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ABSTRACT

Archival storage of sensor data is necessary for applications that query,
mine, and analyze such data for interesting features and trends. We argue
that existing storage systems are designed primarily for flat hierarchies of
homogeneous sensor nodes and do not fully exploit the multi-tier nature
of emerging sensor networks, where an application can comprise tens of
tethered proxies, each managing tens to hundreds of untethered sensors.
We presentTSAR, a fundamentally different storage architecture that en-
visions separation of data from metadata by employing local archiving at
the sensors and distributed indexing at the proxies. At the proxy tier, TSAR
employs a novel multi-resolution ordered distributed index structure, the
Interval Skip Graph, for efficiently supporting spatio-temporal and value
queries. At the sensor tier, TSAR supports energy-aware adaptive summa-
rization that can trade off the cost of transmitting metadata to the proxies
against the overhead of false hits resulting from querying a coarse-grain in-
dex. We implement TSAR in a two-tier sensor testbed comprising Stargate-
based proxies and Mote-based sensors. Our experiments demonstrate the
benefits and feasibility of using our energy-efficient storage architecture in
multi-tier sensor networks.

Categories and Subject Descriptors:C.2.4 [Computer – Com-
munication Networks]: Distributed Systems
General Terms: Algorithms, performance, experimentation.

Keywords: Wireless sensor networks, archival storage, indexing

methods.

1. Introduction

1.1 Motivation
Many different kinds of networked data-centric sensor applica-

tions have emerged in recent years. Sensors in these applications
sense the environment and generate data that must be processed,
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filtered, interpreted, and archived in order to provide a useful in-
frastructure to its users. To achieve its goals, a typical sensor ap-
plication needs access to both live and past sensor data. Whereas
access to live data is necessary in monitoring and surveillance ap-
plications, access to past data is necessary for applications such as
mining of sensor logs to detect unusual patterns, analysis of histor-
ical trends, and post-mortem analysis of particular events. Archival
storage of past sensor data requires a storage system, the key at-
tributes of which are: where the data is stored, whether it is indexed,
and how the application can access this data in an energy-efficient
manner with low latency.

There have been a spectrum of approaches for constructing sen-
sor storage systems. In the simplest, sensors stream data or events
to a server for long-term archival storage [3], where the server of-
ten indexes the data to permit efficient access at a later time. Since
sensors may be several hops from the nearest base station, network
costs are incurred; however, once data is indexed and archived, sub-
sequent data accesses can be handled locally at the server without
incurring network overhead. In this approach, the storage is cen-
tralized, reads are efficient and cheap, while writes are expensive.
Further, all data is propagated to the server, regardless of whether
it is ever used by the application.

An alternate approach is to have each sensor store data or events
locally (e.g., in flash memory), so that all writes are local and incur
no communication overheads. A read request, such as whether an
event was detected by a particular sensor, requires a message to
be sent to the sensor for processing. More complex read requests
are handled by flooding. For instance, determining if an intruder
was detected over a particular time interval requires the request to
be flooded to all sensors in the system. Thus, in this approach,
the storage is distributed, writes are local and inexpensive, while
reads incur significant network overheads. Requests that require
flooding, due to the lack of an index, are expensive and may waste
precious sensor resources, even if no matching data is stored at
those sensors. Research efforts such as Directed Diffusion [17]
have attempted to reduce these read costs, however, by intelligent
message routing.

Between these two extremes lie a number of other sensor storage
systems with different trade-offs, summarized in Table 1. The ge-
ographic hash table (GHT) approach [24, 26] advocates the use of
an in-network index to augment the fully distributed nature of sen-
sor storage. In this approach, each data item has a key associated
with it, and a distributed or geographic hash table is used to map
keys to nodes that store the corresponding data items. Thus, writes
cause data items to be sent to the hashed nodes and also trigger up-
dates to the in-network hash table. A read request requires a lookup
in the in-network hash table to locate the node that stores the data



item; observe that the presence of an index eliminates the need for
flooding in this approach.

Most of these approaches assume a flat, homogeneous archi-
tecture in which every sensor node is energy-constrained. In this
paper, we propose a novel storage architecture calledTSAR1 that
reflects and exploits the multi-tier nature of emerging sensor net-
works, where the application is comprised of tens of tethered sen-
sor proxies (or more), each controlling tens or hundreds of unteth-
ered sensors. TSAR is a component of our PRESTO [8] predictive
storage architecture, which combines archival storage with caching
and prediction. We believe that a fundamentally different storage
architecture is necessary to address the multi-tier nature of future
sensor networks. Specifically, the storage architecture needs to ex-
ploit the resource-rich nature of proxies, while respecting resource
constraints at the remote sensors. No existing sensor storage archi-
tecture explicitly addresses this dichotomy in the resource capabil-
ities of different tiers.

Any sensor storage system should also carefully exploit current
technology trends, which indicate that the capacities of flash mem-
ories continue to rise as per Moore’s Law, while their costs continue
to plummet. Thus it will soon be feasible to equip each sensor with
1 GB of flash storage for a few tens of dollars. An even more com-
pelling argument is the energy cost of flash storage, which can be
as much as two orders of magnitude lower than that for commu-
nication. Newer NAND flash memories offer very low write and
erase energy costs — our comparison of a 1GB Samsung NAND
flash storage [16] and the Chipcon CC2420 802.15.4 wireless radio
[4] in Section 6.2 indicates a 1:100 ratio in per-byte energy cost be-
tween the two devices, even before accounting for network protocol
overheads. These trends, together with the energy-constrained na-
ture of untethered sensors, indicate that local storage offers a viable,
energy-efficient alternative to communication in sensor networks.

TSAR exploits these trends by storing data or events locally on
the energy-efficient flash storage at each sensor. Sensors send con-
cise identifying information, which we termmetadata, to a nearby
proxy; depending on the representation used, this metadata may be
an order of magnitude or more smaller than the data itself, impos-
ing much lower communication costs. The resource-rich proxies
interact with one another to construct a distributed index of the
metadata reported from all sensors, and thus an index of the as-
sociated data stored at the sensors. This index provides a unified,
logical view of the distributed data, and enables an application to
query and read past data efficiently — the index is used to pin-
point all data that match a read request, followed by messages to
retrieve that data from the corresponding sensors. In-network in-
dex lookups are eliminated, reducing network overheads for read
requests. This separation of data, which is stored at the sensors,
and the metadata, which is stored at the proxies, enables TSAR to
reduce energy overheads at the sensors, by leveraging resources at
tethered proxies.

1.2 Contributions
This paper presents TSAR, a novel two-tier storage architecture

for sensor networks. To the best of our knowledge, this is the first
sensor storage system that is explicitly tailored for emerging multi-
tier sensor networks. Our design and implementation of TSAR has
resulted in four contributions.

At the core of the TSAR architecture is a novel distributed index
structure based on interval skip graphs that we introduce in this
paper. This index structure can store coarse summaries of sensor
data and organize them in an ordered manner to be easily search-

1TSAR: Tiered Storage ARchitecture for sensor networks.

able. This data structure hasO(log n) expected search and update
complexity. Further, the index provides a logically unified view of
all data in the system.

Second, at the sensor level, each sensor maintains a local archive
that stores data on flash memory. Our storage architecture is fully
stateless at each sensor from the perspective of the metadata index;
all index structures are maintained at the resource-rich proxies, and
only direct requests or simple queries on explicitly identified stor-
age locations are sent to the sensors. Storage at the remote sensor
is in effect treated as appendage of the proxy, resulting in low im-
plementation complexity, which makes it ideal for small, resource-
constrained sensor platforms. Further, the local store is optimized
for time-series access to archived data, as is typical in many appli-
cations. Each sensor periodically sends a summary of its data to a
proxy. TSAR employs a novel adaptive summarization technique
that adapts the granularity of the data reported in each summary to
the ratio of false hits for application queries. More fine grain sum-
maries are sent whenever more false positives are observed, thereby
balancing the energy cost of metadata updates and false positives.

Third, we have implemented a prototype of TSAR on a multi-tier
testbed comprising Stargate-based proxies and Mote-based sensors.
Our implementation supports spatio-temporal, value, and range-
based queries on sensor data.

Fourth, we conduct a detailed experimental evaluation of TSAR
using a combination of EmStar/EmTOS [10] and our prototype.
While our EmStar/EmTOS experiments focus on the scalability of
TSAR in larger settings, our prototype evaluation involves latency
and energy measurements in a real setting. Our results demonstrate
the logarithmic scaling property of the sparse skip graph and the
low latency of end-to-end queries in a duty-cycled multi-hop net-
work .

The remainder of this paper is structured as follows. Section 2
presents key design issues that guide our work. Section 3 and 4
present the proxy-level index and the local archive and summariza-
tion at a sensor, respectively. Section 5 discusses our prototype im-
plementation, and Section 6 presents our experimental results. We
present related work in Section 7 and our conclusions in Section 8.

2. Design Considerations

In this section, we first describe the various components of a
multi-tier sensor network assumed in our work. We then present a
description of the expected usage models for this system, followed
by several principles addressing these factors which guide the de-
sign of our storage system.

2.1 System Model
We envision a multi-tier sensor network comprising multiple tiers

— a bottom tier of untethered remote sensor nodes, a middle tier of
tethered sensor proxies, and an upper tier of applications and user
terminals (see Figure 1).

The lowest tier is assumed to form a dense deployment of low-
power sensors. A canonical sensor node at this tier is equipped
with low-power sensors, a micro-controller, and a radio as well as
a significant amount of flash memory (e.g., 1GB). The common
constraint for this tier is energy, and the need for a long lifetime
in spite of a finite energy constraint. The use of radio, processor,
RAM, and the flash memory all consume energy, which needs to
be limited. In general, we assume radio communication to be sub-
stantially more expensive than accesses to flash memory.

The middle tier consists of power-rich sensor proxies that have
significant computation, memory and storage resources and can use



Table 1: Characteristics of sensor storage systems
System Data Index Reads Writes Order preserving
Centralized store Centralized Centralized index Handled at store Send to store Yes
Local sensor store Fully distributed No index Flooding, diffusion Local No
GHT/DCS [24] Fully distributed In-network index Hash to node Send to hashed node No
TSAR/PRESTO Fully distributed Distributed index at proxies Proxy lookup + sensor query Local plus index update Yes
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Figure 1: Architecture of a multi-tier sensor network.

these resources continuously. In urban environments, the proxy tier
would comprise a tethered base-station class nodes (e.g., Crossbow
Stargate), each with with multiple radios—an 802.11 radio that
connects it to a wireless mesh network and a low-power radio (e.g.
802.15.4) that connects it to the sensor nodes. In remote sensing
applications [10], this tier could comprise a similar Stargate node
with a solar power cell. Each proxy is assumed to manage several
tens to hundreds of lower-tier sensors in its vicinity. A typical sen-
sor network deployment will contain multiple geographically dis-
tributed proxies. For instance, in a building monitoring application,
one sensor proxy might be placed per floor or hallway to monitor
temperature, heat and light sensors in their vicinity.

At the highest tier of our infrastructure are applications that query
the sensor network through a query interface[20]. In this work, we
focus on applications that require access to past sensor data. To
support such queries, the system needs to archive data on a persis-
tent store. Our goal is to design a storage system that exploits the
relative abundance of resources at proxies to mask the scarcity of
resources at the sensors.

2.2 Usage Models
The design of a storage system such as TSAR is affected by the

queries that are likely to be posed to it. A large fraction of queries
on sensor data can be expected to be spatio-temporal in nature.
Sensors provide information about the physical world; two key at-
tributes of this information arewhena particular event or activity
occurred andwhereit occurred. Some instances of such queries in-
clude the time and location of target or intruder detections (e.g., se-

curity and monitoring applications), notifications of specific types
of events such as pressure and humidity values exceeding a thresh-
old (e.g., industrial applications), or simple data collection queries
which request data from a particular time or location (e.g., weather
or environment monitoring).

Expected queries of such data include those requesting ranges
of one or more attributes; for instance, a query for all image data
from cameras within a specified geographic area for a certain pe-
riod of time. In addition, it is often desirable to support efficient
access to data in a way that maintains spatial and temporal order-
ing. There are several ways of supporting range queries, such as
locality-preserving hashes such as are used in DIMS [18]. How-
ever, the most straightforward mechanism, and one which naturally
provides efficient ordered access, is via the use oforder-preserving
data structures. Order-preserving structures such as the well-known
B-Tree maintain relationships between indexed values and thus al-
low natural access to ranges, as well as predecessor and successor
operations on their key values.

Applications may also posevalue-basedqueries that involve de-
termining if a valuev was observed at any sensor; the query re-
turns a list of sensors and the times at which they observed this
value. Variants of value queries involve restricting the query to a
geographical region, or specifying a range(v1, v2) rather than a
single valuev. Value queries can be handled by indexing on the
values reported in the summaries. Specifically, if a sensor reports
a numerical value, then the index is constructed on these values. A
search involves finding matching values that are either contained in
the search range(v1, v2) or match the search valuev exactly.

Hybrid value and spatio-temporal queries are also possible. Such
queries specify a time interval, a value range and a spatial region
and request all records that match these attributes – “find all in-
stances where the temperature exceeded 100o F at locationR dur-
ing the month of August”. These queries require an index on both
time and value.

In TSAR our focus is on range queries on value or time, with
planned extensions to include spatial scoping.

2.3 Design Principles
Our design of a sensor storage system for multi-tier networks is

based on the following set of principles, which address the issues
arising from the system and usage models above.

• Principle 1: Store locally, access globally:Current tech-
nology allows local storage to be significantly more energy-
efficient than network communication, while technology
trends show no signs of erasing this gap in the near future.
For maximum network life a sensor storage system should
leverage the flash memory on sensors to archive data locally,
substituting cheap memory operations for expensive radio
transmission. But without efficient mechanisms for retrieval,
the energy gains of local storage may be outweighed by com-
munication costs incurred by the application in searching for
data. We believe that if the data storage system provides
the abstraction of a single logical store to applications, as



does TSAR, then it will have additional flexibility to opti-
mize communication and storage costs.

• Principle 2: Distinguish data from metadata:Data must
be identified so that it may be retrieved by the application
without exhaustive search. To do this, we associatemeta-
data with each data record — data fields of known syntax
which serve as identifiers and may be queried by the storage
system. Examples of this metadata are data attributes such as
location and time, or selected or summarized data values. We
leverage the presence of resource-rich proxies to index meta-
data for resource-constrained sensors. The proxies share this
metadata index to provide a unified logical view of all data in
the system, thereby enabling efficient, low-latency lookups.
Such a tier-specific separation of data storage from metadata
indexing enables the system to exploit the idiosyncrasies of
multi-tier networks, while improving performance and func-
tionality.

• Principle 3: Provide data-centric query support:In a sensor
application the specific location (i.e. offset) of a record in a
stream is unlikely to be of significance, except if it conveys
information concerning the location and/or time at which the
information was generated. We thus expect that applications
will be best served by a query interface which allows them
to locate data by value or attribute (e.g. location and time),
rather than a read interface for unstructured data. This in turn
implies the need to maintain metadata in the form of an index
that provides low cost lookups.

2.4 System Design
TSAR embodies these design principles by employing local stor-

age at sensors and a distributed index at the proxies. The key fea-
tures of the system design are as follows:

In TSAR, writes occur at sensor nodes, and are assumed to con-
sist of both opaque data as well as application-specificmetadata.
This metadata is a tuple of known types, which may be used by the
application to locate and identify data records, and which may be
searched on and compared by TSAR in the course of locating data
for the application. In a camera-based sensing application, for in-
stance, this metadata might include coordinates describing the field
of view, average luminance, and motion values, in addition to basic
information such as time and sensor location. Depending on the
application, this metadata may be two or three orders of magnitude
smaller than the data itself, for instance if the metadata consists of
features extracted from image or acoustic data.

In addition to storing data locally, each sensor periodically sends
a summary of reported metadata to a nearby proxy. The summary
contains information such as the sensor ID, the interval(t1, t2)
over which the summary was generated, a handle identifying the
corresponding data record (e.g. its location in flash memory),
and a coarse-grain representation of the metadata associated with
the record. The precise data representation used in the summary
is application-specific; for instance, a temperature sensor might
choose to report the maximum and minimum temperature values
observed in an interval as a coarse-grain representation of the ac-
tual time series.

The proxy uses the summary to construct an index; the index
is global in that it stores information from all sensors in the sys-
tem and it is distributed across the various proxies in the system.
Thus, applications see a unified view of distributed data, and can
query the index at any proxy to get access to data stored at any
sensor. Specifically, each query triggers lookups in this distributed

index and the list of matches is then used to retrieve the correspond-
ing data from the sensors. There are several distributed index and
lookup methods which might be used in this system; however, the
index structure described in Section 3 is highly suited for the task.

Since the index is constructed using a coarse-grain summary,
instead of the actual data, index lookups will yield approximate
matches. The TSAR summarization mechanism guarantees that in-
dex lookups will never yieldfalse negatives- i.e. it will never miss
summaries which include the value being searched for. However,
index lookups may yieldfalse positives, where a summary matches
the query but when queried the remote sensor finds no matching
value, wasting network resources. The more coarse-grained the
summary, the lower the update overhead and the greater the frac-
tion of false positives, while finer summaries incur update overhead
while reducing query overhead due to false positives. Remote sen-
sors may easily distinguish false positives from queries which result
in search hits, and calculate the ratio between the two; based on this
ratio, TSAR employs a novel adaptive technique that dynamically
varies the granularity of sensor summaries to balance the metadata
overhead and the overhead of false positives.

3. Data Structures

At the proxy tier, TSAR employs a novel index structure called
the Interval Skip Graph, which is an ordered, distributed data struc-
ture for finding all intervals that contain a particular point or range
of values. Interval skip graphs combine Interval Trees [5], an
interval-based binary search tree, with Skip Graphs [1], a ordered,
distributed data structure for peer-to-peer systems [13]. The re-
sulting data structure has two properties that make it ideal for sen-
sor networks. First, it hasO(log n) search complexity for access-
ing the first interval that matches a particular value or range, and
constant complexity for accessing each successive interval. Sec-
ond, indexing of intervals rather than individual values makes the
data structure ideal for indexing summaries over time or value.
Such summary-based indexing is a more natural fit for energy-
constrained sensor nodes, since transmitting summaries incurs less
energy overhead than transmitting all sensor data.

Definitions: We assume that there areNp proxies andNs sen-
sors in a two-tier sensor network. Each proxy is responsible for
multiple sensor nodes, and no assumption is made about the num-
ber of sensors per proxy. Each sensor transmits interval summaries
of data or events regularly to one or more proxies that it is associ-
ated with, where intervali is represented as[lowi, highi]. These
intervals can correspond to time or value ranges that are used for
indexing sensor data. No assumption is made about the size of an
interval or about the amount of overlap between intervals.

Range queries on the intervals are posed by users to the network
of proxies and sensors; each queryq needs to determine all index
values that overlap the interval[lowq, highq]. The goal of the inter-
val skip graph is to index all intervals such that the set that overlaps
a query interval can be located efficiently. In the rest of this section,
we describe the interval skip graph in greater detail.

3.1 Skip Graph Overview
In order to inform the description of the Interval Skip Graph, we

first provide a brief overview of the Skip Graph data structure; for
a more extensive description the reader is referred to [1]. Figure 2
shows a skip graph which indexes 8 keys; the keys may be seen
along the bottom, and above each key are the pointers associated
with that key. Each data element, consisting of a key and its as-
sociated pointers, may reside on a different node in the network,
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and pointers therefore identify both a remote node as well as a data
element on that node. In this figure we may see the following prop-
erties of a skip graph:

• Ordered index: The keys are members of an ordered data
type, for instance integers. Lookups make use of ordered
comparisons between the search key and existing index en-
tries. In addition, the pointers at the lowest level point di-
rectly to the successor of each item in the index.

• In-place indexing: Data elements remain on the nodes
where they were inserted, and messages are sent between
nodes to establish links between those elements and others
in the index.

• Log n height: There arelog2 n pointers associated with each
element, wheren is the number of data elements indexed.
Each pointer belongs to a levell in [0... log2 n − 1], and
together with some other pointers at that level forms a chain
of n/2l elements.

• Probabilistic balance: Rather than relying on re-balancing
operations which may be triggered at insert or delete, skip
graphs implement a simple random balancing mechanism
which maintains close to perfect balance on average, with
an extremely low probability of significant imbalance.

• Redundancy and resiliency: Each data element forms an
independent search tree root, so searches may begin at any
node in the network, eliminating hot spots at a single search
root. In addition the index is resilient against node failure;
data on the failed node will not be accessible, but remaining
data elements will be accessible through search trees rooted
on other nodes.

In Figure 2 we see the process of searching for a particular value
in a skip graph. The pointers reachable from a single data element
form a binary tree: a pointer traversal at the highest level skips over
n/2 elements,n/4 at the next level, and so on. Search consists
of descending the tree from the highest level to level 0, at each
level comparing the target key with the next element at that level
and deciding whether or not to traverse. In the perfectly balanced
case shown here there arelog2 n levels of pointers, and search will
traverse 0 or 1 pointers at each level. We assume that each data
element resides on a different node, and measure search cost by the
number messages sent (i.e. the number of pointers traversed); this
will clearly beO(log n).

Tree update proceeds from the bottom, as in a B-Tree, with the
root(s) being promoted in level as the tree grows. In this way, for

instance, the two chains at level 1 always containn/2 entries each,
and there is never a need to split chains as the structure grows. The
update process then consists of choosing which of the2l chains to
insert an element into at each levell, and inserting it in the proper
place in each chain.

Maintaining a perfectly balanced skip graph as shown in Fig-
ure 2 would be quite complex; instead, the probabilistic balancing
method introduced in Skip Lists [23] is used, which trades off a
small amount of overhead in the expected case in return for simple
update and deletion. The basis for this method is the observation
that any element which belongs to a particular chain at levell can
only belong to one of two chains at levell+1. To insert an element
we ascend levels starting at0, randomly choosing one of the two
possible chains at each level, an stopping when we reach an empty
chain.

One means of implementation (e.g. as described in [1]) is to
assign each element an arbitrarily long random bit string. Each
chain at levell is then constructed from those elements whose bit
strings match in the firstl bits, thus creating2l possible chains
at each level and ensuring that each chain splits into exactly two
chains at the next level. Although the resulting structure is not
perfectly balanced, following the analysis in [23] we can show that
the probability of it being significantly out of balance is extremely
small; in addition, since the structure is determined by the random
number stream, input data patterns cannot cause the tree to become
imbalanced.

3.2 Interval Skip Graph
A skip graph is designed to store single-valued entries. In this

section, we introduce a novel data structure that extends skip graphs
to store intervals[lowi, highi] and allows efficient searches for all
intervals covering a valuev, i.e. {i : lowi ≤ v ≤ highi}. Our data
structure can be extended to range searches in a straightforward
manner.

The interval skip graph is constructed by applying the method of
augmented search trees, as described by Cormen, Leiserson, and
Rivest [5] and applied to binary search trees to create an Interval
Tree. The method is based on the observation that a search structure
based on comparison of ordered keys, such as a binary tree, may
also be used to search on a secondary key which is non-decreasing
in the first key.

Given a set of intervals sorted by lower bound –lowi ≤
lowi+1 – we define the secondary key as the cumulative maximum,
maxi = maxk=0...i (highk). The set of intervals intersecting a
valuev may then be found by searching for the first interval (and
thus the interval with leastlowi) such thatmaxi ≥ v. We then



traverse intervals in increasing order lower bound, until we find the
first interval withlowi > v, selecting those intervals which inter-
sectv.

Using this approach we augment the skip graph data structure, as
shown in Figure 3, so that each entry stores a range (lower bound
and upper bound) and a secondary key (cumulative maximum of
upper bound). To efficiently calculate the secondary keymaxi for
an entryi, we take the greatest ofhighi and the maximum values
reported by each ofi’s left-hand neighbors.

To search for those intervals containing the valuev, we first
search forv on the secondary index,maxi, and locate the first entry
with maxi ≥ v. (by the definition ofmaxi, for this data element
maxi = highi.) If lowi > v, then this interval does not contain
v, and no other intervals will, either, so we are done. Otherwise we
traverse the index in increasing order ofmini, returning matching
intervals, until we reach an entry withmini > v and we are done.
Searches for all intervals which overlap a query range, or which
completely contain a query range, are straightforward extensions
of this mechanism.

Lookup Complexity: Lookup for the first interval that matches
a given value is performed in a manner very similar to an interval
tree. The complexity of search isO(log n). The number of inter-
vals that match a range query can vary depending on the amount of
overlap in the intervals being indexed, as well as the range specified
in the query.

Insert Complexity: In an interval tree or interval skip list, the
maximum value for an entry need only be calculated over the sub-
tree rooted at that entry, as this value will be examined only when
searching within the subtree rooted at that entry. For a simple inter-
val skip graph, however, this maximum value for an entry must be
computed over all entries preceding it in the index, as searches may
begin anywhere in the data structure, rather than at a distinguished
root element. It may be easily seen that in the worse case the in-
sertion of a single interval (one that covers all existing intervals in
the index) will trigger the update of all entries in the index, for a
worst-case insertion cost ofO(n).

3.3 Sparse Interval Skip Graph

The final extensions we propose take advantage of the differ-
ence between the number of items indexed in a skip graph and the
number of systems on which these items are distributed. The cost
in network messages of an operation may be reduced by arrang-
ing the data structure so that most structure traversals occur locally
on a single node, and thus incur zero network cost. In addition,
since both congestion and failure occur on a per-node basis, we
may eliminate links without adverse consequences if those links
only contribute to load distribution and/or resiliency within a sin-
gle node. These two modifications allow us to achieve reductions
in asymptotic complexity of both update and search.

As may be in Section 3.2, insert and delete cost on an inter-
val skip graph has a worst case complexity ofO(n), compared to
O(log n) for an interval tree. The main reason for the difference
is that skip graphs have a full search structurerooted at each ele-
ment, in order to distribute load and provide resilience to system
failures in a distributed setting. However, in order to provide load
distribution and failure resilience it is only necessary to provide a
full search structurefor each system. If as in TSAR the number
of nodes (proxies) is much smaller than the number of data ele-
ments (data summaries indexed), then this will result in significant
savings.

Implementation: To construct a sparse interval skip graph, we
ensure that there is a single distinguished element on each system,

the root elementfor that system; all searches will start at one of
these root elements. When adding a new element, rather than split-
ting lists at increasing levelsl until the element is in a list with no
others, we stop when we find that the element would be in a list con-
taining no root elements, thus ensuring that the element is reachable
from all root elements. An example of applying this optimization
may be seen in Figure 5. (In practice, rather than designating exist-
ing data elements as roots, as shown, it may be preferable to insert
null values at startup.)

When using the technique of membership vectors as in [1], this
may be done by broadcasting the membership vectors of each root
element to all other systems, and stopping insertion of an element
at levell when it does not share anl-bit prefix with any of theNp

root elements. The expected number of roots sharing alog2Np-bit
prefix is 1, giving an expected expected height for each element of
log2Np+O(1). An alternate implementation, which distributes in-
formation concerning root elements at pointer establishment time,
is omitted due to space constraints; this method eliminates the need
for additional messages.

Performance: In a (non-interval) sparse skip graph, since the
expected height of an inserted element is nowlog2 Np + O(1),
expected insertion complexity isO(log Np), rather thanO(log n),
whereNp is the number of root elements and thus the number of
separate systems in the network. (In the degenerate case of a sin-
gle system we have a skip list; with splitting probability 0.5 the
expected height of an individual element is 1.) Note that since
searches are started at root elements of expected heightlog2 n,
search complexity is not improved.

For an interval sparse skip graph, update performance is im-
proved considerably compared to theO(n) worst case for the non-
sparse case. In an augmented search structure such as this, an ele-
ment only stores information for nodes which may be reached from
that element–e.g. the subtree rooted at that element, in the case of
a tree. Thus, when updating the maximum value in an interval tree,
the update is only propagated towards the root. In a sparse interval
skip graph, updates to a node only propagate towards theNp root
elements, for a worst-case cost ofNp log2 n.

Shortcut search: When beginning a search for a valuev, rather
than beginning at the root on that proxy, we can find the element
that is closest tov (e.g. using a secondary local index), and then
begin the search at that element. The expected distance between
this element and the search terminus islog2 Np, and the search
will now take on averagelog2 Np + O(1) steps. To illustrate this
optimization, in Figure 4 depending on the choice of search root, a
search for[21, 30] beginning at node 2 may take 3 network hops,
traversing to node 1, then back to node 2, and finally to node 3
where the destination is located, for a cost of 3 messages. The
shortcut search, however, locates the intermediate data element on
node 2, and then proceeds directly to node 3 for a cost of 1 message.

Performance: This technique may be applied to the primary key
search which is the first of two insertion steps in an interval skip
graph. By combining the short-cut optimization with sparse inter-
val skip graphs, the expected cost of insertion is nowO(log Np),
independent of the size of the index or the degree of overlap of the
inserted intervals.

3.4 Alternative Data Structures
Thus far we have only compared the sparse interval skip graph

with similar structures from which it is derived. A comparison with
several other data structures which meet at least some of the re-
quirements for the TSAR index is shown in Table 2.



Table 2: Comparison of Distributed Index Structures
Range Query Support Interval Representation Re-balancing Resilience Small Networks Large Networks

DHT, GHT no no no yes good good
Local index, flood query yes yes no yes good bad
P-tree, RP* (distributed B-Trees) yes possible yes no good good
DIMS yes no yes yes yes yes
Interval Skipgraph yes yes no yes good good

[6,14] [9,12] [14,16] [15,23] [18,19] [20,27] [21,30][2,5]

Roots Node 1

Node 2

Figure 5: Sparse Interval Skip Graph

The hash-based systems, DHT [25] and GHT [26], lack the abil-
ity to perform range queries and are thus not well-suited to indexing
spatio-temporal data. Indexing locally using an appropriate single-
node structure and then flooding queries to all proxies is a compet-
itive alternative for small networks; for large networks the linear
dependence on the number of proxies becomes an issue. Two dis-
tributed B-Trees were examined - P-Trees [6] and RP* [19]. Each
of these supports range queries, and in theory could be modified
to support indexing of intervals; however, they both require com-
plex re-balancing, and do not provide the resilience characteristics
of the other structures. DIMS [18] provides the ability to perform
spatio-temporal range queries, and has the necessary resilience to
failures; however, it cannot be used index intervals, which are used
by TSAR’s data summarization algorithm.

4. Data Storage and Summarization

Having described the proxy-level index structure, we turn to the
mechanisms at the sensor tier. TSAR implements two key mech-
anisms at the sensor tier. The first is a local archival store at each
sensor node that is optimized for resource-constrained devices. The
second is an adaptive summarization technique that enables each
sensor to adapt to changing data and query characteristics. The rest
of this section describes these mechanisms in detail.

4.1 Local Storage at Sensors
Interval skip graphs provide an efficient mechanism to lookup

sensor nodes containing data relevant to a query. These queries are
then routed to the sensors, which locate the relevant data records
in the local archive and respond back to the proxy. To enable such
lookups, each sensor node in TSAR maintains an archival store of
sensor data. While the implementation of such an archival store
is straightforward on resource-rich devices that can run a database,
sensors are often power and resource-constrained. Consequently,
the sensor archiving subsystem in TSAR is explicitly designed to
exploit characteristics of sensor data in a resource-constrained set-
ting.

Timestamp Calibration
Parameters

Opaque DataData/Event Attributes size

Figure 6: Single storage record

Sensor data has very distinct characteristics that inform our de-
sign of the TSAR archival store. Sensors produce time-series data
streams, and therefore, temporal ordering of data is a natural and
simple way of storing archived sensor data. In addition to simplic-
ity, a temporally ordered store is often suitable for many sensor data
processing tasks since they involve time-series data processing. Ex-
amples include signal processing operations such as FFT, wavelet
transforms, clustering, similarity matching, and target detection.

Consequently, the local archival store is a collection of records,
designed as an append-only circular buffer, where new records are
appended to the tail of the buffer. The format of each data record is
shown in Figure 6. Each record has a metadata field which includes
a timestamp, sensor settings, calibration parameters, etc. Raw sen-
sor data is stored in the data field of the record. The data field
is opaqueand application-specific—the storage system does not
know or care about interpreting this field. A camera-based sensor,
for instance, may store binary images in this data field. In order
to support a variety of applications, TSAR supports variable-length
data fields; as a result, record sizes can vary from one record to
another.

Our archival store supports three operations on records: create,
read, and delete. Due to the append-only nature of the store, cre-
ation of records is simple and efficient. The create operation simply
creates a new record and appends it to the tail of the store. Since
records are always written at the tail, the store need not maintain
a “free space” list. All fields of the record need to be specified at
creation time; thus, the size of the record is known a priori and the
store simply allocates the the corresponding number of bytes at the
tail to store the record. Since writes are immutable, the size of a
record does not change once it is created.

proxy

proxy

proxy

record

3 record
summary

local archive in 
 flash memory

data summary

start,end offset

time interval

sensor

summary
sent to proxy

Insert summaries
into interval skip graph

Figure 7: Sensor Summarization



The read operation enables stored records to be retrieved in or-
der to answer queries. In a traditional database system, efficient
lookups are enabled by maintaining a structure such as a B-tree that
indexes certain keys of the records. However, this can be quite com-
plex for a small sensor node with limited resources. Consequently,
TSAR sensors do not maintainanyindex for the data stored in their
archive. Instead, they rely on the proxies to maintain this metadata
index—sensors periodically send the proxy information summariz-
ing the data contained in a contiguous sequence of records, as well
as a handle indicating the location of these records in flash memory.

The mechanism works as follows: In addition to the summary
of sensor data, each node sends metadata to the proxy containing
the time interval corresponding to the summary, as well as the start
and end offsets of the flash memory location where the raw data
corresponding is stored (as shown in Figure 7). Thus, random ac-
cess is enabled at granularity of a summary—the start offset of each
chunk of records represented by a summary is known to the proxy.
Within this collection, records are accessed sequentially. When a
query matches a summary in the index, the sensor uses these offsets
to access the relevant records on its local flash by sequentially read-
ing data from the start address until the end address. Any query-
specific operation can then be performed on this data. Thus, no
index needs to be maintained at the sensor, in line with our goal
of simplifying sensor state management. The state of the archive
is captured in the metadata associated with the summaries, and is
stored and maintained at the proxy.

While we anticipate local storage capacity to be large, eventually
there might be a need to overwrite older data, especially in high
data rate applications. This may be done via techniques such as
multi-resolution storage of data [9], or just simply by overwriting
older data. When older data is overwritten, a delete operation is
performed, where an index entry is deleted from the interval skip
graph at the proxy and the corresponding storage space in flash
memory at the sensor is freed.

4.2 Adaptive Summarization

The data summaries serve as glue between the storage at the re-
mote sensor and the index at the proxy. Each update from a sensor
to the proxy includes three pieces of information: the summary, a
time period corresponding to the summary, and the start and end
offsets for the flash archive. In general, the proxy can index the
time interval representing a summary or the value range reported
in the summary (or both). The former index enables quick lookups
on all records seen during a certain interval, while the latter index
enables quick lookups on all records matching a certain value.

As described in Section 2.4, there is a trade-off between the en-
ergy used in sending summaries (and thus the frequency and reso-
lution of those summaries) and the cost of false hits during queries.
The coarser and less frequent the summary information, the less
energy required, while false query hits in turn waste energy on re-
quests for non-existent data.

TSAR employs an adaptive summarization technique that bal-
ances the cost of sending updates against the cost of false positives.
The key intuition is that each sensor can independently identify the
fraction of false hits and true hits for queries that access its local
archive. If most queries result in true hits, then the sensor deter-
mines that the summary can be coarsened further to reduce update
costs without adversely impacting the hit ratio. If many queries
result in false hits, then the sensor makes the granularity of each
summary finer to reduce the number and overhead of false hits.

The resolution of the summary depends on two parameters—
the interval over which summaries of the data are constructed and

transmitted to the proxy, as well as the size of the application-
specific summary. Our focus in this paper is on the interval over
which the summary is constructed. Changing the size of the data
summary can be performed in an application-specific manner (e.g.
using wavelet compression techniques as in [9]) and is beyond the
scope of this paper. Currently, TSAR employs a simple summariza-
tion scheme that computes the ratio of false and true hits and de-
creases (increases) the interval between summaries whenever this
ratio increases (decreases) beyond a threshold.

5. TSAR Implementation

We have implemented a prototype of TSAR on a multi-tier sen-
sor network testbed. Our prototype employs Crossbow Stargate
nodes to implement the proxy tier. Each Stargate node employs a
400MHz Intel XScale processor with 64MB RAM and runs the
Linux 2.4.19 kernel and EmStar release 2.1. The proxy nodes
are equipped with two wireless radios, a Cisco Aironet 340-based
802.11b radio and a hostmote bridge to the Mica2 sensor nodes
using the EmStar transceiver. The 802.11b wireless network is
used for inter-proxy communication within the proxy tier, while
the wireless bridge enables sensor-proxy communication. The sen-
sor tier consists of Crossbow Mica2s and Mica2dots, each consist-
ing of a 915MHz CC1000 radio, a BMAC protocol stack, a 4 Mb
on-board flash memory and an ATMega 128L processor. The sen-
sor nodes run TinyOS 1.1.8. In addition to the on-board flash, the
sensor nodes can be equipped with external MMC/SD flash cards
using a custom connector. The proxy nodes can be equipped with
external storage such as high-capacity compact flash (up to 4GB),
6GB micro-drives, or up to 60GB 1.8inch mobile disk drives.

Since sensor nodes may be several hops away from the nearest
proxy, the sensor tier employs multi-hop routing to communicate
with the proxy tier. In addition, to reduce the power consumption
of the radio while still making the sensor node available for queries,
low power listening is enabled, in which the radio receiver is peri-
odically powered up for a short interval to sense the channel for
transmissions, and the packet preamble is extended to account for
the latency until the next interval when the receiving radio wakes
up. Our prototype employs the MultiHopLEPSM routing protocol
with the BMAC layer configured in the low-power mode with a
11% duty cycle (one of the default BMAC [22] parameters)

Our TSAR implementation on the Mote involves a data gath-
ering task that periodically obtains sensor readings and logs these
reading to flash memory. The flash memory is assumed to be a
circular append-only store and the format of the logged data is de-
picted in Figure 6. The Mote sends a report to the proxy everyN
readings, summarizing the observed data. The report contains: (i)
the address of the Mote, (ii) a handle that contains an offset and the
length of the region in flash memory containing data referred to by
the summary, (iii) an interval(t1, t2) over which this report is gen-
erated, (iv) a tuple(low, high) representing the minimum and the
maximum values observed at the sensor in the interval, and (v) a se-
quence number. The sensor updates are used to construct a sparse
interval skip graph that is distributed across proxies, via network
messages between proxies over the 802.11b wireless network.

Our current implementation supports queries that request records
matching a time interval(t1, t2) or a value range(v1, v2). Spatial
constraints are specified using sensor IDs. Given a list of matching
intervals from the skip graph, TSAR supports two types of mes-
sages to query the sensor: lookup and fetch. A lookup message
triggers a search within the corresponding region in flash memory
and returns the number of matching records in that memory region
(but does not retrieve data). In contrast, a fetch message not only
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Figure 8: Skip Graph Insert Performance

triggers a search but also returns all matching data records to the
proxy. Lookup messages are useful for polling a sensor, for in-
stance, to determine if a query matches too many records.

6. Experimental Evaluation

In this section, we evaluate the efficacy of TSAR using our pro-
totype and simulations. The testbed for our experiments consists
of four Stargate proxies and twelve Mica2 and Mica2dot sensors;
three sensors each are assigned to each proxy. Given the limited
size of our testbed, we employ simulations to evaluate the behav-
ior of TSAR in larger settings. Our simulation employs the EmTOS
emulator [10], which enables us to run the same code in simulation
and the hardware platform.

Rather than using live data from a real sensor, to ensure re-
peatable experiments, we seed each sensor node with a dataset
(i.e., a trace) that dictates the values reported by that node to the
proxy. One section of the flash memory on each sensor node is
programmed with data points from the trace; these “observations”
are then replayed during an experiment, logged to the local archive
(located in flash memory, as well), and reported to the proxy. The
first dataset used to evaluate TSAR is a temperature dataset from
James Reserve [27] that includes data from eleven temperature sen-
sor nodes over a period of 34 days. The second dataset is syn-
thetically generated; the trace for each sensor is generated using a
uniformly distributed random walk though the value space.

Our experimental evaluation has four parts. First, we run Em-
TOS simulations to evaluate the lookup, update and delete overhead
for sparse interval skip graphs using the real and synthetic datasets.
Second, we provide summary results from micro-benchmarks of
the storage component of TSAR, which include empirical charac-
terization of the energy costs and latency of reads and writes for the
flash memory chip as well as the whole mote platform, and com-
parisons to published numbers for other storage and communica-
tion technologies. These micro-benchmarks form the basis for our
full-scale evaluation of TSAR on a testbed of four Stargate proxies
and twelve Motes. We measure the end-to-end query latency in our
multi-hop testbed as well as the query processing overhead at the
mote tier. Finally, we demonstrate the adaptive summarization ca-
pability at each sensor node. The remainder of this section presents
our experimental results.

6.1 Sparse Interval Skip Graph Performance
This section evaluates the performance of sparse interval skip

graphs by quantifying insert, lookup and delete overheads.
We assume a proxy tier with 32 proxies and construct sparse in-

terval skip graphs of various sizes using our datasets. For each skip
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graph, we evaluate the cost of inserting a new value into the index.
Each entry was deleted after its insertion, enabling us to quantify
the delete overhead as well. Figure 8(a) and (b) quantify the insert
overhead for our two datasets: each insert entails an initial traversal
that incurslog n messages, followed by neighbor pointer update at
increasing levels, incurring a cost of4 log n messages. Our results
demonstrate this behavior, and show as well that performance of
delete—which also involves an initial traversal followed by pointer
updates at each level—incurs a similar cost.

Next, we evaluate the lookup performance of the index struc-
ture. Again, we construct skip graphs of various sizes using our
datasets and evaluate the cost of a lookup on the index structure.
Figures 9(a) and (b) depict our results. There are two components
for each lookup—the lookup of the first interval that matches the
query and, in the case of overlapping intervals, the subsequent lin-
ear traversal to identify all matching intervals. The initial lookup
can be seen to takeslog n messages, as expected. The costs of
the subsequent linear traversal, however, are highly data dependent.
For instance, temperature values for the James Reserve data exhibit
significant spatial correlations, resulting in significant overlap be-
tween different intervals and variable, high traversal cost (see Fig-
ure 9(a)). The synthetic data, however, has less overlap and incurs
lower traversal overhead as shown in Figure 9(b).

Since the previous experiments assumed 32 proxies, we evaluate
the impact of the number of proxies on skip graph performance. We
vary the number of proxies from 10 to 48 and distribute a skip graph
with 4096 entries among these proxies. We construct regular inter-
val skip graphs as well as sparse interval skip graphs using these
entries and measure the overhead of inserts and lookups. Thus, the
experiment also seeks to demonstrate the benefits of sparse skip
graphs over regular skip graphs. Figure 10(a) depicts our results.
In regular skip graphs, the complexity of insert isO(log2n) in the



expected case (andO(n) in the worst case) wheren is the number
of elements. This complexity is unaffected by changing the num-
ber of proxies, as indicated by the flat line in the figure. Sparse
skip graphs require fewer pointer updates; however, their overhead
is dependent on the number of proxies, and isO(log2Np) in the
expected case, independent ofn. This can be seen to result in sig-
nificant reduction in overhead when the number of proxies is small,
which decreases as the number of proxies increases.

Failure handling is an important issue in a multi-tier sensor archi-
tecture since it relies on many components—proxies, sensor nodes
and routing nodes can fail, and wireless links can fade. Handling
of many of these failure modes is outside the scope of this pa-
per; however, we consider the case of resilience of skip graphs
to proxy failures. In this case, skip graph search (and subsequent
repair operations) can follow any one of the other links from a
root element. Since a sparse skip graph has search trees rooted
at each node, searching can then resume once the lookup request
has routed around the failure. Together, these two properties en-
sure that even if a proxy fails, the remaining entries in the skip
graph will be reachable with high probability—only the entries on
the failed proxy and the corresponding data at the sensors becomes
inaccessible.

To ensure that all data on sensors remains accessible, even in the
event of failure of a proxy holding index entries for that data, we in-
corporate redundant index entries. TSAR employs a simple redun-
dancy scheme where additional coarse-grain summaries are used
to protect regular summaries. Each sensor sends summary data
periodically to its local proxy, but less frequently sends a lower-
resolution summary to a backup proxy—the backup summary rep-
resents all of the data represented by the finer-grained summaries,
but in a lossier fashion, thus resulting in higher read overhead (due
to false hits) if the backup summary is used. The cost of implement-
ing this in our system is low – Figure 10(b) shows the overhead of
such a redundancy scheme, where a single coarse summary is send
to a backup for every two summaries sent to the primary proxy.
Since a redundant summary is sent for every two summaries, the
insert cost is 1.5 times the cost in the normal case. However, these
redundant entries result in only a negligible increase in lookup over-
head, due the logarithmic dependence of lookup cost on the index
size, while providing full resilience to any single proxy failure.

6.2 Storage Microbenchmarks

Since sensors are resource-constrained, the energy consumption
and the latency at this tier are important measures for evaluating the
performance of a storage architecture. Before performing an end-
to-end evaluation of our system, we provide more detailed infor-
mation on the energy consumption of the storage component used
to implement the TSAR local archive, based on empirical measure-
ments. In addition we compare these figures to those for other lo-
cal storage technologies, as well as to the energy consumption of
wireless communication, using information from the literature. For
empirical measurements we measure energy usage for the storage
component itself (i.e. current drawn by the flash chip), as well as
for the entire Mica2 mote.

The power measurements in Table 3 were performed for the
AT45DB041 [15] flash memory on a Mica2 mote, which is an older
NOR flash device. The most promising technology for low-energy
storage on sensing devices is NAND flash, such as the Samsung
K9K4G08U0M device [16]; published power numbers for this de-
vice are provided in the table. Published energy requirements for
wireless transmission using the Chipcon [4] CC2420 radio (used
in MicaZ and Telos motes) are provided for comparison, assuming

Energy Energy/byte
Mote flash
Read 256 byte page 58µJ* /

136µJ* total
0.23µJ*

Write 256 byte page 926µJ* /
1042µJ* total

3.6µJ*

NAND Flash
Read 512 byte page 2.7µJ 1.8nJ
Write 512 byte page 7.8µJ 15nJ
Erase 16K byte sector 60µJ 3.7nJ
CC2420 radio
Transmit 8 bits
(-25dBm)

0.8µJ 0.8µJ

Receive 8 bits 1.9µJ 1.9µJ
Mote AVR processor
In-memory search,
256 bytes

1.8µJ 6.9nJ

Table 3: Storage and Communication Energy Costs(*measured
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zero network and protocol overhead. Comparing the total energy
cost for writing flash (erase + write) to the total cost for communi-
cation (transmit + receive), we find that the NAND flash is almost
150 times more efficient than radio communication, even assuming
perfect network protocols.

6.3 Prototype Evaluation
This section reports results from an end-to-end evaluation of the

TSAR prototype involving both tiers. In our setup, there are four
proxies connected via 802.11 links and three sensors per proxy. The
multi-hop topology was preconfigured such that sensor nodes were
connected in a line to each proxy, forming a minimal tree of depth
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3. Due to resource constraints we were unable to perform experi-
ments with dozens of sensor nodes, however this topology ensured
that the network diameter was as large as for a typical network of
significantly larger size.

Our evaluation metric is the end-to-end latency of query process-
ing. A query posed on TSAR first incurs the latency of a sparse
skip graph lookup, followed by routing to the appropriate sensor
node(s). The sensor node reads the required page(s) from its local
archive, processes the query on the page that is read, and transmits
the response to the proxy, which then forwards it to the user. We
first measure query latency for different sensors in our multi-hop
topology. Depending on which of the sensors is queried, the total
latency increases almost linearly from about 400ms to 1 second, as
the number of hops increases from 1 to 3 (see Figure 11(a)).

Figure 11(b) provides a breakdown of the various components
of the end-to-end latency. The dominant component of the total
latency is the communication over one or more hops. The typ-
ical time to communicate over one hop is approximately 300ms.
This large latency is primarily due to the use of a duty-cycled MAC
layer; the latency will be larger if the duty cycle is reduced (e.g.
the 2% setting as opposed to the 11.5% setting used in this exper-
iment), and will conversely decrease if the duty cycle is increased.
The figure also shows the latency for varying index sizes; as ex-
pected, the latency of inter-proxy communication and skip graph
lookups increases logarithmically with index size. Not surprisingly,
the overhead seen at the sensor is independent of the index size.

The latency also depends on the number of packets transmitted
in response to a query—the larger the amount of data retrieved by a
query, the greater the latency. This result is shown in Figure 12(a).
The step function is due to packetization in TinyOS; TinyOS sends
one packet so long as the payload is smaller than 30 bytes and splits
the response into multiple packets for larger payloads. As the data
retrieved by a query is increased, the latency increases in steps,
where each step denotes the overhead of an additional packet.

Finally, Figure 12(b) shows the impact of searching and process-
ing flash memory regions of increasing sizes on a sensor. Each
summary represents a collection of records in flash memory, and
all of these records need to be retrieved and processed if that sum-
mary matches a query. The coarser the summary, the larger the
memory region that needs to be accessed. For the search sizes ex-
amined, amortization of overhead when searching multiple flash
pages and archival records, as well as within the flash chip and its
associated driver, results in the appearance of sub-linear increase
in latency with search size. In addition, the operation can be seen
to have very low latency, in part due to the simplicity of our query
processing, requiring only a compare operation with each stored
element. More complex operations, however, will of course incur
greater latency.

6.4 Adaptive Summarization

When data is summarized by the sensor before being reported
to the proxy, information is lost. With the interval summarization
method we are using, this information loss will never cause the
proxy to believe that a sensor node does not hold a value which it in
fact does, as all archived values will be contained within the interval
reported. However, it does cause the proxy to believe that the sensor
may hold values which it does not, and forward query messages to
the sensor for these values. Thesefalse positivesconstitute the cost
of the summarization mechanism, and need to be balanced against
the savings achieved by reducing the number of reports. The goal
of adaptive summarization is to dynamically vary the summary size
so that these two costs are balanced.
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Figure 13: Impact of Summarization Granularity

Figure 13(a) demonstrates the impact of summary granularity
on false hits. As the number of records included in a summary
is increased, the fraction of queries forwarded to the sensor which
match data held on that sensor (“true positives”) decreases. Next,
in Figure 13(b) we run the a EmTOS simulation with our adap-
tive summarization algorithm enabled. The adaptive algorithm in-
creases the summary granularity (defined as the number of records
per summary) whenCost(updates)

Cost(falsehits)
> 1 + ε and reduces it if

Cost(updates)
Cost(falsehits)

> 1 − ε, whereε is a small constant. To demon-
strate the adaptive nature of our technique, we plot a time series
of the summarization granularity. We begin with a query rate of 1
query per 5 samples, decrease it to 1 every 30 samples, and then
increase it again to 1 query every 10 samples. As shown in Fig-
ure 13(b), the adaptive technique adjusts accordingly by sending
more fine-grain summaries at higher query rates (in response to the
higher false hit rate), and fewer, coarse-grain summaries at lower
query rates.

7. Related Work

In this section, we review prior work on storage and indexing
techniques for sensor networks. While our work addresses both
problems jointly, much prior work has considered them in isolation.

The problem of archival storage of sensor data has received
limited attention in sensor network literature. ELF [7] is a log-
structured file system for local storage on flash memory that pro-
vides load leveling and Matchbox is a simple file system that is
packaged with the TinyOS distribution [14]. Both these systems
focus on local storage, whereas our focus is both on storage at the
remote sensors as well as providing a unified view of distributed
data across all such local archives. Multi-resolution storage [9] is
intended for in-network storage and search in systems where there
is significant data in comparison to storage resources. In contrast,
TSAR addresses the problem of archival storage in two-tier systems
where sufficient resources can be placed at the edge sensors. The
RISE platform [21] being developed as part of the NODE project
at UCR addresses the issues of hardware platform support for large
amounts of storage in remote sensor nodes, but not the indexing
and querying of this data.

In order to efficiently access a distributed sensor store, an index
needs to be constructed of the data. Early work on sensor networks
such as Directed Diffusion [17] assumes a system where all useful
sensor data was stored locally at each sensor, and spatially scoped
queries are routed using geographic co-ordinates to locations where
the data is stored. Sources publish the events that they detect, and
sinks with interest in specific events can subscribe to these events.
The Directed Diffusion substrate routes queries to specific locations



if the query has geographic information embedded in it (e.g.: find
temperature in the south-west quadrant), and if not, the query is
flooded throughout the network.

These schemes had the drawback that for queries that are not ge-
ographically scoped, search cost (O(n) for a network ofn nodes)
may be prohibitive in large networks with frequent queries. Lo-
cal storage with in-network indexing approaches address this is-
sue by constructing indexes using frameworks such as Geographic
Hash Tables [24] and Quad Trees [9]. Recent research has seen
a growing body of work on data indexing schemes for sensor net-
works[26][11][18]. One such scheme is DCS [26], which provides
a hash function for mapping from event name to location. DCS
constructs a distributed structure that groups events together spa-
tially by their named type. Distributed Index of Features in Sensor-
nets (DIFS [11]) and Multi-dimensional Range Queries in Sensor
Networks (DIM [18]) extend the data-centric storage approach to
provide spatially distributed hierarchies of indexes to data.

While these approaches advocate in-network indexing for sensor
networks, we believe that indexing is a task that is far too compli-
cated to be performed at the remote sensor nodes since it involves
maintaining significant state and large tables. TSAR provides a bet-
ter match between resource requirements of storage and indexing
and the availability of resources at different tiers. Thus complex
operations such as indexing and managing metadata are performed
at the proxies, while storage at the sensor remains simple.

In addition to storage and indexing techniques specific to sensor
networks, many distributed, peer-to-peer and spatio-temporal index
structures are relevant to our work. DHTs [25] can be used for
indexing events based on their type, quad-tree variants such as R-
trees [12] can be used for optimizing spatial searches, and K-D
trees [2] can be used for multi-attribute search. While this paper
focuses on building an ordered index structure for range queries, we
will explore the use of other index structures for alternate queries
over sensor data.

8. Conclusions

In this paper, we argued that existing sensor storage systems
are designed primarily for flat hierarchies of homogeneous sensor
nodes and do not fully exploit the multi-tier nature of emerging sen-
sor networks. We presented the design ofTSAR, a fundamentally
different storage architecture that envisions separation of data from
metadata by employing local storage at the sensors and distributed
indexing at the proxies. At the proxy tier, TSAR employs a novel
multi-resolution ordered distributed index structure, the Sparse In-
terval Skip Graph, for efficiently supporting spatio-temporal and
range queries. At the sensor tier, TSAR supports energy-aware
adaptive summarization that can trade-off the energy cost of trans-
mitting metadata to the proxies against the overhead of false hits re-
sulting from querying a coarser resolution index structure. We im-
plemented TSAR in a two-tier sensor testbed comprising Stargate-
based proxies and Mote-based sensors. Our experimental evalua-
tion of TSAR demonstrated the benefits and feasibility of employ-
ing our energy-efficient low-latency distributed storage architecture
in multi-tier sensor networks.

9. REFERENCES
[1] James Aspnes and Gauri Shah. Skip graphs. InFourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 384–393, Baltimore, MD, USA,
12–14 January 2003.

[2] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching.Commun. ACM, 18(9):509–517, 1975.

[3] Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri. Towards sensor database
systems. InProceedings of the Second International Conference on Mobile
Data Management., January 2001.

[4] Chipcon. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF transceiver, 2004.
[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press and McGraw-Hill, second edition
edition, 2001.

[6] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel
Shanmugasundaram. Querying Peer-to-Peer Networks Using P-Trees.
Technical Report TR2004-1926, Cornell University, 2004.

[7] Hui Dai, Michael Neufeld, and Richard Han. ELF: an efficient log-structured
flash file system for micro sensor nodes. InSenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
176–187, New York, NY, USA, 2004. ACM Press.

[8] Peter Desnoyers, Deepak Ganesan, Huan Li, and Prashant Shenoy. PRESTO: A
predictive storage architecture for sensor networks. InTenth Workshop on Hot
Topics in Operating Systems (HotOS X)., June 2005.

[9] Deepak Ganesan, Ben Greenstein, Denis Perelyubskiy, Deborah Estrin, and
John Heidemann. An evaluation of multi-resolution storage in sensor networks.
In Proceedings of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys)., 2003.

[10] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil,
and T. Schoellhammer. A system for simulation, emulation, and deployment of
heterogeneous sensor networks. InProceedings of the Second ACM Conference
on Embedded Networked Sensor Systems, Baltimore, MD, 2004.

[11] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker. DIFS: A
distributed index for features in sensor networks.Elsevier Journal of Ad Hoc
Networks, 2003.

[12] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In
SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international
conference on Management of data, pages 47–57, New York, NY, USA, 1984.
ACM Press.

[13] Nicholas Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman. Skipnet: A scalable overlay network with practical locality properties.
In In proceedings of the 4th USENIX Symposium on Internet Technologies and
Systems (USITS ’03), Seattle, WA, March 2003.

[14] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors. In
Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-IX), pages 93–104,
Cambridge, MA, USA, November 2000. ACM.

[15] Atmel Inc. 4-megabit 2.5-volt or 2.7-volt DataFlash AT45DB041B, 2005.
[16] Samsung Semiconductor Inc. K9W8G08U1M, K9K4G08U0M: 512M x 8 bit /

1G x 8 bit NAND flash memory, 2003.
[17] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed

diffusion: A scalable and robust communication paradigm for sensor networks.
In Proceedings of the Sixth Annual International Conference on Mobile
Computing and Networking, pages 56–67, Boston, MA, August 2000. ACM
Press.

[18] Xin Li, Young-Jin Kim, Ramesh Govindan, and Wei Hong. Multi-dimensional
range queries in sensor networks. InProceedings of the First ACM Conference
on Embedded Networked Sensor Systems (SenSys)., 2003. to appear.

[19] Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. RP*: A family
of order preserving scalable distributed data structures. InVLDB ’94:
Proceedings of the 20th International Conference on Very Large Data Bases,
pages 342–353, San Francisco, CA, USA, 1994.

[20] Samuel Madden, Michael Franklin, Joseph Hellerstein, and Wei Hong. TAG: a
tiny aggregation service for ad-hoc sensor networks. InOSDI, Boston, MA,
2002.

[21] A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-Yazti, D.Gunopulos, and
V. Kalogeraki. High performance, low power sensor platforms featuring
gigabyte scale storage. InSenMetrics 2005: Third International Workshop on
Measurement, Modeling, and Performance Analysis of Wireless Sensor
Networks, July 2005.

[22] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless
sensor networks. InProceedings of the Second ACM Conference on Embedded
Networked Sensor Systems (SenSys), November 2004.

[23] William Pugh. Skip lists: a probabilistic alternative to balanced trees.Commun.
ACM, 33(6):668–676, 1990.

[24] S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, L. Yin S. Shenker, and F. Yu.
Data-centric storage in sensornets. InACM First Workshop on Hot Topics in
Networks, 2001.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content addressable network. InProceedings of the 2001 ACM SIGCOMM
Conference, 2001.

[26] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
GHT - a geographic hash-table for data-centric storage. InFirst ACM
International Workshop on Wireless Sensor Networks and their Applications,
2002.

[27] N. Xu, E. Osterweil, M. Hamilton, and D. Estrin.
http://www.lecs.cs.ucla.edu/˜nxu/ess/ . James Reserve Data.


