources
that are in the sub-tree rooted ati, and on their locations. Similarly, the transmission cost
per-bit,CommunicationCost(i), depends on the identity of the particular node used as
next hop to sink, and on its position. Thus, the total power consumption depends on both
the placement and the transmission structure.

An illustration of this interplay is seen in Fig. 2, where even in a simple example with
two nodes, it is not easy to determine the most power-efficient configuration. In terms
of transmission distance, configuration 1 is better sinceA1 and B1 transmit each over
smaller distance thanA2 andB2, respectively. However, in configuration 2,A2 andB2 are
closer to each other than nodesA1 andB1, hence they are likely to be stronger correlated.
This correlation can be exploited by properly choosing the transmission structure (A2 →
B2 → sink). This can significantly reduce the amount of data that nodeB2 needs to
generate, by using side information from nodeA in coding its data, thus reducing the total
power consumption. On the other hand, nodesA2 andB2 cannot be placed arbitrarily
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close to each other as this might violate the distortion constraints. In general, if the data is
correlated, the shortest path tree (SPT) is not necessarilyoptimal as transmission structure
[Cristescu et al. 2004].

The optimal solution involves searching through the spacesof all possible configura-
tions that satisfy distortion bounds, and all possible transmission structures that are fea-
sible given radio reachability limitations. While this combined optimization has not been
considered in prior work, it is known that even a subset of ourproblem is NP-hard [Goel
and Estrin 2003; Cristescu et al. 2004] (namely, the transmission structure optimization for
a given placement). We extend these results to prove that theproblem we consider in this
work is NP-hard as well.

The rest of this paper is structured as follows. In Section 2,we formulate precisely our
problem, and describe the sensing, communication, aggregation and data reconstruction
models. In Section 3, we consider the one-dimensional variant of the problem, provide
analytical solutions for a simplified aggregation model andanalyze the joint encoding case
numerically in detail. In Section 4, we perform a detailed study of the impact of data
correlation model, model parameters and localized data conditioning. In Section 5, we
extend the solutions from the one-dimensional case to the two-dimensional case and in
Section 6, we show that it out-performs typical random placement approaches both in total
and bottleneck power consumption. Finally, in Section 7, weconclude with a description
of various applications of our work, and some interesting extensions.

To the best of our knowledge, this is the first study of the interaction between node place-
ment under distortion constraints, transmission structure optimization, and rate allocation
in the context of sensor networks that measure correlated data.

2. PROBLEM FORMULATION

We assume that we are givenN nodes, that need to be placed in a two dimensional region
A, of areaA. For simplicity, we assume that the region is circular, and has a radiusL. The
placement of nodes,P = {(xi, yi) ∈ A, 1 ≤ i ≤ N} is constrained by two distortion
metrics, the maximum distortionDmax, defined as the maximum acceptable distortion at
any point inA, and the average distortionDavg, defined as the distortion per unit area over
A.

2.1 Sensing Model

A frequently used sensing model is the Gaussian random field [Marco et al. 2003; Cristescu
et al. 2004]. This model is suitable for analysis and can provide the essential intuition to
solve the problem in practice. We assume that the field is a continuous-space two di-
mensional stationary random fieldX(u, v), whereu andv represent the geographic co-
ordinates of points in the regionA. Without loss of generality, we assume that the random
field has zero mean, that is,µX = E[X(u, v)] = 0 ∀ u, v. We make simple assumptions
about the nature of the random field, and make no assumptions on whether this field is
band-limited or not. LetRX(τx, τy) denote the covariance function associated to the ran-
dom fieldX(u, v). The correlation between two points(ui, vi) (position of nodei), and
(uj , vj) (position of nodej) is given byrX(i, j) = RX(uj − ui, vj − vi).

We use two spatial data correlation models that are typically observed in spatial sen-
sor datasets and used widely in spatial statistics [Cressie1991]. The first model is one
where correlation decreases exponentially with the distance between nodes, and the sec-
ond model is one where the correlation decreases exponentially with the square of the
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distance between nodes.

Markov Model. The correlation functions areRX(τx, τy) = e−a
√

τ2
x+τ2

y , or in terms of
Euclidean distance,RX(d) = e−ad. Thus,rX(i, j) = e−adij , wheredij is the Euclidean
distance between nodesi andj.

Square Decay Model. The correlation function for the square decay model isRX(τx, τy) =

e−a(τ2

x+τ2

y ), or in terms of Euclidean distance,RX(d) = e−ad2

. Thus,rX(i, j) = e−ad2

ij ,
wheredij is the Euclidean distance between nodesi andj.

Having described the sensing model, we proceed to formulatethe power consumption
of a sensor node. The power consumption incurred depends on two factors: the distance
from a transmitting node to its parent, and the aggregate amount of data transmitted over
that distance.

2.2 Communication Model

For the transmission power, we use a standard transmission model that assumes that the
power per bit for transmission over a wireless link is a function of the distance between the
transmitter and receiver. We assume that there is an underlying transmission scheduling
protocol (such as SMAC [Ye et al. 2002]) that schedules transmissions over a tree to avoids
collisions. For the scope of this paper, we will ignore the protocol overhead resulting from
creating the schedules, assuming that this overhead is small in comparison with the data
size.

If the distance between a transmitter,i, and receiver,j, is dij , then the power isE ∝ dκ

whereκ is called the path-loss exponent (typically2 ≤ κ ≤ 4 [Rappaport 1996]2. In
addition, each node has a maximum power at which it can transmit, which places a limit
on the maximum transmission range,dκ

ij ≤ Emax. Thus

dij ≤ Cmax (2)

whereCmax = (Emax)
1

k is the maximum communication radius of a sensor node.
Besides the power required for communication between adjacent sensor nodes, a second

communication metric of importance is the quality of a wireless link, which is typically
characterized by the packet throughput or alternately, packet-loss over a link. Packet-
loss is typically dependent on the distance between nodes, with losses being higher for
nodes with larger separation. This behavior is similar to the transmission power model
described above, hence it can be easily integrated into our optimization. Therefore, we do
not consider it explicitly in the rest of this paper.

The radio communication constraint overlaps with the maximum distortion constraint
that we will discuss shortly. Both these constraints limit the maximum separation between
nodes in the network.

Our model is simplistic to keep the optimization manageablefor this paper. In practice,
two additional factors need to be considered: (a) radios often have non-isotropic propa-
gation, and, (b) radios adjust power levels in discrete steps rather than at arbitrarily fine
granularity.

2In this work, we do not consider reception overhead, which would increase the cost of communication per-hop,
and can only improve our results.
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The above mentioned communication model determines the communication cost-per-
bit. We now discuss how the total number of bits transmitted at each node is determined.

2.3 Aggregation Model

For our aggregation model, we assume that each node performseither joint entropy coding
of the data coming from its corresponding sub-tree or Slepian-Wolf coding. We assume
that each node quantizes its samples with an independent quantizer and all quantizers use
the same quantization interval. In order to express the amount of data in bits resulting from
first quantizing independently at each node and then performing joint entropy at a given
node of all that data in its corresponding sub-tree, we will use the differential entropy
as described in [Cover and Thomas 1991]. The differential entropy of ak-dimensional
multivariate normal distributionNk(µX ,RX) is:

h(Nk(µX ,RX)) =
1

2
log(2πe)k det(R) (3)

We approximate the joint discrete entropy associated to thequantized samples by as-
suming a high-resolution uniform scalar quantization withstep-size∆ for all the nodes:

H(Nk(µX ,RX)) ≈ h(Nk(µX ,RX)) − k log ∆ (4)

Thus, as∆ → 0, the distortion at each node→ ∆2/12 ([Cover and Thomas 1991]).
Also, due to the fine quantization, we assume that the noise isuncorrelated with the signal.

2.3.1 Joint Entropy Coding with Explicit Communication. For any nodei let Ti rep-
resent the set of nodes in the sub-tree rooted at nodei. Node i receives encoded data
from its children, first decodes it, and then jointly compresses it together with its own data
(quantized samples). The total data rate sent from nodei is approximately:

Rate(i) = H(Nk(0,R[Ti])) =
1

2
log(2πe)|Ti| det(R[Ti]) − |Ti| log ∆ (5)

whereR[Ti] denotes the covariance matrix associated with the nodes in the sub-treeTi,
and|Ti| represents the number of nodes of the sub-tree.

2.3.2 Slepian-Wolf Coding. To formulate the aggregation model for the Slepian-Wolf
case, we use a result from [Cristescu et al. 2005]. This result shows that each node condi-
tionally codes its data based on nodes “closer” than itself to the base. This is the counterpart
of the joint entropy coding using explicit communication approach mentioned previously
where each node conditions its data on nodes that are furtherfrom the base than itself. For
any nodei, let Ni denote the set of nodes closer to the base than nodei. The incremental
rate from a nodei is then:

IncrementalRate(i) = H(i, Ni) − H(Ni) (6)

The total data that a nodei transmits is the cumulative sum of all data that is relayed
through the node and the incremental data that nodei generates. This total rate is:

Rate(i) =
∑

j∈Ti

H(j, Nj) − H(Nj)

ACM Transactions on Sensor Networks, Vol. V, No. N, November2005.
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=
1

2
log(2πe)|Nj |+1 det(R[j, Nj ]) − (|Nj | + 1) log ∆

− 1

2
log(2πe)|Nj | det(R[Nj]) + |Nj | log ∆ (7)

2.3.3 Localized K-Hop Conditioning. Equations (5) and (7) assumed that conditioning
was performed over all nodes in the network. Thus, in the explicit communication case,
an intermediate node performs joint entropy coding of all nodes that transmit data to it.
Such coding, while efficient, is also very computation intensive. In localized conditioning,
we exploit the fact that the correlation model is spatially localized and conditioning over
nodes far away does not provide significant energy gains. Thus, a node conditions its data
over data from other nearby nodes, but not over far away nodes.

The metric that we use for localized conditioning is the number of hops. Thus, a node
conditions its data over all nodes that are within k-hops of itself, where k varies from 0 (no
conditioning) to infinity (full conditioning).

Let Ti,k represent the set of nodes in the subtree rooted at nodei that are at mostk
hops fromi. Then, the total data rate fromi for the joint entropy coding using explicit
communication case is:

H(Nk(0,R[Ti,k])) =
1

2
log(2πe)|Ti,k| det(R[Ti,k]) − |Ti,k| log ∆ (8)

Similarly, if Ni,k represents the set of nodes that are closer than nodei to the base station
and withink hops of nodei, then the total data rate when Slepian-Wolf coding is used is:

Rate(i) =
∑

j∈Ti

H(j, Nj,k) − H(Nj,k)

=
1

2
log(2πe)|Nj,k|+1 det(R[j, Nj,k]) − (|Nj,k| + 1) log ∆

− 1

2
log(2πe)|Nj,k| det(R[Nj,k]) − |Nj,k| log ∆

2.4 Data Reconstruction Model

We now describe the procedure used by the sink to reconstructthe entire continuous-space
sensor field given the encoded data from a discrete set of sample points at the positions of
theN nodes. The sink periodically receives quantized valuesX̂(u1, v1), X̂(u2, v2) . . . X̂(uN , vN )
from theN sensing nodes placed at points(u1, v1), (u2, v2) . . .,(uN , vN ) respectively. In
general, given theseN quantized values, an interpolation procedure will result in a recon-
struction,X̂(u, v), that gives the samples at any location(u, v) in the regionA. In this
work, we use a nearest-neighbor reconstruction procedure,which, although very simple,
helps us understand the complex interactions in our problemand focus on the power min-
imization issue. In future work, we plan to improve our results using better interpolation
models3.

Let Vi be the Voronoi cell corresponding to the sensor nodei located at position(ui, vi)
(which is the centroid ofVi). Then:

3Note that optimal reconstruction is difficult, because of the different issues of aliasing, non-uniform quantization,
etc.
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X̂(u, v) = X̂(ui, vi) iff ||(u, v) − (ui, vi)||
≤ ||(u, v) − (uj , vj)||, (∀)j 6= i

Given that the sink uses a nearest neighbor reconstruction procedure, we formulate the
coverage and distortion constraints. The first constraint is a coverage constraint, which
ensures that the set of Voronoi cells covers the regionA:

⋃

i=1,..,N

Vi = A (9)

To evaluate the maximum distortion, we use the fact that for an isotropic radially de-
creasing correlation model, the maximum distortion pointsare located along the bound-
aries of the Voronoi cells. By definition, all Voronoi cells are convex because of the prop-
erty of minimum distance decoding, therefore, the furthestpoints in each Voronoi cell are
the corners of the cell. The maximum distortion constraint controls the distance from these
furthest points in each cell to the centroid of the corresponding Voronoi cell. Thus, for any
point(u, v) in regionA, the distortion of reconstruction when it is assigned the same value
as the nearest sampled point(ui, vi) is:

Distortion(u, v) = MSE(u, v)

= E[(X̂(ui, vi) − X(u, v))2] ≤ Dmax

with i sensor being closest to(u, v). Note that the error is computed between the quan-
tized version of the closest sample given byX̂(u, v) which is received at the sink, and the
actual unquantized random variable,X(u, v).

For instance, using the Markovian correlation model in Section 2.1, we obtain the dis-
tortion between the unquantized random variables at the twopoints:

MSE(u, v) = E[(X̂(u, v) − X(u, v))2]

= E[(X̂(ui, vi) − X(u, v))2]

= E[(X(ui, vi) + nQ(ui, vi))
2] + E[X(u, v)2]

−2E[(X(ui, vi) + nQ(ui, vi))X(u, v)]

= E[X(ui, vi)
2] + E[X(u, v)2] − 2E[X(ui, vi)X(u, v)]

= σ2 + σ2 − 2σ2e−adij

= 2σ2(1 − e−adij ) ≤ Dmax (10)

wherenQ is the quantization noise between the quantized random variable and the original
random variable, which is assumed to be small due to fine quantization. As expected, the
above equation shows that the mean square error (MSE) is a concave and monotonically
increasing function of the distance between the location(u, v) and the closest sample point.
Therefore, the maximum distortion bounds the distance between any point in the regionA,
and the nearest sample point. Thus, for the particular modelthat we consider, the maximum
allowed distanceRmax, is:

ACM Transactions on Sensor Networks, Vol. V, No. N, November2005.
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Rmax = −1

a
log (1 − Dmax

2σ2
) (11)

The average distortion constraint, defined as the mean square error in data reconstruction
over the entire regionMSE(A), can be computed by integratingMSE(u, v) overA.

AvgDistortion(A) = MSE(A)

=
1

A

∫

A

MSE(u, v)dudv ≤ Davg (12)

whereMSE(u, v) is calculated as shown in (10). Then, forN sensors, each with cor-
responding Voronoi cellVi,

MSE(A) =
1

A

N
∑

i=1

MSE(Vi)

=
1

A

N
∑

i=1

∫

Vi

MSE(u, v)dudv

=
1

A

N
∑

i=1

∫

Vi

E[(X̂(u, v) − X(u, v))]dudv ≤ Davg (13)

2.5 Objective Function

We state now formally our objective to minimize the total power cost, given the constraints
described so far. Namely, our problem is to find a placementP of nodes,|P | = N , and a
treeST rooted in the sink, that spans the nodes inP , such that to

Minimize (1) under constraints (2), (9), (10), (12). (14)

We study (14) for both coding strategies (5) and (7).

3. OPTIMAL PLACEMENT AND STRUCTURE IN THE ONE-DIMENSIONAL CASE

Although our final goal is to solve the problem in the two-dimensional case, the one-
dimensional case is significantly more tractable since, as we will show shortly, the trans-
mission structure optimization is trivial, and it is possible to understand the placement
problem in isolation.

We adapt the problem statement in Section 2 for the one-dimensional instance. In this
case, letX(s), 0 ≤ s ≤ L, represent the measured random field along a one-dimensional
line of lengthL, as shown in Fig. 3. Since all transmission terminates at thesink, instances
of the problem where the sink is between nodes (not at the corner of a line) can be split
into two independent optimizations, one each for nodes on either side of the sink with the
sink at the corner. Further, due to symmetry, it does not matter which end of the line the
sink is placed. Therefore, theN nodes1, 2, .., N are placed in sequence along the line with
the sink at the left corner such that node1 is closest to the sink and nodeN is the furthest.
We denote the distance between nodei and nodei − 1 by ri; {ri}N

i=1 represents the set of
unknowns in the one-dimensional optimization.

ACM Transactions on Sensor Networks, Vol. V, No. N, November2005.
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r1 r2 r3 r3 /2

1 2 3

L

Sink
data flow

Fig. 3. One-dimensional node placement.

r1 /2r2 r3 /2

1 2 3

L

Voronoi cell boundaries

Sink

Fig. 4. Voronoi cells and maximum distortion distances for linear placement.

3.1 One-Dimensional Constraints

For the one-dimensional setting, the coverage, transmission and distortion constraints can
be readily formulated similar to (9), (10) and (12). The Voronoi cells for the one-dimensional
problem are the mid-points between adjacent pairs of samplepoints (nodes) as shown in
Fig. 4. Without loss of generality, we use a boundary extension of the Voronoi cell for the
last node,rN . Thus, the coverage constraint can be rewritten as:

Coverage Constraint:
N
∑

i=1

ri + rN/2 = L. (15)

The communication constraint limits the separation between nodes as shown in (2).
Thus,

ri ≤ Cmax (16)

As described in (10), the maximum distortion constrain restricts the maximum distance
from any node to the edge of the nearest neighbor cell. Hence,

r1 ≤ Rmax
ri

2
≤ Rmax ; (∀) 2 ≤ i ≤ N (17)

As can be seen, the maximum distortion constraint is very similar to the communication
constraint.

Similar to (12), the average distortion (defined as the distortion per unit length) is given
by:

MSE(L) =
1

L

∫

L

MSE(u)du

=
1

L

N
∑

1

∫

Vi

E
[

(X̂(u) − X(u))
]

du
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=
1

L

[

∫ r1

0

2σ2(1 − e−ad) + 2

N
∑

2

∫

ri
2

0

2σ2(1 − e−ad)

+

∫
rn
2

0

2σ2(1 − e−ad)

]

= 2 − 2

La

(

2N − e−ar1 − 2

N
∑

2

e−ari/2 − e−arN/2

)

(18)

We analyze the joint placement-structure optimization in two steps. First, we show that
the optimal structure is simple shortest path routing. We then proceed to optimizing the
placement for different choices of aggregation functions.

3.2 Optimal Structure is Shortest Path

Proposition 1: In a one-dimensional sensor network where there is a single sink and joint
entropy coding is used at each hop, shortest path communication is optimal in terms of
minimizing total energy.

This proposition can be easily proven since power increasessuper-linearly with distance
and joint entropy increases with the number of nodes aggregated. If nodei transmits its
data to a nodej wherej > i (i.e. j is further from the sink thani), the data fromj must be
eventually routed throughi to minimize power consumption. This results from the fact that
power per-bit increases super-linearly with distance (sinceκ is between 2 and 4), hence it
is always better to multi-hop through as many intermediate hops as available [Pottie and
Kaiser 2000]. Thus, to minimize power consumption, the aggregate data fromj must be
routed throughi. On the other hand, joint entropy coding is a monotonically increasing
function of the number of sources, hence, if nodei transmits its data to a nodej where
j > i, the jointly coded data atj is larger than the amount of data wheni did not transmit
to j, and this consumes more power to transmit to the sink.

3.3 Optimizing Placement for 1-D Transmission

Given that the transmission structure is shortest path forwarding from nodes towards the
sink, we now reformulate the placement problem for the two explicit communication and
Slepian-Wolf coding strategies.

3.3.1 Explicit Communication.

{ri}N
i=1 = arg min

ri

N
∑

i=1

H(Xi, Xi+1, .., XN)rκ
i

= arg min
ri

N
∑

i=1

[

1

2
log(2πe)(N−i+1) det(R[Xi..XN ])

−(N − i + 1) log∆] rκ
i (19)

under coverage (15) and distortion constraints (17),(18).

3.3.2 Slepian-Wolf Coding. For the Slepian-Wolf coding in the 1D case, we first derive
the total rate from a nodei along the line based on Equation 7.
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Rate(i) = (

N
∑

j=i

(H(X1, ..., Xj) − H(X1, ..., Xj−1)))

= (H(X1, ..., XN) − H(X1, ..., Xi−1))

=

[

1

2
log(2πe)(N) det(R[X1, ..., XN ])

]

− N log ∆

−
[

1

2
log(2πe)(i−1) det(R[X1, ..., Xi−1])

]

+ (i − 1) log∆ (20)

The placement problem can then be formulated as:

arg minri

∑N
i=1 Rate(i).rκ

i

= argminri
(
[

1
2 log(2πe)(N) det(R[X1, ..., XN ])

]

− N log ∆

−
[

1
2 log(2πe)(i−1) det(R[X1, ..., Xi−1])

]

+ (i − 1) log ∆)rκ
i (21)

It is hard to solve (19) and (21) analytically for an arbitrary correlation structure since the
correlation structure depends implicitely on the inter-node distances. We thus first obtain a
closed-form solution for a simplified scenario, where we assume zero correlation between
data sampled at different nodes. In this case,R[Ti] is diagonal(∀)i ∈ {1...N}.

3.3.3 Analytical Solution for Independent Data at Nodes. In this case, the optimiza-
tion in (19) and (21) reduces to minimizing

∑N
i=1

[

(N − i + 1)(1
2 log(2πe) − log ∆)

]

rκ
i

sincedet(R[Ti]) is unity when nodes are uncorrelated and the variance of the random pro-
cess is one. Dropping the constant scaling factor that does not impact the minimization,
we get:

{ri}N
i=1 = arg min

ri

N
∑

i=1

(N − i + 1)rκ
i (22)

As an example, suppose in Fig. 3 the samples at nodes 1, 2 and 3 are uncorrelated,
and each of the nodes has one unit of data to transmit to the sink. In this case, node 3
transmits one unit of data, node2 transmits two units (its own unit + one forwarded unit),
and node1 transmits three units. Let us now see the impact of each constraint in the above
optimization.

First, we consider the optimization in (22) when only the coverage constraint (15) is
active. Using a Lagrangian multiplier, we obtain

{ri}N
i=1 = argmin

ri

N
∑

i=1

(N − i + 1)rκ
i − λ

[

(

N
∑

i=1

ri) + rN/2

]

(23)

By solving this Lagrangian optimization using partial derivatives, we obtain:

ri =

[

λ

κ(N − i + 1)

]
1

κ−1

, (∀) 1 ≤ i ≤ N − 1;
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Fig. 5. Placement for different values of pathloss exponent (κ). As κ increases, placements become
more uniform, since communication power dominates differences in aggregated data size.

rN =

[

3λ

2κ

]
1

κ−1

where λ =





L
∑N−1

1 ( i=1
κ(N−i+1) )

1

κ−1 + 3
2 ( 3

2κ )
1

κ−1





κ−1

Fig. 5 shows the optimal{ri}N
i=1 in a placement withN = 15 nodes over a line of length

L = 200, for the case of quadratic and cubic path-loss exponents,κ = 2 and3. As ex-
pected, nodes further from the sink transmit smaller amounts of data over longer distance
than closer ones, which need to transmit larger amounts of aggregated data. However, the
impact of increasing data load for nodes closer to the sink isbalanced by the effect of
the path-loss exponentκ, since communication power increases super-linearly withdis-
tance. Thus, the optimal choice reflects a balance between these two opposing factors. As
the path-loss exponent is increased fromκ = 2 to κ = 3, the communication overhead
dominates, hence the spacing between nodes becomes more uniform.

The maximum and average distortion bounds impact on placement in significantly dif-
ferent ways as shown in Fig. 6. The maximum distortion constraint places a ceiling on the
maximum separation between nodes, whereas the average distortion constraint reduces the
mean error by making cells more equally sized.

4. PERFORMANCE OF 1D PLACEMENT

We evaluate the performance of our optimal one-dimensionalplacement for the two coding
models by comparing its power consumption to that of a commonly considered uniform
placement. Two performance metrics are considered:

—Total Power Gain: This metric measures the ratio of total power consumption for a
regularly spaced placement to our optimal 1D placement.

—Bottleneck Power Gain: This metric measures the ratio in power consumption for the
bottleneck node between the regular and optimized placement. Our problem formulation
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Fig. 6. Impact of distortion constraints. TheRmax constraint places a ceiling on the maximumri

whereas theDavg constraint equalizesris to reduce the average distortion.

Pathloss
Exp(κ)

Rmax N L Davg

Small(10) Large(20) Small(10) Large(20) Small(100) Large(300) Small(0.05) Large(0.15)
κ = 2 1.3 1.8 1.3 1.8 1.9 1.3 1.5 1.6
κ = 3 1.3 1.5 1.2 1.6 1.5 1.3 1.4 1.5

Table I. Gain of optimal placement over uniform placement for different settings.

optimizes for thetotal power consumption in data-gathering, but in a practical scenario,
metrics such as network lifetime are likely to be as important. A commonly used metric
for network lifetime is the time at which the first node dies, in other words, what is the
power consumption of the bottleneck node. For instance, in atypical sensor network,
the bottleneck node is the one that is closest to the sink, since it forwards a large amount
of traffic.

We study the relative performance for two values (a relatively small one and a relatively
large one, given our model) for each variable. The MATLAB optimization toolbox is used
for numerically finding the optimal solution of (19) and (21)using the sensing model in
Section 2.1 with parametera = 0.001 (high correlation).

4.1 Performance of Joint Coding Case with Explicit Communication

The placement of nodes for the joint coding case with explicit communication has essen-
tially the same behavior as that for the zero correlation case. This behavior results from
the continuous and slowly decaying nature of our correlation model.

For a reasonable choice of distortion and network parameters, we see that even for low
number of nodes we get a factor of 1.2 to 2 benefit over the uniform spacing case. For a
larger network, these gains increase. Among other parameters, increasingRmax increases
the flexibility in placement, hence it makes possible to further minimize power consump-
tion. IncreasingL for fixed Rmax has the opposite effect, since the feasible placement
region reduces. Increasing the number of nodesN (for fixed Rmax), increases both the
correlation between nodes (hence the aggregation benefit),and reduces the average per-
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Fig. 7. The optimal placement for explicit communication and Slepian-Wolf coding are very similar.
Slepian-Wolf coding results in slightly greater spacing for nodes farther from the base station and
correspondingly closer for nearer ones. This is because farther nodes send less data in the Slepian-
Wolf case than in the explicit communication case

hop distance for multihop transmission, thus, power consumption reduces.

4.2 Performance of Slepian-Wolf Coding

The performance in the Slepian-Wolf coding case is even better than that for explicit com-
munication case as expected. Fig. 8 shows the percentage gain that the Slepian-Wolf 1D
placement solution provides over joint entropy coding withexplicit communication. As
can be seen, Slepian-wolf coding is better by about 10-15% with gains reducing with more
nodes being placed along a line. In more highly correlated settings, gains can be expected
to be larger.

Fig. 7 shows a comparison of one instance of optimal placement for the Slepian-Wolf
coding case with explicit communication. While the generaltrend is very similar, Slepian
Wolf results in more irregular placements where the spacingbetween nodes farther from
the base-station is larger than in the explicit communication case and the spacing between
nodes closer to the base-station is less than in explicit communication. The intuition for
this solution is that in the Slepian-Wolf Coding, the farther nodes transmit less data than
their counterpart in the explicit coding case. The optimal solution thus spaces them farther
apart.

4.3 Performance of K-Hop Conditioning

In the previous performance studies, we assumed that conditioning was performed over
all nodes in the network. Thus, in the explicit communication case, an intermediate node
performs joint entropy coding of all nodes that transmit data to it. Such coding, while
efficient, is also very computation intensive. One technique to reduce the computational
complexity is to condition over a limited scope rather than the entire network. The impact
of localized conditioning is shown in Fig. 9. As can be seen, the power reduces with
increased conditioning, but the marginal benefit reduces with each farther hop. Since data
correlation decay over distance, the marginal power reduction due to condition over farther
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Fig. 8.Percentage gain offered by Slepian-Wolf coding over Joint Entropy coding with explicit com-
munication.
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Fig. 9. As the number of hops over which the signal is conditioned increases, the marginal decrease
in power consumption reduces.

nodes may not outweigh the significant additional computation required.

5. TWO-DIMENSIONAL PLACEMENT AND STRUCTURE

While the one-dimensional problem instance can be well-understood since node placement
optimization separates from transmission structure optimization, the two-dimensional case
is significantly more complex. In this section, we prove thatthe joint optimization of
placement and structure in the two-dimensional case is NP-complete, and describe an ap-
proximation algorithms based on intuition from the solution in the 1D case.

5.1 Complexity

The proof of NP-completeness for the two-dimensional problem follows directly as a re-
duction from the problem of correlated data gathering with explicit communication, which
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Sink

Fig. 10. The Voronoi cells (solid) and transmission structure (dashed) for a wheel placement, for
data-gathering at a sink located at the center of the circular regionA.

is known to be NP-complete [Cristescu et al. 2004]. Namely, when the location of nodes
is fixed, the problem of optimizing the transmission structure for power efficient data gath-
ering is NP-complete. We show that the joint optimization problem of placement and
transmission structure is NP-hard by proving that the decision version is NP-complete:

Proposition 2: For an arbitrary network and a given integerM , it is NP-complete to
decide if there is any placement and transmission structurefor which the cost in (1) is
smaller thanM , under constraints in (14).

Proof: If the aggregation function at nodes is concave and dependent on the number of
nodes that relay via that node, then the optimization problem includes the Steiner tree prob-
lem; moreover, the problem is NP-complete also when the aggregation function is known
[5, 16]. If the aggregation function at a node depends also onthe transmission structure
among the nodes that relay via that node, then, even for very simple settings, the prob-
lem remains NP-complete [6]. Thus, for every instance of thecorrelated data gathering
problem with explicit communication, our reduction consists in assigning strong distortion
constraints at each node, such that the position of the node that fulfills the distortion con-
straints becomes fixed. For such distortion constraints, the optimization problem is thus
reduced to finding the optimal transmission structure, which is NP-complete [Cristescu
et al. 2004].

5.2 Placement Strategy

Our two-dimensional placement strategy replicates the linear placement along a wheel
structure as shown in Fig. 10. The wheel comprisesnspoke spokes where each spoke has
nradial nodes placed along it. Each node transmits data using shortest path forwarding
along the spoke on which it is placed. Note that the shortest path might not be always
optimal for explicit communication coding [Cristescu et al. 2004], however we restrict to
such simple gathering trees, which can be constructed distributedly in polynomial time. We
study in more detail the placement problem; the study of alternative transmission structures
is subject of further work.

Fig. 10 shows both the transmission structure and the Voronoi cells for such a placement.
Besides being analytically tractable, the wheel structurecaptures the essential behavior that
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Dmax

L sin Θ/2
c b
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Θ

Fig. 11. Deriving theRmax constraint in two-dimensional placement. For any of the Voronoi cells,
the furthest points are the corners of the cell.

we would want from an efficient two-dimensional placement and transmission structure.
The network is dense closer to the sink where the data load is higher, and sparse further
away from the sink.

While the two-dimensional placement is simple once we have decided that the placement
and transmission structure is along a wheel, many questionsremain to be solved. How do
we place thenradial nodes along each spoke such that the distortion bounds are not violated
over the entire two-dimensional area,A? GivenN nodes, how many nodes,nradial, do
we place along each spoke and how many spokes,nspoke, do we place angularly over the
wheel? A lookahead into the results in Fig. 12 suggests that performance gains are not only
sensitive to the choices ofnspoke andnradial, but there is a non-obvious choice of these
parameters that provides maximum power benefit.

Note that, even if we propose a deterministic placement strategy, our approach provides
meaningful insight into the design of random radial distributions for nodes placement in
an arbitrary area in practical scenarios.

5.2.1 Maximum distortion bound. We will translate the maximum distortion constraint
for the two-dimensional case, to a one-dimensional bound that we can solve using the
technique described in Section 3. Consider the Voronoi cells for a single spoke as shown in
Fig. 11. As discussed in Section 2.4, the maximum distortioncorresponds to the distortion
at the point that is furthest from its nearest sampled point.By definition, such a point should
lie on the Delaunay triangulation of the sample points. Since each Voronoi cell is convex,
this point lies on one of the corners of the cell. Due to radialsymmetry, the Voronoi cells
for nodes on each spoke are identical, hence, it suffices to consider the maximum distortion
bound on cells corresponding to any one of the spokes.

Consider the triangle with sidesa, b andc that is formed between any sampling point
and one of the corners of its Voronoi cell (see Fig. 11). The maximum distortion constraint
is satisfied ifc ≤ Rmax (11). Since the radius of the regionA is L, the angle between any

two spokes isθ =
(

2π
nspoke

)

, andb ≤ L sin
(

θ
2

)

, then it follows that a sufficient condition

for c ≤ Rmax is a ≤
√

R2
max − L2 sin2

(

θ
2

)

.
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Fig. 12.As the number of nodes per-spoke (nradial) is increased, gains initially improve but eventu-
ally R̄max is too constrained, hence gains reduce.

Thus, in order to have the two-dimensional maximum distortion distance ofRmax sat-
isfied, it suffices to place nodes along each spoke such that the one-dimensional distortion
distance along each line is bounded by:

R̄max =

√

R2
max − L2 sin2

(

π

nspoke

)

(24)

5.3 Choosing the Number of Spokes and Nodes per Spoke

The tradeoff involved in finding the optimal choice ofnspoke andnradial can be understood
from (24). From the one-dimensional analysis, we know that separately increasing either
nradial or R̄max, and keeping the other constant, can reduce power consumption. How-
ever, in this case, the two parameters have opposite effectson each other. For instance, if
nradial is increased,nspoke decreases and, therefore, so doesR̄max (24). This interaction
is illustrated in Fig. 12.

How do we obtain a good choice ofnradial andnspoke? While an exact solution for
determining the optimal choice of wheel placement parameters is hard to find, an intuitive
and effective approximation is to find the placement that maximizesnspoke × R̄max. Our
approximation algorithm performs within 10% of the optimal(computed through exhaus-
tive search) for configurations that we have tested.

5.4 Randomized Approximations of Explicit Placement

In this section we study the effects due to imperfect node placement on our optimized
location strategies.

In Fig. 13, the placement of nodes is generated such that the distance from the nodes
to the sink follows a probability distribution derived fromour optimal placement, namely
cdf(d) = N(d)/N , whered is the distance from the node to the sink,N(d) is the number
of nodes at a distance smaller thand from the sink in the optimal placement andcdf(d) is
the cumulative distribution function that we consider. We plot the ratio of costs between
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Fig. 13.The ratio of costs between randomized and optimal placement, for various network sizesN .
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Fig. 14. The ratio of costs between optimized and uniform placement,for various values of the
perturbation parameterF .

the probabilistic placement withcdf(d) and the true optimal placement.
In Fig. 14, we model the jitter: the nodes are not in the optimal positions, but rather

perturbed ones:di = di + (di+1 − di−1)/F ∗ w, wheredi is the distance from nodei to
the sink, andw is normal distributed jitter noiseN (0, 1) andF a parameter modelling the
variance of the perturbation. We plot the ratio of costs between uniform placement and the
optimal placement, both perturbed with the sameF . Note that the distortion constraints
are not guaranteed any longer, however given the values ofF they are exceeded to a small
extent.
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Fig. 15. As the number of nodes placed in the network is increased, thegains increase.

6. PERFORMANCE EVALUATION OF TWO-DIMENSIONAL PLACEMENT AND
STRUCTURE

We use two metrics to evaluate the performance of our scheme,total power gain and bot-
tleneck power gain.

6.1 Total Power Gain

Our first evaluation metric is the gain that the optimized two-dimensional placement pro-
vides over a commonly employed uniformly random node placement. Fig. 15 plots the
improvement of an efficient wheel placement (as determined by the above metric) over the
uniformly random placement in the circular areaA, where the transmission structure is a
shortest path tree. When the number of nodes in the network,N is low, the performance
gains are low for both coding schemes, since the distortion bounds provide less flexibility
to optimize placement. AsN increases, these gains increase up to a factor of 5.

The power gains observed using Slepian-Wolf coding follow the same trend as Explicit
Communication but are better by a factor of 50%. The improvement depends on the choice
of correlation parameters; in a highly correlated environment with many sensors, more
gains can be expected.

Thus, not only does our wheel placement consistently out-perform a random placement
with shortest path trees, it can potentially provide an order of magnitude improvement if
sufficient flexibility is allowed in terms of number of nodes and distortion bounds.

6.2 Bottleneck Power Gain

A commonly used metric for network lifetime is the time at which the first node dies, in
other words, what is the power consumption of the bottlenecknode. For instance, in a
typical sensor network, the bottleneck node is the one that is closest to the sink, since it
forwards a large amount of traffic.

Fig. 16 shows that the power consumption of the bottleneck node in the optimal place-
ment is two orders of magnitude lower than in the uniform random placement. The gains
are roughly similar in magnitude irrespective of the codingscheme being used. The bot-
tleneck power consumption when Slepian-Wolf coding is usedis slightly lower than the
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Fig. 16. The power gains at the bottleneck node are very large, with 50times improvement for large
N .
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Fig. 17.The power gains for the Slepian-Wolf coding case are similarto those for explicit communi-
cation.

explicit communication case for low total number of nodes (N ) and high for greater num-
ber of nodes.

The gains in bottleneck power consumption are due to the factthat our optimized scheme
places nodes progressively closer to each other as they aggregate more data. This results
in nodes that transmit more data being compensated by havingto transmit over a shorter
distance. Thus, huge gains in network lifetime can be expected from our optimized place-
ment.

A unique feature of our optimized placement is that the bottleneck node is thefarthest
node from the base-station rather than the closest one as is the case with typical random
or uniform placement schemes. This observation is interesting since in our placement, the
failure of the bottleneck node still results in a stable network topology, whereas if the node
nearest to the base-station fails, it is significantly more difficult to recover from.
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7. CONCLUSIONS

To summarize, we have formulated an optimization problem that considers jointly node
placement, transmission structure and data structure in a data gathering sensor network, in
terms of an energy-related cost function. We have studied indetail the 1-D case, namely we
provided a closed-form solution for the node placement whenthe data is independent, and
outlined the methodology to solve numerically the case whenaggregation at nodes results
in either joint entropy coding or Slepian-Wolf coding, for arbitrary correlation structures.
We used our insights from the 1-D setting to propose an approximation algorithm that
places nodes in a radial “wheel” structure in the 2-D case. Weshow that significant power
gains can be obtained with such a node placement scheme over commonly used uniformly
random placements both in terms of total and bottleneck power consumption.

We now briefly mention some caveats of our approach and possible extensions to this
work. Our formulation makes some simplifying assumptions regarding radio power con-
sumption that would need to be modified to more accurately capture the characteristics of
radios. In practice, radios consume static power for being turned on that would be con-
tribute significantly to the total power consumption for very short range communication.
This would add an additional constraint to the formulation presented in Section 3. Our
work also assumes that all nodes act both as sensing nodes as well as relays. A possible
extension to our work would involve separating the two so that not all relays need to be
sensing nodes. Finally, while we constrain the possible topologies to be shortest path trees,
the use of other topologies such as the TSP-SPT [Cristescu etal. 2004] might provide
additional energy gains in the 2-D case.
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