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Abstract
Recent advances in sensor networks permit the use of a large
number of relatively inexpensive distributed computational
nodes with camera sensors linked in a network and possibly
linked to one or more central servers. We argue that the
full potential of such a distributed system can be realized
if it is designed as a distributed search engine where im-
ages from different sensors can be captured, stored, searched
and queried. However, unlike traditional image search en-
gines that are focused on resource-rich situations, the re-
source limitations of camera sensor networks in terms of
energy, bandwidth, computational power, and memory ca-
pacity present significant challenges. In this paper, we de-
scribe the design and implementation of a distributed search
system over a camera sensor network where each node is a
search engine that senses, stores and searches information.
Our work involves innovation at many levels including local
storage, local search, and distributed search, all of which are
designed to be efficient under the resource constraints of sen-
sor networks. We present an implementation of the search
engine on a network of iMote2 sensor nodes equipped with
low-power cameras and extended flash storage. We evalu-
ate our system for a dataset comprising book images, and
demonstrate more than two orders of magnitude reduction
in the amount of data communicated and up to 5x reduction
in overall energy consumption over alternate techniques.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms
Design, Management, Performance
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1. INTRODUCTION
Wireless camera sensor networks — networks comprising

low-power camera sensors — have received considerable at-
tention over recent years, as a result of rapid advances in
camera sensor technologies, embedded platforms, and low-
power wireless radios. The ability to easily deploy cheap,
battery-powered cameras is valuable for a variety of appli-
cations including habitat monitoring [18], surveillance [8],
security systems [10], monitoring old age homes [2], etc.
In addition to camera sensor networks, the availability of
cameras on almost all cellphones available today presents
tremendous opportunities for “urban image sensing”. Mo-
bile phone-centric applications include microblogging ([7]),
telemedicine (e.g. diet documentation [26]), and others [13].

While camera sensor networks present many exciting ap-
plication opportunities, their design is challenging due to the
size of images captured by a camera. In contrast to sensor
network data management systems for low data-rate sensors
such as temperature that can continually stream data from
sensors to a central data gathering site, transmitting all but
a small number of images is impractical due to energy con-
straints. For example, transmitting a single VGA-resolution
image over a low-power CC2420 wireless radio takes up to a
few minutes, thereby incurring significant energy cost. An
alternate approach to designing camera sensor networks is to
use image recognition techniques to identify specific entities
of interest so that only images matching these entities are
transmitted. Much of the work on camera sensor networks
has employed such an approach (e.g.: [17]).

Instead of deploying such application-specific camera sen-
sor networks, we argue that there is a need for a general-

purpose image search paradigm that can be used to recog-
nize a variety of objects, including new types of objects that
might be detected. This can enable more flexible use of a
camera sensor network across a wider range of users and
applications. For example, in a habitat monitoring camera
sensor network, many different end-users may be able to
use a single deployment of camera sensors for their diverse
goals including monitoring different types of birds or ani-
mals. Two recent technology trends make a compelling case
for a search-based camera sensor network. The first trend is
recent advances in image representation and retrieval makes
it possible to efficiently compute and store compact image
representations (referred to as visual terms or visterms [6,



30]), and efficiently search through them using techniques
adapted from text retrieval [24, 25]. Second, flash mem-
ory storage is cheap, plentiful and extremely energy-efficient
[21], hence images can be stored locally at sensor nodes for
long durations and retrieved on-demand.

The ability to perform “search” over a sensor network
also provides a natural and rich paradigm for querying sen-
sor networks. Although there has been considerable work
on energy-efficient query processing strategies, their focus
has been on SQL-style equality, range, or predicate-based
queries (e.g. range queries [5], min and max [29]; count and
avg [19], median, and top-k [28]; and others [9]). The closest
work to ours is on text search in a distributed sensor net-
work [31, 32]. However, their work is specific to text search
and assumes that users can annotate their data to generate
searchable metadata. In contrast to these approaches, we
seek to have a richer and automated methods for searching
through complex data types such as images, and to enable
post-facto analysis of archived sensing data in such sensor
networks.

While distributed search in camera sensor networks opens
up numerous new opportunities, it also presents many chal-
lenges. First, the resource constraints of sensor platforms
necessitate efficient approaches to image search in contrast
to traditional resource-intensive techniques. Second, design-
ing an energy-efficient image search system at each sensor
necessitates optimizing local computation and local storage
on flash. Finally, distributed search across such a network of
camera sensors requires ranking algorithm to be consistent
across multiple sensors by merging query results. In addi-
tion, there is a need for techniques to minimize the amount
of communication incurred to respond to a user query.

In this paper, we describe a novel general distributed im-
age search architecture comprising a wireless camera sensor
network where each node is a local search engine that senses,
stores and searches images. The system is designed to effi-
ciently (both in terms of computation and communication)
merge scores from different local search engines to produce a
unified global ranked list. Our search engine is made possible
by the use of compact image representations called visterms
for efficient communication and search, and the re-design
of fundamental data structures for efficient flash-based stor-
age and search. Our system is implemented on a network
of iMote2 sensor nodes equipped with the Enalab cameras
[1] and custom built SD card boards. Our work has the
following key contributions:

• Efficient Local Storage and Search: The core of
our system is an image search engine at each sensor
node that can efficiently search and rank matching im-
ages, and efficiently store images and indexes of them
on local flash memory. Our key contributions in this
work include the use of an efficient image descriptor
using “visterms” (see next section) and the re-design
of two fundamental data structures in an image search
engine — the vocabulary tree and the inverted index —
to make it efficient for flash-based storage on resource-
constrained sensor platforms. We show that our tech-
niques improve the energy consumption and response
time of performing local search by 5-6x over alternate
techniques.

• Distributed Image Search: Our second contribu-
tion is a novel distributed image search engine that

unifies the local search capabilities at individual nodes
into a networked search engine. Our system enables
seamless merging of scores from different local search
engines across different sensors to generate a unified
ranked list in response to queries. The compact image
description in terms of visterms (see next section) min-
imizes communication overhead. We show that such
a distributed search engine enables a user to query a
sensor network in an energy-efficient manner using an
iterative procedure involving the communication of lo-
cal scores, representations and images to reduce energy
consumption. Our results show that such a distributed
image search is up to 5x more efficient than alternate
approaches, while incurring reasonable increase in la-
tency (less than four seconds in a four-hop network).

• Application Case Studies: We evaluate and demon-
strate the performance of our distributed image search
engine in the context of an indoor book monitoring
application. We show that our system achieves up to
90% accuracy for search. We also show how system
parameters can be tuned to tradeoff query accuracy
for energy efficiency and response time.

2. BACKGROUND
Before presenting the design of our system, we first pro-

vide a concise background on the state of art image search
techniques, and identify the major challenges in the design
of an embedded image search engine for sensor networks.
Image search involves three major steps: (a) extraction of
distinguishing features from images, (b) clustering features
to generate compact descriptors called visterms, (c) ranking
matching results for a query, based on a weighted similarity
measure called tf-idf ranking [3].

2.1 Image Search Overview
Image Features: A necessary pre-requisite for perform-

ing image search is the availability of distinguishing image
features. While such features are not available for all kinds of
image types and recognition tasks, several promising tech-
niques have emerged in recent years. In particular, when
one is interested in searching for images of the same object
or scene, a good representation is obtained using the Scale-
Invariant Feature Transform (SIFT) [16], which generates
128 dimensional vectors by essentially computing local ori-
entation histograms. Such a SIFT vector is typically a good
description of the local region. While a number of SIFT vari-
ants like GLOH and PCA-SIFT are available, a comparison
[22] shows that GLOH and SIFT work best.

Visterms or Visual Words: While search can be per-
formed by directly comparing SIFT vectors of two images,
this approach is very inefficient. SIFT vectors are continu-
ous 128 dimensional vectors and there are several hundred
SIFT vectors for a VGA image. This makes it expensive to
compute a distance measure for determining similarity be-
tween images. State-of-the-art image search techniques deal
with this problem by clustering image features (e.g. SIFT
vectors) using an efficient clustering algorithm such as hier-
archical k-means [24], and by using each cluster as a visual
word or visterm, analogous to a word in text retrieval [30].

The resulting hierarchical tree structure is referred to as
the vocabulary tree for the images, where the leaf clusters
form the “vocabulary” used to represent an image [24]. The



vocabulary tree contains both the hierarchical decomposi-
tion and the vectors specifying the center of each cluster.
Since the number of bits needed to represent the vocabulary
is far smaller than the number of bits needed to represent
the SIFT vector, this representation is very efficient. We
replace each 128 byte SIFT vector with a 4 byte visterm.

Matching: Image matching is done by comparing vis-
terms between two images. If two images have a large num-
ber of visterms in common they are likely to be similar. This
comparison can be done more efficiently by using a data
structure called the inverted index or inverted file [3], which
provides a mapping between a visterm and all images that
contain the visterm. Once the images to compare are looked
up using the inverted index, a query image and a database
image can be matched using visterms by scoring them. As is
common in text retrieval, scoring is done by weighting more
common visterms less than rare visterms [3, 24, 25]. The
rationale is that if a visterm occurs in a large number of im-
ages, it is poor at discriminating between them. The weight
for each visterm is obtained by computing the tf-idf score
(term frequency - inverse document frequency) as follows:

tfv = Freq. of visterm v in an image

dfv = Num. of images in which visterm v occurs

idfv =
Total num of images

dfv

score =
X

i

log(tfi + 1) · log(idfi) (1)

where the index i is over visterms common to the query
and database image and dfv denotes the document frequency
of v. Once the matching score is computed for all images
that have a visterm in common with the query image, the
set of images can be ranked according to this score and pre-
sented to the user.

2.2 Problem Statement
There are many challenges in optimizing such an image

search system for the energy, computation, and memory con-
straints of sensor networks. We focus on three key challenges
in this paper:

• Flash-based Vocabulary Tree: The vocabulary tree
data structure is typically very large in size (many tens
of MB) and needs to be maintained on flash. While
the data structure is static and is not modified once
constructed, it is heavily accessed for lookups since ev-
ery conversion of an image feature to visterm requires
a lookup. Thus, our first challenge is: How can we

design a lookup-optimized flash-based vocabulary tree

index structure for sensor platforms?

• Flash-based Inverted Index: A second important
data structure for search is the inverted index. As
the number of images captured by a sensor grows, the
inverted index will grow to be large and needs to be
maintained on flash. Unlike the vocabulary tree, the
inverted file is heavily updated since an insertion op-
eration occurs for every visterm in every image. In
contrast, the number of lookups on the inverted index
depends on the query frequency, and can be expected
to be less frequent. Thus, our second challenge is: How

can we design an update-optimized flash-based inverted

index for sensor platforms?

• Distributed Search: Existing image search engines
are designed under the assumption that all data is
available centrally. In a sensor network, each node has
a unique and different local image database, therefore,
we need to address questions about merging results
from multiple nodes. In addition, sensor network users
can pose different types of queries — continuous and
ad-hoc — which need to be efficiently processed. Thus,
our third challenge is: How can we perform efficient

and accurate distributed search across diverse types of

user queries and diverse local sensor databases?

The following sections discusses our overall architecture
followed by techniques employed by our system to address
the specific problems that we outlined in this section.

3. IMAGE SEARCH ARCHITECTURE
We now provide a broad overview of the operation of our

distributed image search system, which we describe in the
context of a bird monitoring sensor network. We assume
that users of such a sensor network wish to pose archival
queries on stored images as well as continuous queries on
live images. An example of an archival query might be to
retrieve the top five matches of a user-provided query image,
say a hawk, that were detected by the sensor network in the
last month. The user can also pose a continuous query,
and request to be notified whenever a newly captured image
matches the query image of the hawk. Such image search
over a sensor network involves the following steps:

Image Capture and Feature Extraction: The first
step involves capture of images by a camera sensor node,
perhaps in a periodic or triggered manner. A simple mo-
tion detection algorithm may be used to filter images such
that only potentially interesting images are retained for fur-
ther processing. Once such an image is captured, each sen-
sor extracts descriptive features using the SIFT algorithm
and maps these features to visterms as described in Sec-
tion 2. This process of mapping SIFT features to visterms
involves looking up a vocabulary tree which can either be
pre-loaded onto the sensor during deployment time, or dy-
namically downloaded from a server during in-situ opera-
tion.

Local Search: Search can proceed in two ways. One
approach (“Query by Visterms”) is to do local search at
sensors i.e. to transmit visterms of query images to in-
dividual sensors, perform the search locally at the sensor
nodes, and merge results from multiple sensors to generate
a global search result. An alternate approach (“Collect Vis-
terms”) is to do centralized search i.e. to push visterms for
all captured images from all sensors to a central proxy which
indexes these visterms to search across images stored at sen-
sors. While both modes of operation are supported by our
system, their relative efficiencies depend on specific sensor
platforms and infrastructure availability. Here, we restrict
our discussion to the local search mechanism since it is a
more general paradigm.

The local image search engine handles continuous and
archival queries in different ways. For an archival query, the
visterms of the image of interest to the query are matched
against the visterms of all the images that are stored in
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Figure 1: Search Engine Architecture

the local image store. The result of the local search is a
top-k ranked list of best matches, which is transmitted to
the proxy. For a continuous query, each captured image is
matched against the specific images of interest to the query,
and if the match is greater than a pre-defined threshold, the
captured image is considered a match and transmitted to
the proxy.

Global Search: Once the local search engine has searched
for images matching the query, the proxy and the sensor in-
teract to enable global search across a distributed sensor
network. This interaction is shown in Figure 1. Global
search involves combining results from multiple local search
engines at different sensors to ensure that communication
overhead is minimized across the network. For instance, it
is wasteful if each sensor transmits images corresponding to
its local top-k matches since the local top-k matches may not
be the same as the global top-k matches to a query. Instead,
the proxy gets the ranking scores corresponding to the top-
k matches resulting from the local search procedure at each
sensor. The proxy merges the scores obtained from different
sensors to generate a global top-k list of images, which it
communicates to the appropriate sensors. The sensors then
transmit thumbnails or the full images of the requested im-
ages, which are presented to the user using a GUI.

4. BUFFERED VOCABULARY TREE
The vocabulary tree is the data structure used at each

sensor to map image features (for example SIFT vectors) to
visual terms or visterms. We now provide an overview of the
operation of the vocabulary tree, and describe the design of
a novel index structure, the Buffered Vocabulary Tree index
structure, that is optimized for flash-based lookups.

4.1 Description
The vocabulary tree at each sensor is used to map SIFT

vectors extracted from captured images to their correspond-
ing visterms that are used for search. The vocabulary tree
is typically created using a hierarchical k-means clustering
of all the SIFT features in the image database [24]. Hierar-
chical k-means assumes that the data is first clustered into
a small number of m clusters. Then at the next level, the
points in each of the m clusters are clustered into a further
m clusters so that this level has m2 clusters. The process is
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Figure 2: Vocabulary Tree

repeated so that at a depth d the number of clusters is md.
The process stops when the desired number of leaf clusters
is reached. For example with m = 10 and d = 6 there are a
million clusters at the leaf level. The clusters at the leaf level
correspond to visual words or visterms. The ID of the leaf
node is the ID of the visterm; for example, if a SIFT vector
is mapped to the second cluster in the vocabulary tree, its
visterm ID is 2. In the resulting vocabulary tree each level
has a number of clusters, where each cluster is represented
by the coordinates of the cluster center, as well as pointers
from each node to its parent, children, and siblings.

Lookup of the tree proceeds in a hierarchical manner where
the SIFT vector is first compared with the m cluster centers
at the top level and assigned to the cluster with the closest
center at this level ck. Then, the SIFT vector is compared
with the centers of the siblings of ck and assigned to the clos-
est sibling ckj . The process repeats until the SIFT vector is
assigned to a leaf node or visterm.

4.2 Design Goals
The design of the vocabulary tree has two key objectives:

• Minimize tree construction cost: The process of con-
structing the vocabulary tree for a set of database im-
ages is computationally intensive. Thus, our first goal
is to minimize the cost of tree construction.

• Minimize Flash reads: The vocabulary tree is a large
data structure (few to many MB), hence it may not be
possible to load the data structure completely to mem-
ory on a memory-constrained embedded platform (e.g.
iMote2). Alternatively, we need to store it on flash and
load it partially for visterm lookup. Since reading the
vocabulary tree from flash incurs considerable latency,
and consequently energy, our second goal is to mini-
mize the number of reads from flash for every lookup
of the vocabulary tree.

4.3 Proxy-based Tree Construction
Unlike conventional search engines where the vocabulary

tree is created from all the images that need to be searched,
our approach separates the images used for tree construction

from those used for search. The proxy constructs the vocab-
ulary tree from images similar (but not necessarily identi-
cal) to those we expect to capture within the sensor network.
For example, in a book search application, a training set can
comprise a variety of images of book covers for generating
the vocabulary tree at the proxy. The images can even be
captured using a different camera with different resolution



from the deployed nodes. Once constructed, the vocabulary
tree can either be pre-loaded onto each sensor node prior
to deployment (this can be done by physically plugging in
the flash drive to the proxy and then copying it), or can be
transmitted to the network during system operation.

One important consideration in constructing the vocab-
ulary tree for sensor platforms is ensuring that its size is
minimal. Previous work in the literature has shown that us-
ing larger vocabulary trees produces better results [24, 25].
This work is based on using trees with a million leaves or
more which is many Gigabytes in size. Such a large vo-
cabulary tree presents three problems in a sensor network
context: (a) they are large and consume a significant frac-
tion of the local flash storage capacity, (b) they incur greater
access time to read, thereby greatly increasing the latency
and energy consumption for search, and (c) they would be
far too large to dynamically communicate to update sensor
nodes. To reduce the size of the vocabulary tree, our design
relies on the fact that typical sensor networks have a small
number of entities of interest (e.g.: a few books, birds, or
animals), hence, the vocabulary tree can be smaller and tar-
geted towards searching for these entities. For example, in
a book monitoring application, a few hundreds of books can
be used as the training set to construct the vocabulary tree,
thereby reducing the number of visterms and consequently
the size of the tree.

4.4 Buffered Lookup
The key challenge in mapping a SIFT vector to a visterm

on a sensor node is minimizing the overhead of reading the
vocabulary tree from flash. A naive approach that reads
the vocabulary tree from flash as and when required is ex-
tremely inefficient since it needs to read a large chunk of the
vocabulary tree for practically every single lookup.

The main idea in our approach is to reduce the overhead
of reads by performing batched reads of the vocabulary tree.
Since the vocabulary tree is too large to be read into memory
as a whole, it is split into smaller sub-trees as shown in
Figure 2, and each subtree is stored as a separate file on
flash. The subtree size is chosen such that it fits within
the available memory in the system. Therefore, the entire
subtree file can be read into memory. Second, we batch the
SIFT vectors from a sequence of captured images into a large
in-memory SIFT buffer. Once the SIFT buffer is full, the
entire buffer is looked up using the vocabulary tree one level
at a time. Thus, the root subtree (subtree 1 in Figure 2) is
first read from flash, and the entire batch of SIFT vectors
is looked up on the root subtree. This lookup determines
which next level subtree needs to be read for each SIFT
vector, and results in a smaller set of second-level buffers.
The next level sub-trees are looked up one by one, and the
batch processed on each of these sub-trees to generate third-
level buffers, and so on. The process proceeds in a level by
level manner, with a subtree file being read, and a buffer of
SIFT vectors being looked up at each level. Such a buffered
lookup on a segmented vocabulary tree ensures that the cost
of reading an entire vocabulary tree is amortized over a batch
of vectors, thereby reducing the amortized cost per lookup.

5. INVERTED INDEX
While the vocabulary tree is used to determine how to

map from SIFT feature vectors to visterms, an inverted in-
dex (also known as the inverted file) as in text retrieval [3]

is used to map a visterm to the set of images in the local
database that contain the visterm. The inverted index is
used in two situations in our system. First, when an image
is inserted into the local database the visterms for the image
are inserted into the inverted index; this enables search by
visterms, wherein the visterms contained in the query im-
age can be matched to the visterms contained in the stored
locally captured images. Second, the inverted index is also
used to determine which images to age when flash is filled
up to make room for new images. Aging of images proceeds
by first determining the images that are least likely to be
useful for future search, and deleting them from flash.

5.1 Description
The inverted index is updated for every image that is

stored in the database. Let the sequence of visterms con-
tained in image Ii be Vi = v1, v2, ..., vk. Then, the entry
Ii is inserted into the inverted index entry for each of these
visterms contained in Vi. Figure 3 shows an example of an
inverted index that provides a mapping from the visterm to
the set of images in the local database that contain the term,
as well as the frequency of the appearance of the term across
all images in the local database. Each entry is indexed by
the Visterm ID, and contains the document frequency (df)
score of the visterm (Equation 1), and a list of Image IDs.
We use a modified version of the scoring function 2 which
does not use the term frequency (tf) but uses only the inverse
document frequency (idf). As we show later, the idf scores
are sufficient for good performance in our system. Hence,
we do not store the term frequency (tf) numbers per image
- this also saves valuable memory space. Since the df and idf
have to be updated when new images are added, it is more
efficient to store the df and compute the idf at query time.

The inverted index facilitates querying by visterms. Let
the set of visterms in the query image be Q = q1, q2, ..., qn.
Each of these visterms is then used to look up the inverted
index and the corresponding inverted list for the visterm
returned. Thus for query visterm qi, a list of image IDs
Li = Ii1, ..., Iik is returned, where each element of the list is
an image ID. The lists over all the query visterms are inter-
sected and scored to obtain a rank ordering of the images
with respect to the query.

5.2 Design Goals
Unlike the vocabulary tree which is a static data structure

that is never updated, the inverted index is updated for ev-
ery visterm in a captured image, hence it needs to be opti-
mized for insertions. The design of the flash-based inverted
index structure is influenced by the following characteristics
of the flash layer below and from the search engine layer
above, and has the following goals:

• Minimize flash overwrites: Flash writes are immutable
and one-time—once written, a data page must be erased
before it can be written again. The smallest unit that
can be erased on flash, termed an erase-block, typi-
cally spans few tens of pages, which makes any in-place
overwrite of a page extremely expensive since it incurs
the cost of a block read, write and erase. Hence, it is
important to minimize the number of overwrites to a
location that has been previously written to on flash.

• Exploit visterm frequency: The frequency of words in
documents typically follows a heavy tailed behavior,
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referred to as a Zipf distribution, i.e. the frequency of
a word is inversely proportional to its rank [3]. From a
search perspective, the least frequent words are the
most useful for discriminating between images, and
have the highest idf score. Our third goal is to ex-
ploit this search engine characteristic to optimize the
inverted index design.

5.3 Inverted Index Design
We discuss three aspects of the design of the inverted in-

dex in this section: (a) how the index is stored on flash,
(b) how it is updated when a new image is captured, and
(c) how entries are deleted when images are removed from
flash.

Storage: The inverted index is maintained on flash in a
log-structured manner, i.e. instead of updating a previously
written location, data is continually stored as an append-
only log. Within this log, the sequence of image IDs cor-
responding to each visterm is stored as a reverse linked list
of chunks, where each chunk has a set of image IDs and a
pointer to the previous chunk. For example, in Figure 3,
the set of Image IDs corresponding to visterm v1 is stored
in flash as two chunks, with a pointer from the second chunk
to the first chunk. The main benefit of this approach is that
each write operation becomes significantly cheaper since it
only involves an append operation on flash, and avoids ex-
pensive out-of-place rewrites. In addition, the writes of mul-
tiple chunks can be coalesced to reduce the number of writes
to flash, thereby reducing the fixed cost of accessing flash
for each write. Such a reverse linked list approach to stor-
ing files is also employed in a number of other flash-based
data storage systems that have been designed for sensor plat-
forms including MicroSearch [31], ELF [4], Capsule [20], and
FlashDB [23].

Insertion: While a log-structured storage optimizes the
write overhead of maintaining an inverted index, it increases
the read overhead for each query since accessing the se-
quence for each visterm involves multiple reads in the file.
To minimize read overhead, we exploit the Zipfian nature of
the idf distribution in two ways during insertion of images
to the index. First, we exploit the observation that the most
frequent terms have a very low contribution to the idf score,
and have least impact on search. Hence, these visual terms
can be ignored and do not have to be updated for each im-
age. In our system, we determine these non-discriminating
visual terms during vocabulary tree-construction time, so

that they do not need to be updated during system opera-
tion.

Second, we minimize the read overhead by only flushing
the “longest chains” to flash i.e. the visterms that have the
longest sequence of image IDs. Due to the Zipfian distribu-
tion of term frequency, a few chains are extremely long, and
by writing these to flash, the number of flash read operations
can be tremendously reduced. The Zipfian distribution also
reduces the amount of state that needs to be maintained for
determining the longest chains. We store a small top-k list of
the longest chains as shown in Figure 3. This list is updated
opportunistically — whenever a visterm is accessed that has
a list longer than one of the entries in the top-k list, it is
inserted into the list. When the size of the inverted index
in memory exceeds the maximum threshold, the top-k list is
used to determine which visterm sequences to flush to flash.
Since the longer sequences are more frequently accessed, the
top-k list contains the longest sequences with high probabil-
ity, hence this technique writes the longest chains to flash,
thereby minimizing the number of flash writes. The use of
the frequency distribution of visterms to determine which
entries to flush to flash is a key distinction between the in-
verted index that we use and the one that is proposed in
[31].

Deletion: Image deletions or aging of images triggers
deletion operations on the inverted index. Deletion of el-
ements is expensive since it requires re-writing the entire
visterm chain. To avoid this cost, we use a large image ID
space (32 bits) such that rollover of the ID is practically
impossible during the typical lifetime of a sensor node.

5.4 Using Inverted Index for Aging
In addition to search, our system also employs the in-

verted index is to determine what images should be aged
when flash is filled up. Ideally, images that are less likely
to contain objects of interest should be aged before images
that are more likely to contain objects of interest. We use a
combination of value-based and time-based aging of images.
The “value” of an image is computed as the cumulative idf
of all the visterms in the image normalized by the number of
visterms in the image. Images with lower idf scores are more
likely to be the background rather than objects of interest.
This value measure can be combined with the time when an
image was captured to determine a joint metric for aging.
For example, images that are more than a week old, and
have normalized idf score less than a pre-defined threshold
can be selected for aging.

6. DISTRIBUTED SEARCH
A distributed search capability is essential to be able to

obtain information that may be distributed over multiple
nodes. In our system, the local search engines at individual
sensors are networked into a single distributed search engine
that is responsible for searching and ranking images in re-
sponse to a query. In this section, we discuss how global
ranking of images is performed over a sensor network.

6.1 Search Initiation
A user can initiate a search query by connecting to the

proxy, and transmitting a search request. Two types of
search queries are supported by our system: ad-hoc search
and continuous search. An ad-hoc search query (also known
as a snapshot query) is a one-time query, where the user



provides an image of interest and, perhaps a time period of
interest, and initiates a search for all images captured during
the specified time period that match the image. For exam-
ple, in the case of a book monitoring sensor network, a user
who is missing his or her copy of“TCP Illustrated”may issue
an ad-hoc query together with a cover of the missing book,
and request all images matching the book detected over the
past few days. A continuous search query is one where the
network is continually processing captured images to decide
whether it matches a specific type of entity. For instance, in
the above book example, the user can also issue a continu-
ous query and request to be notified whenever the book is
observed in the network over the next week.

In both cases, the proxy which receives the query image
converts the image into its corresponding visterms. The vis-
term representation of a query is considerably smaller than
the original image (approx 1600 bytes), hence, this makes
the query considerably smaller to communicate over the sen-
sor network. The proxy reliably transmits the query image
visterms to the entire network using a reliable flooding pro-
tocol.

6.2 Local Ranking of Search Results
Once the query image visterms are received at each sen-

sor, the sensors initiate the local search procedure. We first
describe the process by which images are scored and ranked,
and then describe how this technique can be used for answer-
ing ad-hoc and continuous queries.

Scoring and Ranking: The local search procedure in-
volves two steps: (a) the inverted index is looked up to de-
termine the set of images to search, and (b) the similarity
score is computed for each of these images to determine a
ranked list. Let VQ be the set of visterms in the query image.
The first step involved in performing the local search is to
find all images in the local database that have at least one of
the visterms in VQ. This set of images can be determined by
looking up the inverted index for each of the entries v in VQ.
Let Lv be the list of image IDs corresponding to visterm v

in the inverted index. Assume that the first visterm in VQ

is v1 and the corresponding inverted list of images is Lv1
.

We maintain a list of documents D, which is initialized with
the list of images Lv1

. For each of the other visterms v in
VQ, the corresponding inverted index Lv is scanned and any
image not in the document list D is added to it.

Once the set of images is identified, matching is done by
comparing visterms between each image in V (i), where i ∈

D and the visterms in the query image VQ. If the two im-
ages have a large number of visterms in common they are
likely to be similar. Visterms are weighted by their idf. Vis-
terms which are very common have a lower idf score, and are
weighted less than uncommon visterms. The idf is computed
as described in Equation 1.

To obtain the score of an image i, we add up the idf
scores for the visterms that match between the query im-
age, VQ, and the database image, Vi to obtain the total
score as shown in Equation 2. Note that the equation does
not use the tf term from equation 1. This is for two reasons:
(a) some non-discriminating visterms occur very frequently
(e.g. background visterms), leading to false matches, and
(b) the tf term of every visterm in every image needs to be
stored, which would significantly increase the size of inverted
index.

Query Images Query Results

Figure 4: Examples of book cover search results.
The first column shows queries and the top results
are shown in the second column. The technique is
resilient to occlusions and viewpoint change (top left
image) and specularities (bottom left image).

Score(Vi, VQ) =
X

i∈VQandi∈Vi

log(idfi) (2)

Any image with a score greater than a fixed pre-defined
threshold (Score(Vi, VQ) > Th) is considered a match, and
is added to the list of query results. The final step is sorting
these query results by score to generate a ranked list of re-
sults, where the higher ranked images have greater similarity
to the query image.

Figure 4 shows example queries and the top search re-
sult for a book search example. Note the ability to handle
viewpoint change, occlusion and specularities.

Ad-hoc vs Continuous Queries: The local search pro-
cedures for ad-hoc and continuous queries use the above
scoring and ranking method but differ in the database im-
ages that they consider for the search. An ad-hoc query is
processed over the set of images that were captured within
the time period of interest to the query. To enable time-
based querying, an additional index can be maintained that
maps each stored image to a timestamp when it was cap-
tured. For a few thousand images, such a time index is a
small table that can be maintained in memory. Once the
list of images to match is retrieved from the inverted index
lookup, the time index is looked up to prune the list and
only considers images that were captured during the time
period of interest. The rest of the scoring procedure is the
same as the mechanism described above. In the case of a
continuous query, the search procedure runs on each cap-
tured image as opposed to the stored images. In this case, a
direct image-to-image comparison is performed between the
visterms of the captured image and those of the query image.
If the similarity between the visterms exceeds a pre-defined
threshold, it is considered a positive match. If the number
of continuous queries is high, the cost of direct matching can
be further reduced by using an inverted file.

6.3 Global Ranking of Search Results
The search results produced by individual sensors are trans-

mitted back to the proxy to enable global scoring of search
results. The key problem in global ranking of search results
is re-normalizing the scores across separate databases. As
shown in Equation 1, the local scoring at each sensor de-



pends on the total number of images in the local database
at each sensor. Different sensors could have different num-
ber of captured images, and hence, differently sized local
databases. Hence, the scores need to be normalized before
comparing them.

To facilitate global ranking, each sensor node transmits
the count of the number of images in which each visterm
from the set VQ occurs, in addition to the total number of
images in the local database. In other words, it transmits
the numerator and denominator of Equation 1 separately
to the proxy. Note that only the numbers for the visterms
which occur in the query need to be updated not all the
visterms. A typical query image has about 200 visterms so
we need to only send on the order of 1.6 KB from each sensor
node that has a valid result. Let S be the set of sensors in
the network, and Cij be the count of the number of images
captured by sensor si that contain the visterm vj . Let Ni

be the total number of images at sensor si. Then, the global
idf of visterm v is calculated as:

idfv =

X

vi∈S

Ni

X

vi∈S

Civ

(3)

Once the normalized idfs are calculated for each visterm,
the scores for each image are computed in the same manner
as shown in Equation 2. Finally, the globally ranked scores
are presented to the user. The user can request either a
thumbnail of an image on the list, or the full image. Retriev-
ing the thumbnail provides a cheaper option than retrieving
the full image, hence it may be used as an intermediate step
to visually prune images from the list.

6.4 Network Re-Tasking
An important component of our distributed infrastructure

is the ability to re-task sensors by loading new vocabularies.
This ability to re-task is important for two reasons. First,
it enables the sensor proxy to be able to update the vo-
cabulary tree at the remote sensors to reflect improvements
in the structure, for instance, when new training images are
used. Second, this allows the search engine to upload smaller
vocabulary trees as and when needed on to the resource con-
strained sensors. One of the benefits of loading smaller vo-
cabulary trees on-demand is that it is less expensive than
searching through a large vocabulary tree locally at each
sensor. Third, when it is necessary to use the sensor net-
work to search for new kinds of objects, a new vocabulary
tree may be loaded. For example, assume we had a vocabu-
lary tree to detect certain kinds of animals such as deer but
we now want to re-task it to find tigers, we can easily build
a new vocabulary tree at the proxy and download it. Dis-
semination of the new vocabulary into a sensor network can
be done using existing re-programming tools such as Deluge
[11].

7. IMPLEMENTATION
Each sensor node comprises an iMote2 sensor [12], an

Enalab camera [1], and a custom SD-card extension board
that we designed, as shown in Figure 5. The Enalab camera
module comprises an OV7649 Omnivision CMOS camera
chip, which provides color VGA (640x480) resolution. The
iMote2 comprises a Marvell PXA271 processor which runs

Figure 5: iMote2 with Enalab camera and custom SD

card board
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Figure 6: System Diagram

between 13-416 MHz, and has 32MB SDRAM[12]; a Chipcon
CC2420 radio chip; and an Enalab camera. The camera is
connected to the Quick Capture Interface (CIF) on iMote2.
To support large image data storage, an 1GB external flash
memory is attached to each sensor node.

Sensor Implementation: The overall block diagram of
the search engine at each sensor is shown in Figure 6. The
entire system is about 5000 lines of C code excluding the two
image processing libraries that we used for SIFT and vocab-
ulary tree construction. The system has three major mod-
ules: (a) Image Processing Module (IPM), (b) Query Pro-
cessing Module (QPM), and (c) Communication Processing
Module (CPM). The IPM captures an image using the cam-
era periodically, reads the captured image and saves it into a
PGM image file on flash. It then processes the PGM image
file to extract SIFT features, and batches these features for
a buffered lookup of the vocabulary tree.The QPM module
processes ad-hoc queries and continuous queries from the
proxy. For an ad-hoc query, it looks up the inverted file and
find the best k matches from the locally stored images. If
the value of k is not specified by the query, the default is
set to five. For continuous queries, QPM loads the visterms
of the corresponding dictionary images once a new type of
query is received. Whenever a new image is captured, the
IPM goes through all the dictionary images to find best k
matches. CPM handles the communication to other sensors
and the proxy.

SIFT Algorithm: The SIFT implementation we are us-
ing is derived from SIFT++ [27]. This implementation uses
floating point for most calculations, which is exceedingly
slow on the iMote2 (10 - 15 seconds to process a QVGA
image) since it does not have a floating point unit. Ko



et al [14] present an optimized SIFT implementation which
uses fixed point arithmetic and show much faster processing
speed. However, their implementation is specific to the TI
Blackfin processor family. For lack of time, we have been
unable to port this implementation to our node.

Vocabulary Tree: Our implementation of the hierar-
chical k-means algorithm to generate the vocabulary tree is
derived from the libpmk library [15]. Due to memory con-
straints on iMote2, we set the size of the vocabulary tree
to have 64K visterms, i.e. the branching factor = 16, and
depth = 5. By modifying libpmk, we can shrink the vocab-
ulary tree to 3.65MB, but it is still too large to be loaded
completely to memory in iMote2. As described in Section 4,
we split the entire vocabulary tree into a number of smaller
segments. The root segment contains the first three levels
of the tree, and for each leaf node of the root subtree, i.e.,
162 = 256 in our case, there is a segment containing the
last two levels of the tree. After splitting, each chunk is of
size 14KB, which is small enough for iMote2 to read into
memory.

Inverted Index: The inverted index is implemented as a
single file on flash, which is used as an append-only log file.
The inverted index is maintained in memory as long as suf-
ficient memory is available, but once it exceeds the available
memory, some image lists for visterms are written to the log
file. Each of the logged entries is a list of image IDs, and
the file offset to the previous logged entry corresponding to
the same visterm. The offset of the head of this linked list
is maintained in memory in order to access this flash chain.
When the image list corresponding to a visterm needs to be
loaded into memory, the linked list is traversed.

Image Storage and Aging: Each raw image is stored
in a separate .pgm file, its SIFT features are stored in a .key
file, and its visterms are stored in a .vis file. A four-byte
image ID is used to uniquely identify an image. We expect
the number of image that can be captured and stored on
a sensor during its lifetime to be considerably less than the
232, therefore, we do not address the rollover problem in this
implementation. Aging in our system is triggered when the
flash becomes more than 75% full.

Wireless Communication Layer: The wireless com-
munication in our system is based on the TinyOS MAC
driver which is built upon the IEEE 802.15.4 radio proto-
col. This driver provides a simple open/close/read/write
API for implementing wireless communication and is com-
patible with the TinyOS protocols. Since there is no readily
available implementation of a reliable transport protocol for
the iMote2, we implemented a reliable transport layer over
the CC2420 MAC layer. The protocol is simple and has a
fixed window (set to 2 in our implementation) and end-to-
end retransmissions. We note that the contribution of our
work is not a reliable transfer protocol, hence we were not
focused on maximizing the performance of this component.

8. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency of our distributed

image search system on a testbed consisting of 6 iMote2 sen-
sor nodes and a PC as a central proxy. For our trace-driven
experiments, we use a dataset consisting of over 600 im-
ages for our training set. Among them, over three hundred
images are technical book covers, and the other three hun-
dred images contain random objects. The book cover im-
ages are collected from a digital camera with VGA format.

Table 1: Power and Energy breakdown

Component State Power(mW) Per-byte Energy

PXA271 Processor Active 192.3
Idle 137.0

CC2420 radio Active 214.9 46.39 µJ
SD Flash Read 11.2 5.32 nJ

Write 40.3 7.65 nJ
OV camera Active 40.0

The other images are collected from the Internet. Note that
the database images we gathered do not need any further
prossessing, such as cropping or alignment, thanks to the
scale invariant property of SIFT features. During our live
experiments, the iMote2 captures images periodically and
different technical book covers were held up in front of the
iMote2 camera to form the set of captured images.

8.1 Micro-benchmarks
Our first set of microbenchmarks are shown in Table 1,

where we measure the power consumption of the PXA271
processor, the CC2420 radio, the SD card extension board,
and the Enalab camera on our iMote2 platform. Since the
data rates of different components vary, we also list the en-
ergy consumption for some of them. The results show that
the processor consumes significant power on our platform,
hence it is important to optimize the amount of process-
ing. Another key observation is that the difference between
the energy costs of communication and storage is significant.
This is because the SD card consumes an order of magnitude
less power than the CC2420 radio, and has a significantly
higher data rate. The effective data rate of the CC2420 radio
is roughly 46.6Kbps, whereas the data rate of the SD card is
12.5 MBps. Therefore, storing a byte is three orders of mag-
nitude cheaper than transmitting a byte, thereby validating
our extensive use of local storage.

Table 2 benchmarks the running time of the major im-
age processing tasks in our system, including sensing, SIFT
computation, and image compression. All of these tasks in-
volve the processor in active mode. We find that the SIFT
feature extraction from a QVGA image using the SIFT++
library [27] is prohibitively time consuming (roughly 12 sec-
onds). A significant fraction of this overhead is because of
floating point operations performed by the library, which
consumed excessive time on a PXA271 since the processor
does not have a floating point unit. This problem is solved
in the fixed point implementation of SIFT described by Ko
et al [14], who report a run time of roughly 2-2.5 seconds
(shown in Table 2). Since the inflated SIFT processing time
that we measure is an artifact of the implementation, we use
the fixed point SIFT run-time numbers for the rest of this
paper. The table also shows the the time required for lossy
and lossless compression on the iMote2, which we perform
before transmitting an image.

Table 3 reports the memory usage of major components
in our system. The arm-linux on an iMote2 takes about
half of the total memory, and the image capture and SIFT
processing components take about a quarter of the mem-
ory. As a result of our optimizations, the inverted index
and vocabulary tree are highly compact and consume only
a few hundred kilobytes of memory. The dictionary file for



Table 2: Image processing breakdown
Operation Time(s) Energy(J)

Sensing(Image Capture) 0.7 0.14
Sift (floating pt) 12.7 2.44
Sift(fixed pt) [14] 2.5 0.48
Compress to JPEG (ratio 0.33) 1.2 0.23
Compress to GZIP (ratio 0.61) 0.7 0.14

Table 3: Breakdown of memory usage
Task Memory (MB)

Arm Linux 14.3
Image Capture 1.9
SIFT 7.6
Inverted Index 0.75
Vocabulary Tree 0.2
Dictionary File 0.1
Processing Modules 0.7

handling continuous queries corresponds to the images in
memory.

8.2 Evaluation of Vocabulary Tree
In this section, we evaluate the performance of our vocab-

ulary tree implementation and show the benefits of parti-
tioning and batching to optimize lookup overhead.

8.2.1 Impact of Batched Lookup
We evaluate the impact of batched lookup on a vocabu-

lary tree with 64K visterms, which has a depth of 4 and a
branching factor of 16. The vocabulary tree is partitioned
into 257 chunks including one root subtree and 256 second-
level subtrees. Each of these chunks is around 20KB. We
vary the batch size from a single image, which is a batch of
roughly 200 SIFT features, to ten images, i.e. roughly 2000
SIFT features.

Figure 7 demonstrates the benefit of batched lookup. Note
that the y-axis is in log scale and shows the time to lookup
visterms for each image. The upper line shows the refer-
ence time consumed for lookup when no batching is used,
i.e. when each SIFT feature is looked up independently,
and the lower plot shows the effect of batching on per-image
lookup time as the number of batched images increases. As
can be seen, even batching the SIFT features of a single
image reduces the lookup time by an order of magnitude.
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Figure 7: Impact of batching on lookup time.

Further batching reduces the lookup time even more, and
when the batch size increases from 1 to 10 images, the time
to lookup an image reduces from 2.8 secs to 1.8 secs. This
shows that batched lookups, and the use of partitioned vo-
cabulary trees has considerable performance benefit. The
drawback of buffering is the delay since images are processed
until a batch is full. It is not hard to observe that the av-
erage delay of each image is in proportion to the batch size,
if the images are periodically captured. However, for the
applications that are not in strictly realtime manner, the in-
fluence of delay can be overcome by choosing a proper buffer
size.

8.2.2 Impact of Vocabulary Size
The size of the vocabulary tree has a significant impact

on both the accuracy as well as the performance of search.
From an accuracy perspective, the greater the number of
visterms in a vocabulary tree, the better is the ability of
the search engine to distinguish between different features.
From a performance perspective, larger vocabularies mean
greater time and energy consumed for both lookup from
flash, as well as for dynamic reprogramming. To demon-
strate this tradeoff between accuracy and performance, we
evaluate three vocabulary trees of different sizes constructed
from our training set. The accuracy and lookup numbers are
averaged over twenty search queries.

Table 4 reports the impact of vocabulary size on three
metrics: the lookup time per-image for converting SIFT fea-
ture to visterms, the search accuracy and the time to repro-
gram the vocabulary tree over the radio. In our evaluation,
a matched result is defined as one of the top-k ranking list
is correct, and accuracy is defined as the fraction of queries
that have matched search results. We let k = 1,3,5 respec-
tively in our experiment. The results show that the lookup
time increases with increasing vocabulary size as expected,
with over a second difference between lookup times for the
vocabulary tree with 10K vs 83K nodes. The search accu-
racy increases with the size of the vocabulary tree as well.
As the size of the vocabulary tree grows from 10K to 83K
nodes, the accuracy increases by 15% from 0.73 to 0.88. In
fact, the greatest gains in accuracy are made until the vo-
cabulary tree becomes roughly 64K in size. Increasing the
size of the vocabulary tree beyond 83K has a very small ef-
fect on the accuracy — a vocabulary tree with 100K nodes
has an accuracy of 90% but larger trees give us no further
improvement because of our small training set.

Table 4 also validates a key design goal — the ability to
dynamically reprogram the sensor search engine with new
vocabulary trees. The last column in the table shows the
reprogramming time in the case of a one-hop network. A
small sized vocabulary tree with 10K nodes is roughly 750
KB in size and can be reprogrammed in less than three min-
utes, which is not very expensive energy-wise and is feasible
in most sensor network deployments. Even a larger vocabu-
lary tree may be feasible for reprogramming, since trees with
64K and 83K nodes take about 20 minutes to reprogram.

8.3 Evaluation of Inverted Index
Having discussed the performance of the vocabulary tree,

we turn to evaluating the core data structure used during
search, the inverted index. In particular, we validate our use
of the top-k list for determining which visterm sequences to
save to flash. The inverted index is given approximately



Table 4: Impact of size of vocabulary tree.
#Visterms Branching Depth Size Lookup top-most top-3 top-5 Response

Factor (MB) Time(s) Accuracy Accuracy Accuracy Time(min.)

10000 10 4 0.76 2.01 0.73 0.84 0.87 2.15
65536 16 4 4.92 2.85 0.82 0.86 0.87 14.08
83521 17 4 6.26 3.16 0.84 0.87 0.92 17.91
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Figure 8: Inverted index performance

1MB of memory, which is completely used once about 150
images are stored on the local sensor node. Beyond this
point, further insertions result in writes of the inverted in-
dex to flash. The vocabulary tree size that we use in this
experiment has 64K visterms.

We compare two methods of storing the inverted index
in this experiment. The first technique, labeled “Random”,
is one where when the size of the inverted index increases
beyond the memory threshold, a random set of 100 visterms
are chosen, and their image lists are saved to flash. The
second scheme, called “Top-100” is one where the indexes
of the hundred longest visterm chains are maintained in a
separate array in memory, and when the memory threshold
is reached, the visterm lists with entries in this array are
flushed.

Figure 8(a) reports the average time per image to update
the inverted file using Random and top-100 methods. It
can be seen that the update time using the top-100 method
is less than half of the time for the Random scheme when
there are roughly 200 images in the database and the gains
reduce to about 25% when there are around 600 images. The
diminishing gains with larger number of images is because
the average length of the image list for each visterm increases
with more images, therefore, even the Random list has a
reasonable chance of writing a long list to flash.

Figure 8(b) presents the search time on the inverted file
stored by Random and top-100 methods respectively. As the
size of the inverted file grows, the search time also increases.
However, the total time for search grows only up to a couple
of seconds even for a reasonably large local image dataset
with 600 images. The results also shows that the top-100
has less search time than random since it needs to read fewer
times from flash during each search operation, although the
benefits are only 10-15%.

8.4 Evaluation of Query Performance
We now evaluate the performance of our system for ad-hoc

queries and continuous queries.

8.4.1 Benefits of Visterm Query
One of the optimizations in our search system is the abil-

Table 5: Energy cost of querying (J)
Query Type Communication Computation Total

Image query 3.5 0.52 4.02
SIFT query 2.45 0.04 2.49
Visterm query 0.01 0 0.01

ity to query by visterm i.e. instead of transmitting an entire
image to a sensor, we only need to transmit visterms of the
image. In this experiment, we compare the energy cost of
visterm-based querying against two other variants. The first
is an “Image query”, where the entire image is transmitted
to the sensor, which generates SIFT features and visterms
from the query image locally, and performs local match-
ing. The second scheme, labeled “SIFT query”, corresponds
to the case where the SIFT features for the query image
are transmitted to the sensor, and the sensor generates vis-
terms locally and performs matching. Here, we only mea-
sure the total energy cost of transmitting and interpreting
the query, and do not include the cost of search to generate
query results, which is common to all schemes. As shown
in Table 5, transmitting only query visterms reduces the to-
tal cost of querying by roughly 20x and 10x in comparison
with schemes that transmits the entire image or the SIFT
features respectively. Much of this improvement is due to
the fact that visterms are extremely small in comparison to
transmitting the full image or SIFT features.

8.4.2 Ad-hoc vs Continuous Query
Ad-hoc queries and continuous queries are handled differ-

ently as discussed in Section 6. Both queries require im-
age capture, SIFT feature extraction, and visterm compu-
tation. After this step, the two schemes diverge. Ad-hoc
query processing requires that an inverted file is updated
when an image is captured, and a search is performed over
the database images when a query is received. A continuous
query is an image-to-image match where the captured im-
age is matched against the images of interest for the active
continuous queries.

Table 6 provides a breakdown of the energy cost of these
components. The batch size used for the vocabulary tree
is 10 images. As can be seen, our optimizations result in
tremendously reduced visterm computation and search costs.
Both continuous and ad-hoc queries consume less than 0.25
Joules per image. In fact, the cost is dominated by SIFT
features computation (we address this in Section 8.6). Thus,
both types of queries can be cheaply handled in our system.

8.5 Distributed Search Performance
Having evaluated several individual components of our

search engine, we turn to an end-to-end performance eval-
uation of search in this section. In each experiment, the
search system runs on the iMote2 testbed for an hour, and



Table 6: Energy cost of capturing and searching an
image (J)

Component Task Energy (J)
Image Capture Capture Image 0.04
Image Representa-
tion

Compute SIFT Feature 0.48

Compute Visterm 0.04
Ad-hoc Querying Update Inverted File 0.02

Search 0.23
Continuous Query-
ing

Match Visterm Histogram 0.16

Figure 9: Total Energy cost of four mechanisms

the image capture rate is set to 30 seconds. The query rate
is varied for different experiments as specified. The results
show the aggregate numbers for different operations over
this duration.

8.5.1 Push vs Pull
We compare two approaches to design a distributed search

engine for sensor networks — a push-based approach vs a
pull-based approach. There are three types of push-based
approaches: (a) all captured images are transmitted to the
proxy, in which case there is no need for any computation
or storage at the local sensor, (b) when SIFT features are
transmitted, and only the SIFT processing is performed at
the sensor, and (c) when visterms are transmitted, there-
fore both SIFT processing and vocabulary tree lookup are
performed locally. In a pull-based approach, the visterms
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Figure 10: A comparison of collect visterms and
query by visterms

corresponding to the query are transmitted to the sensors,
and the query is locally processed at each sensor in the man-
ner described in Section 6.

Figure 9 provides a breakdown of the communication,
computation, and storage overhead for the four schemes —
“Collect image”, “Collect features” and “Collect Visterms”
are three push-based schemes, and “Query by Visterms” is
the in-network search technique that we use. The query
rate is fixed to four queries an hour and the sampling rate
is one image per 30 seconds. As can be seen, the computa-
tion overhead is highest for the query-by-visterms scheme,
but the communication overhead is tremendously reduced;
storage consumes only a small fraction of the overall cost.
A query-by-visterms scheme consumes only a fifth of the
energy consumed by an approach that sends all images to
the proxy, and only a third of a scheme that sends SIFT
features.

Figure 9 also shows that the“Collect Visterms”and“Query
by Visterms” schemes have roughly equivalent performance.
We now provide a more fine-grained comparison between the
two schemes in Figure 10. A “Collect Visterms” scheme con-
sumes more communication overhead for transmitting vis-
terms of each captured image but does not incur the com-
putation overhead to maintain, update, or lookup the in-
verted index for a query. The results show that unless the
query rate is extremely high (more than one query/min),
the query-by-visterms approach is better than a collect vis-
terms approach. However, we also see that the difference
between the two schemes is only roughly 15% since visterms
are very compact and not very expensive to communicate.
Since both schemes are extremely efficient, the choice be-
tween transmitting visterms to the proxy and searching at
a proxy vs transmitting query visterms to the sensor and
searching at the sensor depends on the needs of the applica-
tion. Our system provides the capability to design a sensor
network search engine using either of these methods.

Notice that our evaluation is carried out on the iMote2
platform where the CPU consumes almost the same power as
the radio(see Table 1). If we apply our paradigm to a compu-
tation cheap platform, we expect that the benefit of querying
by visterms would give us even higher benefit. Meanwhile,
querying by visterms is a more flexible paradigm than col-
lecting visterms since it doesn’t need extra infrastructure to
provide query processing and data storage functionality. For
instance, sensor nodes can directly search with each other
using a “querying by visterms” paradigm without the need
for a central proxy.

8.5.2 Multi-hop Latency
So far, our evaluation has only considered a single hop

sensor network. We now evaluate the latency incurred for
search in a multi-hop sensor network. We place five iMote2
nodes along a linear multi-hop chain in this experiment, and
configure the topology by using a static forwarding table at
each node. The total round trip latency for a user search
includes: (a) the time taken by the proxy to process the
query image and generate visterms, (b) latency to transmit
query visterms to the destination mote via a multihop net-
work, (c) local search on the mote, (d) transmission of the
local ranked list of query results, (e) merging the individ-
ual ranked lists at the proxy, and finally (f) transmission of
the global ranked list to the sensors so that they can trans-
mit thumbnails or full images. We do not include the time



 0

 1

 2

 3

 4

 5

 1  2  3  4

La
te

nc
y(

s)

Number of Hops

Figure 11: Round trip latency in multihop environ-
ment

 0

 2

 4

 6

 8

 10

 12

 14

 5  10  15  20  25  30  35

S
IF

T
 r

un
-t

im
e(

s)

Threshold(*0.001)

(a) Run-time(s)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30  35

M
at

ch
in

g 
A

cc
ur

ac
y

Threshold(*0.001)

(b) Accuracy

Figure 12: Impact of tuning SIFT threshold

taken to transmit the thumbnails or images in this exper-
iment, and only take into account the additional overhead
resulting from performing our iterative search procedure in-
volving multiple rounds between the proxy and the sensor.
The maximum size of a ranked list that can be transmitted
by any sensor is set to five.

Figure 11 shows the round trip latency over multiple hops
for a single query. As expected, the round trip latency in-
creases as the number of hop grows, however, even for a
four hop network, the overall search latency is only around
4 seconds, which we believe is acceptable given the increased
energy efficiency.

In our evaluation, we broadcast queries to all the six nodes
and send back visterms to proxy. In a large scale network,
queries usually have other constraints, for instance, they
may be restricted to specific geometric regions, or to a spe-
cific time frame. By adopting query processing algorithms,
we can direct queries to a subset of nodes thus reduce the
overhead. Also we can adopt in-network aggregation algo-
rithm to reduce the energy cost of sending back visterms
from sensors to proxy. We leave this aspect for future work.

8.6 Tuning SIFT Performance
As shown in Table 6, our optimizations of visterm extrac-

tion and search dramatically reduce the energy cost of these
components, leaving SIFT processing as the primary energy
consumer in our system. A key parameter in SIFT is the
threshold that controls the sensitivity of SIFT features and
we explore how to optimize it. Larger thresholds lead to
fewer extracted features and vice-versa. In practice, match-
ing accuracy increases with the number of features. The
default threshold value in SIFT is 0.007, which correspond-
ing to approximately 200 features for a QVGA image of a
typical book cover.

Figure 12(a) shows the SIFT run-time (we use the float-

ing point version since we do not have the optimized version)
for different thresholds, and Figure 12(b) shows the corre-
sponding image matching accuracy. The graphs show that
as the threshold increases to 0.35, the running time of the
algorithm drops by a third but the matching accuracy drops
by around 30% as well. A reasonable operating region for
the algorithm is to use a threshold between 0.005 and 0.02,
which reduces SIFT processing time by about 2 seconds,
while the accuracy is above 80%. Since these benefits are
solely due to the reduction in the number of features, we be-
lieve that similar gains can be obtained with the fixed point
version of SIFT.

9. RELATED WORK
In this section, we review closely related prior work on

flash-based storage structures, camera sensor networks and
distributed search and image recognition.

Flash-based Index Structures: There have been a
number of recent efforts at designing flash-based storage sys-
tems and data structures including FlashDB [23], Capsule
[20], ELF [4], MicroHash [33], and others. Among these,
the closest are FlashDB, MicroHash and Capsule: FlashDB
presents an optimized B-tree for flash, MicroHash is an op-
timized Hash Table for flash, and Capsule provides a library
of common storage objects (stack, queue, list, array, file) for
NAND flash. The similarities between our techniques and
the approaches used by prior work is limited to the use of
log-structured storage. Other aspects of our data structures
such as the sorted and batched access of the vocabulary tree,
and exploiting the Zipf distribution of the visterms are spe-
cific to our system.

Camera Sensor Networks: Much research on camera
sensor networks has focused on the problem of image recog-
nition, activity recognition (e.g.: [17]), tracking and surveil-
lance (e.g. [10]). These systems are designed with specific
applications in mind. In our design, a distributed camera
search engine provides the ability for users to pose a broad
set of queries thereby enabling the design of more general-
purpose sensor networks. While our prototype focuses on
any type of books, one can easily change this to other kinds
of similar object and scenes provided appropriate features
are available for that object or scene. SIFT features, are
good for approximately planar surfaces like books and build-
ings [25] and may be even appropriate for many objects
where a portion of the image is locally planar. SIFT fea-
tures are robust to factors like viewpoint variation, lighting,
shadows, sensor variation and sensor resolution. Further, ro-
bustness is achieved using a ranking framework in our case.
There has also been work on optimizing SIFT performance
in the context of sensor platforms [14]. However, their focus
is on a specialized image recognition problem rather than
the design of a search engine.

Search and Recognition: While there has been an
enormous amount of work on image search in resource-rich
server-class systems, image search on resource-constrained
embedded systems has received very limited attention. The
closest work is on text search in a distributed sensor net-
work [31, 32]. However, their work assumes that users can
annotate their data to generate searchable metadata. In
contrast, our system is completely automated based on em-
bedded object recognition techniques and does not require
human endeavor in the loop.



10. DISCUSSION AND CONCLUSION
In this paper, we presented the design and implementa-

tion of a distributed search engine for wireless sensor net-
works, and showed that such a design is energy-efficient, and
accurate. Our key contributions were five-fold. First, we de-
signed a distributed image search system which represents
images using a compact and efficient vocabulary of visterms.
Second, we designed a buffered vocabulary tree index struc-
ture for flash memory that uses batched lookups together
with a segmented tree to minimize lookup time. Third, we
designed a log-based inverted index that optimizes for inser-
tion by storing data in a log on flash, and optimizes lookup
by writing longest sequences in flash. Fourth, we designed
a distributed merging scheme that can merge scores across
multiple sensor nodes. Finally, we showed using a full im-
plementation of our system on a network of iMote2 camera
sensor nodes that our system is up to five times more effi-
cient than alternate designs for camera sensor networks.

Our work on distributed search engines opens up a num-
ber of new opportunities for sensor network research. We
seek to extend our work to design a more general multi-
modal sensor search engine that can enable search across
acoustic, image, vibration, weather or other sensor modal-
ities. We also seek to explore new image representations
that are suitable for habitat monitoring applications of sen-
sor networks. One of the limitations of the SIFT features
that we use in our work is that it works best when the scene
or object is approximately planar. For example, the use of
SIFT for extracting features is harder when there is less vari-
ation in image intensities - as for example on the surface of a
uniformly colored bird. One of our areas of future work will
involve new features that can be used for habitat monitoring
in sensor networks.
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