
Estimating Clock Uncertainty for Efficient Duty-Cycling in
Sensor Networks

Saurabh Ganeriwal, Deepak Ganesan†, Hohyun Sim, Vlasios Tsiatsis, Mani B. Srivastava
Networked and Embedded Systems lab, 56-125B, EE-IV, University of California Los Angeles, CA 90095

† Department of Computer Science, University of Massachusetts, MA 01003

{saurabh, tsiatsis, shimho, mbs}@ee.ucla.edu, {dganesan}@cs.umass.edu

ABSTRACT
Radio duty cycling has received significant attention in sensor
networking literature, particularly in the form of protocols for
medium access control and topology management. While many
protocols have claimed to achieve significant duty-cycling
benefits in theory and simulation, these benefits have often not
translated to practice. The dominant factor that prevents the
optimal usage of the radio in real deployment settings is time
uncertainty between sensor nodes. This paper proposes an
uncertainty-driven approach to duty-cycling where a model of
long-term clock drift is used to minimize the duty-cycling
overhead. First, we use long-term empirical measurements to
evaluate and analyze in-depth the interplay between three key
parameters that influence long-term synchronization -
synchronization rate, history of past synchronization beacons and
the estimation scheme. Second, we use this measurement-based
study to design a rate-adaptive, energy-efficient long-term time
synchronization algorithm that can adapt to changing clock drift
and environmental conditions while achieving application-specific
precision with very high probability. Finally, we integrate our
uncertainty-driven time synchronization scheme with a MAC
layer protocol, BMAC, and empirically demonstrate one to two
orders of magnitude reduction in the transmit energy consumption
at a node with negligible impact on the packet loss rate.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer
Communication Networks – Network Protocols.

General Terms
Algorithms, Experimentation, Performance, Verification.

Keywords
Sensor Networks, Time Synchronization, Sampling Period, Clock
Drift, Polynomial Model Estimation, Rate Adaptation.

1. INTRODUCTION
Many important applications of sensor networks involve the

detection of rare, random and ephemeral events [1]. Examples of
such event-response applications are diverse and include intrusion
detection, chemical spill monitoring, warning of imminent natural
disasters, condition-based monitoring of complex equipment and
structural integrity monitoring. In theory, sensor nodes deployed
for these applications need to use the radio only when the rare
events are observed, hence, radio energy consumption should be
minimal. However, this is far from true in practice since much
energy is expended in addressing time uncertainty between
communicating nodes. This can be illustrated by a simple
example. Consider a generic event-response network where, to
save energy, the nodes are duty-cycled. By default the radio
would be off but would wake up periodically to participate in
potential network communication. Consider two nodes A and B
that simultaneously decide to wakeup after time t to check if the
other node has observed an interesting event. During this period t,
clocks on both A and B can vary in several uncorrelated ways due
to ambient conditions and clock crystal characteristics. Therefore,
the local time at A and B can be quite different at time t, hence, A
and B would wakeup at different times.
Existing duty-cycling techniques use a variety of approaches to
deal with this uncertainty. A popular MAC layer protocol, BMAC
[2], uses an asynchronous technique that involves no time
synchronization or clock estimation whatsoever. Instead, each
packet is transmitted with a long preamble which is chosen such
that the receiver would wakeup some time during the preamble
(refer to Figure 1). This incurs significant transmission overhead.
For example with 11.5% duty-cycle a preamble of 250 bytes is
used to transmit a 29 byte payload! Other techniques such as
SMAC [3] and TMAC [4] use synchronized techniques where
explicit time synchronization beacons are transmitted periodically
between neighboring nodes. This enables the transmitter to turn on
the radio at the right moment (refer to Figure 1), but the inability
to deal effectively with time varying changes in clock drift force
these techniques to re-synchronize frequently. For instance, one of
the most efficient time synchronization protocols available in
literature, FTSP [5], synchronizes once every minute to achieve
90µs synchronization error. To put it into perspective, if the event
rate is once every hour, 60 extra synchronization beacons will be
transmitted for every event notification packet. Thus, existing
radio duty-cycling approaches expend a lot of energy in handling
time uncertainty between sensor nodes.
The lack of techniques to accurately estimate time uncertainty
also impacts the ability to deploy long-lived sensor network
applications. Although available time synchronization
implementations such as FTSP [5], RBS [6] and TPSN [7] can
synchronize a pair of nodes within a few microseconds, their
focus has been on achieving accurate instantaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SenSys’05, November 2-4, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-054-X/05/0011…$5.00.

synchronization. These approaches do not enable us to understand
either how error accumulates over long periods into the future or
how to choose the synchronization frequency for bounding the
time uncertainty. While these schemes are important for several
applications that require short-term synchronization such as
measuring the time-of-flight, acoustic beamforming and tracking,
they are insufficient for efficient duty-cycling as well as for
applications that require continuous time synchronization such as
coordinated actuation and synchronized sampling. In real
application scenarios where these approaches have been
employed, the choice of synchronization frequency has been
handpicked to correspond to the precision requirements of the
application. For example, the CENS deployment at James
Reserve [8] uses RBS to synchronize after every 5 minutes and
the Shooter localization system [9] uses FTSP to synchronize once
every 45 seconds. This has two drawbacks. First, the
synchronization frequency needs to be manually configured for
each new application synchronization requirement and
deployment environment. Second, the chosen synchronization
frequency is often highly suboptimal energy-wise as a result of the
manual configuration.
Thus, there is a critical need for better datasets, models and
techniques for estimating and bounding the long-term uncertainty
in clocks. This will have significant benefits across a broad
spectrum of sensor network applications as well as for energy-
efficient MAC layer design. The re-synchronization period in
SMAC can be of the order of tens of minutes (from the current
periods of a few seconds), and BMAC can use significantly
shorter sender-side preambles (from hundreds of bytes to a few
bytes). Furthermore, the sleeping periods of nodes can be
increased significantly (from 100ms to many tens of minutes)
while not sacrificing synchronization error. Applications with
different long-term synchronization requirements such as
triggered actuation (100 ms bound), synchronized sampling (e.g.:
structural monitoring with 10ms bound) can use our scheme
without pre-configured parameters to obtain the minimum energy
synchronization solution for the specified error bound. Data
processing techniques can use the uncertainty in time between
clocks to determine how to align and compress time series data
that was sensed at different nodes.

Drift

Packet ready
@ Tx Listening

Preamble Payload

Rx ready

Rx

Async.Tx

Sync. Tx

Drift

Packet ready
@ Tx Listening

Preamble Payload

Rx ready

Rx

Async.Tx

Sync. Tx

Figure 1. Transmission Mechanisms

1.1 Contributions
Our core contributions are three-fold. First, we experimentally
obtain long time-scale data sets both in indoor and outdoor
settings for Berkeley Mica2 motes. We then perform a detailed
characterization of size of history and time synchronization
beaconing period (or rate) on accuracy and energy requirements.

A very important revelation of this study is that the optimal
history of samples to choose for prediction is roughly constant
across different sampling rates for polynomial estimators.
Second, we use the results of our empirical analysis to design an
adaptive time synchronization protocol that can provide bounded
error under varying ambient conditions, simultaneously
optimizing the energy overhead. We will show that in comparison
to the best possible hypothetical periodic re-synchronization
scheme, the minimum and maximum energy gains are 1.1x and
12.5x respectively for achieving the same error bound. Our
scheme outperforms the point solutions proposed by existing time
synchronization schemes by one to two orders of magnitude.
Lastly, we develop a prototype implementation on Mica2 motes
for sense-response applications. This system integrates our long-
term time synchronization protocol with BMAC. We use a much
shorter preamble for transmitting the packets at a nominal
overhead of keeping the nodes in sync within a desired error
bound. We will demonstrate that this reduces the transmit energy
consumption by one to two orders of magnitude.

2. RELATED WORK
Time synchronization algorithms aim at synchronizing the local
clocks of the nodes in the network. The most widely adopted
protocol is the Network Time Protocol (NTP) [10]. NTP has been
widely deployed and proven to be effective, secure and robust in
Internet. However, the time synchronization requirements in
sensor networks are more stringent, often requiring an accuracy of
a few microseconds. NTP is also computationally intensive and is
not focused on energy efficiency.
Several time synchronization protocols have been developed to
deal with the precision and energy requirements of sensor network
applications [11]. Some of the notable ones are Reference
Broadcast Synchronization (RBS) algorithm [6], Timing-sync
Protocol for Sensor Networks (TPSN) [7] and Flooding Time
Synchronization Protocol (FTSP) [5]. There exist prototype
implementations for each of these approaches that can achieve
within a few microseconds synchronization accuracy over a
minute period. However, these results are based on short-term
synchronization. To the best of our knowledge, there exists no
work in sensor networks that enables us to understand the
accumulation of error over a long period of time.
While long-term synchronization has not been the focus of sensor
network research, it has been studied in the context of NTP [10]
for the Internet. Mills [12] reports computer clock drifts over
several days and uses this data to design interesting extensions to
NTP. However, since energy is not a constraint, this work focuses
on achieving tighter synchronization rather than minimizing the
energy overhead. Moreover, this solution is static and does not
adapt to the varying user-level precision requirements.

3. PROBLEM FORMULATION
We consider the problem of adaptive long-term synchronization of
a pair of sensor nodes A and B, where node A sends beacons to B.
Each beacon results in generating a new sample (TA, TB). TA is the
time at which the beacon packet is transmitted by node A and TB is
the receipt time of this packet at node B. Note that TA and TB are
measured by the local clocks of A and B respectively. Node B has
a history of these samples and wishes to estimate the minimum
frequency of beaconing such that it can synchronize with node A

within a user-defined synchronization error bound, Emax. The
problem can be represented by the feedback control loop shown in
Figure 2. A window of past samples (TA, TB) from the samples
repository (Block A) is input to an estimator (Block B). The
estimator uses these observations to estimate the relative clock
model between A and B. This model can then be used to predict
the future time at node B. Besides predicting the future time, a
confidence estimate of this prediction is also calculated (Block C).
This prediction error is then compared with the given error bound,
based on which a minimum beaconing period is calculated. A new
sample is taken (Block D) based on this new sampling period,
which then gets added to the repository of samples.

Sample
repository

Model
estimation

Prediction
error estimation

Sampler
Window

size
Threshold

Sampling
periodA B C DA

Sample
repository

Model
estimation

Prediction
error estimation

Sampler
Window

size
Threshold

Sampling
periodA B C DA

Figure 2. Time Synchronization Control Loop

3.1 Model Estimation
Throughout this paper, we will use the following polynomial
model for representing the relative clock model between A and B:

∑
=

+=
K

k

k
AkB TT

0
)1()*(Kεβ

In (1), TB is represented as a simple Kth degree polynomial in TA.
The error, ε, is meant to capture both measurement errors as well
as environmental factors that are known to influence clock
behaviors but are not explicitly modeled by the simple polynomial
model in (1). We return to the incorporation of these factors later
in the paper. Given a window of n observations (TA,i, TB,i), i=1,..,n,
we estimate the parameters, β0,…,βK, using ordinary least squares
(OLS) as:

)2(min
2

1 0
,,,,0

K
K
∑ ∑
= =

=∀ 















−=

n

i

K

k

k
iAkiBKk

TTRSS
k

β
β

Refer to [13] for computational and theoretical details. Here, RSS
stands for the residual sum of squares, the accumulated squared
errors between the fitted model and the original data, TB,i. The
method of OLS assumes that the best-fit curve of a given type is
the curve that has the minimal sum of the deviations squared
(least square error) from a given set of data. The values of the
parameters that minimize (2) are denoted by

Kβββ ˆ,,ˆ,ˆ
10 K .

3.2 Sample Repository
The sample repository consists of tuple of the form (TA, TB). A
new sample is formed when node A sends a beacon packet to B.
The sampling period, S, corresponds to the periodicity with which
A sends these beacon packets to B (inverse of the sampling rate).
Taking a new sample imposes an energy cost on the system.
However, new samples need to be taken to re-estimate the relative
clock model so that the error remains bounded. Thus, the sampling
period has a direct impact on both the energy and error
performance of the system. Intuitively a higher sampling period
will correspond to less energy consumption and a higher
synchronization error and vice-versa. Our objective is twofold –
(1) S should change adaptively in accordance with the system and

environmental dynamics, and (2) The system should be operating
at maximum S possible to meet the desired user level precision.
Instead of using all the samples from the repository, we only use a
few most recent samples, equal to the window size, for estimating
the clock model. The impact of the window size on both the
energy and error performance is less intuitive.

3.3 Prediction Error Estimation
Equation (1) can be used for predicting the future time at node B
based on the time at node A. However, going even one step
further, we want to estimate the uncertainty in this prediction. In
this paper, we describe an approach of estimating this uncertainty
based on a combination of analytical and empirical techniques.
We concentrate only on the one-step look-ahead prediction i.e. the
prediction uncertainty in the next immediate sample. From now
onwards, we will use prediction error (Ep) to refer to the error at
just this specific point.

3.4 Objective
The optimization problem can be formulated as: Given a
repository of samples, find the combination of window size (W)
and the degree of fit (K) that can maximize the sampling period
(S) (and correspondingly minimize energy) while bounding the
prediction error (Ep) within a user-defined error bound (Emax).

Given: Past repository of samples
Find: W, K and S
Optimize: Maximize S
Constraint: Ep < Emax

Figure 3. Optimization Problem

4. EMPIRICAL STUDY
The experimental set-up consists of two motes, A and B, with A
periodically sending beacon packets to B. Node A notes the send
time (TA) and node B the receipt time (TB) with their local clocks
respectively. Motes send the timestamp information to IPAQs
over the serial port, where it gets written in a file. The motes as
well as the IPAQs are powered through a 5V DC supply. We also
kept a log of the temperature throughout the duration of the
experiment using two Mica2 sensor boards, one attached on each
A and B. We have used MTS420 sensor boards that come with
calibrated temperature sensors (accuracy within 10C). We
conducted different experiments across widely varying
environments as well as on different pairs of devices. The
objective was two-fold – (1) study the behavior across different
environments to validate our algorithms in different potential
sensor network deployment environments, and (2) isolate
hardware/clock crystal effects on individual devices. We collected
four data sets; the salient features are described in Table 1.

Table 1. Salient features of the data sets
Mote Identification tag Duration

(hours)
Temperature
range (0C) A B

Indoor-I 30 25 – 26 1 2

Indoor-II 12 25 – 26 3 4

Outdoor-I 26 17 – 21 5 6

Outdoor-II 12 22 – 27 3 4

Every data set was collected by keeping the sampling period to 5
seconds. For the empirical study, we extract higher sampling
period from this basic data set. For example, if we want to analyze
a data set with a sampling period of 1 minute, we consider every
12th (60 / 5) sample. A simple sliding window scheme is used for
this empirical study, whereby after choosing W, S and K we
estimate the clock model and Ep. After this, we slide the window
by one, thereby dropping the oldest sample in the window and
taking in the new sample. This is repeated throughout the duration
of the data set; the following sections show the average statistics.
To understand the interaction between sampling period, sample
history and estimation scheme, we first study these parameters in
isolation and then in conjunction. Over short timescales, there is
general agreement that a linear relative clock model (K=1) is
sufficient [5, 6, 7]. We first study the interplay between the
sampling period and the window size making this assumption. We
will compare and contrast the performance of higher degree
polynomial estimators with linear regression in later sections.

4.1 Impact of History
In this section, we study the impact of sample history on error. We
fix the sampling period and the degree of fit (linear) and vary the
window of samples used by the estimator to estimate the clock
model. Figure 4 plots the prediction error for a sampling period of
1 minute over varying window sizes for Indoor-I.

2 4 6 8 10 12 14 16 18 20
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Window size

Pr
ed

ic
tio

n
er

ro
r (

m
ic

ro
se

co
nd

s) Sampling 1 minute

Figure 4. Optimal window size

The key revelation is the existence of an optimal window size,
represented as W*, at which the error is minimized. In Figure 4,
W* is equal to 8. The existence of an optimal window size and
rapidly increasing error for both less (W<W*) and greater history
(W>W*) suggests that the choice of history window should be
carefully performed. At lower window sizes (W<W*), there are
not enough samples available for obtaining the accurate clock
model, whereas for higher window sizes (W>W*) the drift no
longer remains a constant and hence, the available degrees of
freedom (2 as it is a linear estimator) are not enough to accurately
capture the dynamics of the clock model.

4.2 Impact of Sampling Period
We now study the dependency of this optimal window size on the
sampling period. Figure 5 plots the optimal window size for
different sampling periods for all the data sets. Two interesting
observations can be made from Figure 5. First, the value of the
optimal window size changes with the sampling period. For
example, in the case of Indoor-I, the optimal window size is
approximately 4 for a sampling period of 2 minutes, whereas it
changes to 25 for a sampling period of 15 seconds. For sampling
periods higher than 2 minutes, the optimal window size is the

minimum (=2), thus the use of time history is not useful for high
sampling periods. Second, although the trends and knee points are
very similar for different datasets, the choice of optimal window
size corresponding to each sampling period varies slightly with
the choice of the environment.

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

Sampling period (in minutes)

O
pt

im
al

 w
in

do
w

 s
iz

e Indoor - I
Indoor - II

0 2 4 6 8 10 12 14 16
0

5

10

15

20

Sampling period (in minutes)

O
pt

im
al

 w
in

do
w

 s
iz

e Outdoor - II
Outdoor - I

Figure 5. Sampling period v/s optimal window size

Figure 6 plots the prediction error at these optimal points of
operation. The prediction error increases monotonically with the
sampling period. Although intuitive, this is the tradeoff that we
seek to exploit while developing an adaptive scheme for
resynchronization. Operating at a higher sampling period will lead
to less energy consumption but more error and vice-versa.

0 2 4 6 8 10 12 14 16
0

5

10

15

20

Sampling period (minutes)

E
rro

r (
m

ic
ro

se
co

nd
s) Indoor-I

Indoor-II

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Sampling period (minutes)

E
rro

r (
m

ic
ro

se
co

nd
s) Outdoor-I

Outdoor-II

Figure 6. Error at the optimal point of operation

4.3 Optimal Time Window
In the previous section, we were focused on the optimal window
size. However, an interesting metric is the optimal time window
calculated as the product of optimal window size and sampling
period. Figure 7 plots this time window for varying sampling
periods for different data sets.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10

Sampling period (minutes)

op
tim

al
 ti

m
e

w
in

do
w

 (m
in

ut
es

)

Indoor-I
Indoor-II
Outdoor-II
Outdoor-I

Figure 7. Existence of an optimal time window

Two very interesting observations emerge. First, the optimal time
window is quite small, within 8 minutes for all the datasets.

Second, the time window is roughly constant for a given dataset,
although Outdoor-II shows some discrepancy. We represent this
optimal time window by T and it can be approximated to be 8, 6
and 5 minutes for Indoor-I, Indoor-II and Outdoor-I respectively.
The existence of the optimal time window can also be predicted
and explained by a non-classical statistic, Allan Variance [14],
which is used to estimate the stability of clocks. For lack of space,
we will not describe this in greater detail in this paper.
The existence of the optimal time window implies that if model
estimation is done over this window of time, the prediction error is
minimized. For example, any time history beyond 8 minutes of
data does not improve prediction error for future timestamps in
Indoor-I. However, for higher sampling periods the time history
will automatically exceed T; in which case the minimum window
size (=K+1) will be optimal. Note that we need a minimum of
K+1 samples for doing a K-polynomial model estimation. This
explains why W* is always equal to 2 for all sampling periods
greater than 8 minutes for every data set in Figure 5. The
existence of the optimal time window also makes it easy to
discover the optimal point of operation. If T is known W* can be
calculated for any given S as follows:

)3(,1max* K












+=

S
TKW

5. ERROR PREDICTION
Revisiting Figure 2, we know how to choose the window size for
a given sampling period and do relative clock model estimation.
The next building block in Figure 2 is the ability to accurately
predict the error (Ep) given past history of beacons.

5.1 Estimating Prediction Error
Given a time window of n observations, (TA,i, TB,i), we can predict
the time at node B given a new time at node A, TA, using our OLS
estimates derived in (2) as:

)4(ˆˆˆ
10 KAB TT ββ +=

Following standard regression theory [13], we can construct a (1-
α) confidence interval for this prediction as:

)5()]ˆ(*[ˆ
2,2/)1(KBnB TSEtT −−± α

The first term in the product in equation (5) refers to an upper
quantile of the t distribution with n-2 degrees of freedom, and the
second term is the standard error of the predicted value [13]. We
represent this product, the estimate of the prediction error (Ep), by
δ. In this paper, we use the 95% confidence interval to estimate δ.
Note that 95% confidence interval is the typical choice made in
existing literature due the Gaussian assumption on the error
distribution, ε (see equation (1)).

5.2 Accuracy of Estimation
If the error term, ε, in (1) has a normal distribution, then these
confidence intervals behave as given by (5). However, there are
many variables left out of (1), including temperature and
humidity, hardware and other system errors that we cannot take
into account explicitly to avoid the estimator from becoming too
complex for simple sensor nodes. As a result the error term is

likely to have more structure in it. Instead, a model of the form in
equation (6) might be more appropriate.

)6(),(*Kε+= xTfT AB

Here f(.) is some function that depends on TA as well as the
environmental conditions (described here by the vector of
variables x), and ε* is a zero mean, normal error term. When we
fit a linear relative clock model, we are leaving out something
systematic, calling into question our original assumptions about
the error terms in (1). When a more elaborate model is actually
true, our calculations leading to the confidence set (5) are now
incorrect. Instead, one can decompose the prediction error into:

)ˆˆ(),(ˆ
10

*
AABB TxTfTT ββε +−+=−

)](),([)]ˆˆ()[(1
**

0101
**

0
*

AAAA TxTfTT ββββββε +−++−++=

)7()](),([]ˆˆ[1
**

0
* KAABB TxTfTTE ββε +−+−+=

Here]ˆ[0
*

0 ββ E= and]ˆ[1
*

1 ββ E= , the expected values of our

estimates. Recall that *
0β and *

1β are given explicitly as the OLS
solutions to equation (2), where we replace the polynomial fitting
model with f(TA, x), see [13] for details. The first two terms on the
right in (7) are used in calculating the standard error that appears
in our confidence interval (5); the first reflects an irreducible
error, and the second describes the variance in our estimate (the
difference between a random variable, BT̂ , and its expectation).
The last expression in brackets is known as a bias term and is
what we leave out by not knowing the proper form of f(.).
By ignoring the bias, our confidence intervals do not have the
correct coverage properties. There are many techniques in the
statistics literature that attempt to estimate or correct for the bias,
many of which are computationally expensive. Given our need for
efficient calculations, we have chosen a simple approach in which
we widen the confidence bands, introducing a scaling factor, ∆:

)8()]ˆ(**[ˆ
2,2/)1(KBnB TSEtT −−∆± α

5.3 Scaling Factor
More formally, scaling factor, ∆, is defined as the ratio of actual
prediction error, Ep, and the estimation of this error obtained from
equation (5), δ:

)9(K
δ

pE
=∆

Figure 8 plots the cumulative distribution function of the scaling
factor, for Indoor-I for different sampling periods. For every
sampling period, we fix the window size corresponding to the
optimal time window. Figure 8 can be used for deciding the value
of scaling factor that probabilistically bounds x% of the prediction
error. For example choosing ∆=6 will probabilistically bound
90% the prediction error whereas ∆=2 will only bound 60% of the
prediction errors. We refer to x% as the cut-off threshold and
represent it by λ. We now evaluate the impact of varying
environmental conditions on the scaling factor. For this, we
calculate the cumulative distribution function of the scaling factor
for various data sets and sampling periods. From these plots, we
calculate the value of the scaling factor corresponding to the cut-
off threshold of 60, 80 and 95 respectively. The results are
summarized in Table 2.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scaling factor

Pr
ob

ab
ili

ty

Sampling 1 minute
Sampling 2 minute
Sampling 4 minute
Sampling 16 minute

Figure 8. Cumulative distribution of scaling factor

For any particular dataset, the value of ∆ increases with increasing
sampling period (for a chosen threshold). Finding out the exact
relationship between the scaling factor and the sampling period is
rather complex and outside the scope of this paper. In this paper,
we find out the scaling factor for a given cut-off threshold, λ, at a
medium sampling period, say 4 minutes, and then assume it to be
same across every sampling period. We will show that even such
simplistic scheme is able to give us considerable gains. A more
surprising and pertinent observation is that the scaling factor is
roughly constant across different environments (for a chosen
threshold and a set sampling rate). This has an important
implication for protocol design: the scaling factor can be expected
to be consistent across different deployments and times.

Table 2. Scaling factor
Data Set S = 1 minute S = 16 minute

 λ =60 λ =80 λ =95 λ =60 λ =80 λ= 95

Indoor-I 1.1 1.7 2.8 2.1 3.6 6.1

Indoor-II 1.0 1.6 2.8 2.0 2.9 6.3

Outdoor-I 1.3 2.0 3.7 2.2 2.7 6.9

Outdoor-II 1.0 1.8 3.2 1.6 2.9 6.3

6. RATE ADAPTIVE SYNCHRONIZATION
Our empirical study provides an in-depth understanding of the
impact of history and sampling period on the synchronization
error. In this section, we propose the Rate Adaptive Time
Synchronization (RATS) protocol based on the empirical study.

6.1 Learning Parameters
The time synchronization control loop shown in Figure 2 requires
two parameters for its operation: optimal time window (T) and
scaling factor (∆). A simple strategy of learning these parameters
in a deployed system can be to use an initialization phase. Since
the scaling factor varies little with the actual environment, this
initialization can be done together with in-factory calibration
before the nodes are even deployed. This will reduce the power
requirements of this initialization. A post-deployment
initialization phase for calculating the optimal time window will
always be needed, as the optimal time window changes with the
environment in which the system is deployed. In the initialization
phase, a data set can be collected in a similar manner as in Section
4, and then the empirical analysis of section 4 and 5 can be used to
calculate these parameters. This approaches hinges on the
assumption that the optimal time window and scaling factors have
a temporally stationary distribution so that the values learned over
an initial window of time are valid for long durations.

We evaluated the efficacy of this assumption and the training-
based approach. Figure 9 plots the value of the optimal time
window v/s duration of the learning phase for Indoor-I and
Outdoor-I. For a given duration of the learning phase, we took 50
different measurements by varying the starting point randomly
over the duration of the data set. The plot shows the average
statistics; the standard deviation is shown by the vertical bars. As
expected, the accuracy is higher for a longer duration of the
learning phase. A 2-4 hour learning phase seems to hit the sweet
spot across all the datasets that we studied. We also calculated the
scaling factor for varying durations of the learning phase and a 2-4
hour learning phase seems appropriate here as well. This clearly
highlights the feasibility of training the system to estimate the two
parameters within reasonable levels of accuracy, by using a small
window of training information.

0 1 2 3 4 5 6 7 8
5

10

15

20

Duration of learning phase (hours)

Ti
m

e
co

ns
ta

nt
 (m

in
ut

es
)

0 1 2 3 4 5 6 7 8
2

4

6

8

10

12

Duration of learning phase (hours)

Ti
m

e
co

ns
ta

nt
 (m

in
ut

es
)

Corresponding to
complete data set

Corresponding to
complete data set

Indoor-I

Outdoor-I

Figure 9. Impact of the duration of learning phase

6.2 Protocol Description
The Rate Adaptive Time Synchronization (RATS) protocol tries
to imitate the time synchronization control loop of Figure 2 at
runtime. The objective of RATS is to repeatedly calculate the new
sampling period so that the synchronization error remains
bounded within the user specifications. The pseudo-code for the
protocol is shown in Figure 10.

1. Compute W* = max(K+1, T/S)

2. Find (oβ̂ , 1β̂)using a window of W* samples in equation (2)
3. Compute δ using equation (5)
4. Find Ep = ∆ * δ
5. if (Ep < [Emax * ηlow]) S = S * MIMDinc
 elseif (Ep > [Emax * ηhigh]) S = S / MIMDdec
6. if (S < Smin) S = Smin
 elseif (S > Smax) S = Smax

Figure 10. Psuedo code for RATS

It starts with calculating the optimal window size, W* (using the
optimal time window), for the given sampling period, S. The
relative clock model is estimated using a linear estimator on the
sample history equal to the optimal window size. The prediction
error, δ, is then computed and scaled using the scaling factor, ∆. If
the error is below the lower threshold, we multiplicatively
increase sampling period, and if it is above the higher threshold,
the sampling period is decreased multiplicatively. The sampling
period remains unchanged if the error is between the two
thresholds. At the end, we make sure that the new sampling period

is within [Smin, Smax] to avoid the unbounded increase/decrease of
the sampling period.
Our reasons for choosing a multiplicative increase, multiplicative
decrease (MIMD) strategy are two-fold. First, an MIMD scheme
enables fast convergence to a sampling rate that minimizes energy
as well as provides quick response to changing environmental or
system conditions that result in loss of time synchronization
precision. Second, MIMD is not as complex as an exponential
scheme and becomes really simple if the multiplicative factors are
powers of two. Although additive increase/decrease is equally
simple, it doesn't adapt fast. Table 3 summarizes the parameter
settings of the RATS protocol that were kept fixed in our analysis.
For lack of space, we do not provide an in-depth study of the
impact of all these parameters settings. Instead, we provide a set
of representative instances in this paper.

Table 3. Parameter settings of MIMD
Parameter Value

Upper threshold fraction ηhigh = 0.9

Lower threshold fraction ηlow = 0.75

Mode of operation Optimistic (λ=60)
Balanced (λ=75)
Pessimistic (λ=90)

Multiplicative increase factor MIMDinc = 2
Multiplicative decrease factor MIMDdec = 2
Minimum sampling period Smin = 30 seconds
Maximum sampling period Smax = 64 minutes

6.3 Performance Evaluation
We evaluated the performance of RATS on all the four datasets.
Note that no prior knowledge of any parameter in the system
including the deployment conditions is provided to the protocol at
startup. Instead, a 2 hr long learning phase is used to learn the
optimal time window and the scaling factor, as mentioned in
Section 6.1. Table 4 summarizes the values of these learned
parameters, which we use in the following subsections.

Table 4. Parameter settings for the data sets
Value Parameter

Indoor-I Indoor-II Outdoor-I Outdoor-II

T (in minutes) 8 6 6 3

Optimistic 1.86 1.71 1.47 1.96

Balanced 2.61 2.14 1.95 2.62

∆

Pessimistic 3.62 3.9 3.4 4.12

6.3.1 Metric of Evaluation
The dual goal of our algorithm is to minimize the energy
consumption in terms of synchronization beacons while achieving
bounded synchronization error as requested by the application.
We use the following two metrics to capture these goals:
Faulty ratio (EF): This is defined as the percentage number of
times the synchronization error crosses the desired user-defined
synchronization error bound, Emax. EF is normalized to the total
number of measurements in order to express it as a percentage. To
calculate the faulty ratio, we calculate Ep for every sample in the
data set i.e. at the minimum granularity of 5 seconds.

)11(
1

max

max
K







<∀

≥∀+
=

EEE
EEE

E
pF

pF
F

Average sampling period (Savg): This is expressed as average of
the sampling period at which the system operates over the
complete duration of the data set. If the algorithm samples for
time Ti at sampling rate Si and there are a total of M different
sampling rates, then:

)12(

1

1 K

∑

∑

=

== M

i
i

M

i
ii

avg

T

TS
S

6.3.2 Gauging the Adaptive Nature of RATS
Figure 11(a) plots the variation of temperature and drift between
the nodes over the complete duration of Outdoor-I. As anticipated,
the rate of change of drift is highly correlated with the rate of
change of temperature. Figure 11(b) shows the performance of
RATS (balanced version); it plots the sampling period at which
the system operates over the course of the experiment. The user-
defined error bound is 60µs.

(a) Drift and temperature variation (b) Performance of RATS
Figure 11. Runtime adaptation to system dynamics

RATS makes just 5 transitions in the first half compared to 15
transitions in the second half. The average sampling period during
the first and second half of the experiment is 59 and 42 minutes
respectively. Thereby, RATS adapts itself to the more dynamic
nature of the system during the second half when temperature
variations result in rapid changes in drift.

6.3.3 Energy v/s Error Tradeoff
Figure 12 plots the average sampling period (Savg) and the faulty
ratio (EF) for different user-defined error bounds for Outdoor-I.
For any version of RATS, Savg increases and EF decreases with
Emax, implying that RATS adapts itself automatically to meet the
desired precision.

20 40 60 80 100 120 140 160 180
20

30

40

50

60

Error bound (microseconds)

A
ve

ra
ge

 s
am

pl
in

g
 p

er
io

d
(m

in
ut

es
)

Pessimistic
Balanced
Optimistic

20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

Error bound (microseconds)

Fa
ul

ty
 ra

tio
 (%

) Pessimistic
Balanced
Optimistic

Figure 12. Energy & Error performance of RATS

0 2 4 6 8 10 12 14 16 18
17

18

19

20

21

Time (hours)

Te
m

pe
ra

tu
re

 (d
eg

C
)

0 2 4 6 8 10 12 14 16 18
-4.438

-4.436

-4.434

-4.432

-4.43

-4.428

-4.426

Time (hours)

dr
ift

 (n
o

un
its

)

0 2 4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

3000

3500

4000

Time (hours)

Sa
m

pl
in

g
pe

rio
d

(s
ec

on
ds

)

Sampling period is
changed 5 times

Sampling period is
changed 15 times

6.3.4 Comparing with Existing Approaches
Existing long-term time synchronization protocols are based on
periodically re-synchronizing the network. Figure 13 plots the
faulty ratio and the average sampling period for the periodic
scheme for Indoor-I. These protocols are non-adaptive and hence
the average sampling period will be equal to the fixed sampling
period at which the system operates. The desired error bound is
fixed to 90µs. Unlike RATS, the error bound does not have any
effect on the operation of the periodic scheme; its only
significance is for calculating EF. The window size is fixed to the
corresponding W* for every sampling period. Note that all
proposed implementations in literature (S=30s & W=8, S=300s &
W=8 in FTSP, S=10min & W=5 in Great Duck Island, S=5min &
W=5 in James Reserve, S=1min & W=8 in shooter localization)
will be just different points of operation on the curve in Figure 14.
The different points of operation for the three versions of RATS
are also shown in Figure 13 for comparison.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Average sampling period (minutes)

Fa
ul

ty
 ra

tio
 (%

)

Periodic scheme
MIMD; optimistic
MIMD; balanced
MIMD; pessimistic

Figure 13. Comparison with the non-adaptive sceheme

As can be seen from Figure 13, all the versions of RATS lie on the
right side of the curve corresponding to the periodic scheme. This
implies that RATS either achieves same error operating at a higher
average sampling period (viewed horizontally) or achieves less
error operating at the same sampling period (viewed vertically) as
compared to the periodic scheme. Thereby, RATS gives a superior
performance both in terms of energy and error as compared to the
existing approaches or any possible implementation (choice of S
and W) of the periodic scheme.

6.3.5 Comparison with Ideal Periodic Scheme
We now evaluate the benefit of using adaptive MIMD
synchronization in RATS by comparing it to a hypothetical ideal
periodic synchronization scheme. We take a version of the RATS
scheme and calculate the tuple (Savg, EF)RATS for a given error
bound. We then obtain a similar plot as in Figure 14 for the
periodic scheme. From this plot, we find the sampling period,
(Savg)FIXED, at which (EF)RATS = (EF)FIXED. Note that (Savg)FIXED
represents the upper bound, from an energy perspective, that any
periodic scheme can hope to achieve for the same error
performance as RATS. The ratio (Savg)RATS / (Savg)FIXED represents
the relative energy gains of RATS vis-à-vis the best possible
periodic scheme. Similarly, we gauge the relative error gains of
RATS with the best possible periodic scheme by calculating
(EF)FIXED for which (Savg)RATS = (Savg)FIXED. Table 5 presents the
results for a fixed error bound of 90 microseconds over different
data sets. The minimum energy gains we got are approximately
1.1x over the periodic scheme whereas the maximum energy

improvement is an order of magnitude, 12.5x. Similarly the
minimum and maximum error gains are of the order of 1.25x and
13.5x respectively. We repeated this experiment for an error
bound of 60 and 120 microseconds and we did not observe even a
single scenario in which the performance of RATS was worse
than the periodic scheme either in terms of energy or error.

Table 5. Comparison of RATS with ideal periodic scheme

These results demonstrate two key benefits of our adaptive
scheme. First, an adaptive scheme always out-performs the best
periodic synchronization scheme both in terms of energy and
error. This demonstrates the effectiveness of our protocol and the
potential benefits that can be obtained. Secondly, and very
importantly, our algorithm requires no initial parameters, no
application specific customization, and it can adapt automatically
to system dynamics. The periodic sampling scheme can perform
poorly in terms of error under constantly varying outdoor
environments, whereas our adaptive scheme achieves low error
even under these conditions.

6.3.6 Impact of Higher Order Polynomial Estimation
Although RATS is always able to outperform a periodic strategy,
its relative performance in an outdoor setting is worse than
indoors (refer Table 5). This hints towards looking for better
estimators and as a first step in this direction, we wanted to
investigate the performance benefits of using higher degree
polynomial estimators such as quadratic and cubic. For this, we
repeated the performance evaluation of the previous section with a
quadratic estimation strategy. Table 6 summarizes the results.
The observations to be made from Table 6 are twofold. First, in an
indoor setting linear estimation always performs better. Second, in
an outdoor setting, where the performance of RATS was worse,
the quadratic estimation strategy does not seem to give consistent
improvement. In fact in most of the cases, the performance is
worse than using linear regression. These results indicate that
using higher degree polynomial estimators results in diminishing
gains for the additional complexity. The right approach to obtain
more accurate results is to explicitly include ambient conditions
such as temperature and humidity, hardware and other systems
error into the estimator. We are currently exploring both empirical
and statistical techniques such as Kalman filtering in this regard.

Data set Version (Savg)RATS

(minutes) FIXEDavg

RATSavg

S
S

)(
)(

(EF)RATS

(%) RATSF

FIXEDF

E

E

)(

)(

Optimistic 56.99 1.36 3.63 2.51

Balanced 52.82 1.19 4.42 1.67

Indoor-I

Pessimistic 49.53 1.69 1.00 6.72

Optimistic 56.1 3.57 0.93 13.47

Balanced 54.26 5.16 2.03 5.76

Indoor-II

Pessimistic 49.48 12.52 0.87 10.93

Optimistic 54.33 1.1 14.81 1.31

Balanced 53.62 1.26 10.55 1.78

Outdoor-I

Pessimistic 47.4 1.16 9.65 1.38

Optimistic 22.02 1.15 18.43 1.45

Balanced 21.72 1.11 19.71 1.31

Outdoor-II

Pessimistic 19.55 1.08 15.9 1.24

Table 6. Comparison of linear v/s quadratic estimation

7. IMPLEMENTATION
RATS has been implemented and is successfully working on
Mica2 motes. The implementation is in NesC and the underlying
operating system is TinyOS. Due to space constraints, we only
briefly discuss the implementation details but interested readers
can refer to a more detailed design document [15].

7.1 Components
Figure 14 shows the TinyOS component graph for RATS.
FRClockM implements a free running 32-bit local clock based on
the hardware Timer1 of the AVR microcontroller. VClockC
maintains one (or multiple) virtual clock(s); it uses the model
parameters (β0, β1) to map the local time given by FRClockM to
the local time of the neighboring node. The estimation error and
the model parameters are calculated and maintained by the
module LinearEstM, which in turn uses the SoftFloatC
component. The latter implements the double precision floating
point arithmetic and is a TinyOS ported version of the SoftFloat C
library [16]. TSCommC component is responsible for sending,
receiving and timestamping the RATS packets. The
CC1000RadioC component is a modified version of the
corresponding component of the TinyOS source tree.
CC1000RadioC uses the component HTimerM (hardware
abstraction of the AVR hardware Timer 3) for accurate timing of
the handler that duty-cycles the radio. Note that VClockC instead
of FRClockM governs the duty-cycle of the radio. VClockC also
provides an interface for the application writer to specify an
alarm-like event based on a virtual clock.

Figure 14. TinyOS component graph for RATS

7.2 Troubleshooting
Implementing RATS on Mica2 motes involved numerous
challenges, a few of which we highlight in this section. First, the
single precision of the emulated floating-point arithmetic on a
mote results in large quantization errors that impact accuracy of
linear regression. The truncation error in terms of clock ticks is +/-
128, and depending on the resolution of the local clock, the error
can vary from +/- 17µs to +/- 17.7ms. Double-precision operations
require 64-bit arithmetic which is computationally intensive
(linear regression and error estimation over a window of 16
samples takes 70ms and 120ms respectively), but it is
significantly more accurate. As a proof of concept, we were able
to replicate all the results obtained via MATLAB in Section 6.
Since the model and error estimation needs to be done once every
few minutes, this overhead may not be significant. For this reason
we decided to port SoftFloat [16], a C implementation of the IEEE
754 Floating Point Standard, to TinyOS.
Second, the choice of the resolution of the timer offers a tradeoff.
If we choose a very high resolution, the clock wraps around too
often that limits the choice of the highest sampling period (Refer
to [15] for the mathematical details). In our current
implementation, we choose the resolution of the clock to be 8µs,
which restricts the highest sampling period to be 32 minutes. As a
result, the average sampling period numbers in the next section
are smaller than their counterparts in the simulations.

7.3 Performance Evaluation
We ran several RATS experiments on motes, with varying error
bounds and environmental conditions to gauge its performance in
real settings. The duration of experiments varied from 20-48
hours. We use a scaling factor of 4 and the optimal time window
of 8 minutes in all our experiments. Future work involves
implementing the learning phase in TinyOS, as described in
Section 5.3, to learn these parameters. Figure 15 shows an
instance of such an experiment – it shows the sampling period at
which RATS operate and the actual error between the motes in an
indoor (inside an air conditioned lab) and an outdoor (open ground
with temperature varying from 24-400C) setting with an error
bound of 0.45ms. As can be observed from Figure 15, RATS is
able to self-adapt; whenever the error crosses the desired
threshold, it lowers the sampling period. Table 7 summarizes the
results which are consistent with our earlier analysis.

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

Time (in hours)

E
rro

r (
in

 m
s)

0 5 10 15 20 25 30 35
0

10

20

30

40

Time (in hours)

S
am

pl
in

g
pe

rio
d

(m
in

ut
es

)

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

Time (in hours)

E
rro

r (
in

 m
s)

0 5 10 15 20 25 30 35 40
0

10

20

30

40

Time (in hours)

S
am

pl
in

g
pe

rio
d

(m
in

ut
es

)

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

Time (in hours)

E
rro

r (
in

 m
s)

0 5 10 15 20 25 30 35
0

10

20

30

40

Time (in hours)

S
am

pl
in

g
pe

rio
d

(m
in

ut
es

)

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

Time (in hours)

E
rro

r (
in

 m
s)

0 5 10 15 20 25 30 35 40
0

10

20

30

40

Time (in hours)

S
am

pl
in

g
pe

rio
d

(m
in

ut
es

)

 (a) Indoor (b) Outdoor

Figure 15. Real-time performance of RATS

Linear Quadratic Data set Version

Savg EF Savg EF

Optimistic 56.99 3.63 55.13 4.4

Balanced 52.82 4.42 53.14 3.28

Indoor-I

Pessimistic 49.53 1.00 47.00 1.42

Optimistic 56.1 0.93 54 8.1

Balanced 54.26 2.03 54 8.1

Indoor-II

Pessimistic 49.48 0.87 50.24 2.1

Optimistic 54.33 14.81 56.3 16.46

Balanced 53.62 10.55 52.83 15.68

Outdoor-I

Pessimistic 47.4 9.65 46.12 9.2

Optimistic 22.02 18.43 39.64 26.5

Balanced 21.72 19.71 38.45 35.32

Outdoor-II

Pessimistic 19.55 15.9 17.36 8.99

CC1KRadioC
VClockM

FRClockM LinearEstM

VClockC TSCommC

HTimerC
SoftFloatC

Table 7. RATS performance on motes
Setting Error

Bound (µs)
Av. Sampling
period (minutes)

Faulty
ratio(%)

Indoor 225 29.8 1.8%

Indoor 450* 31.7 3.7%

Indoor 700 31.34 0.0%

Outdoor 225 25.6 2.1%

Outdoor 450* 30.49 18.7%

Outdoor 700 31.75 6.4%
* Experiments of Figure 15

8. PREDICTIVE DUTY-CYCLING
Duty-cycling of the radio is a commonly used energy-
management technique for event-response applications. The
dominant factor that prevents optimal usage of the radio in real
settings is clock uncertainty (as described in Section 1). All
existing protocols incur overhead to handle this but are currently
limited by the lack of approaches that accurately estimate this
uncertainty. Our approach seeks to develop predictive techniques
for long term timing synchronization so that energy wastage both
due to time uncertainty and re-synchronization overhead is
minimized. Our proposed predictive duty-cycling and
synchronization architecture is shown in Figure 16.

MAC Coordinated
Actuation

Synchronized
sampling

CLIENTS

Predictive long-term synchronization

Error requirements

Humidity
sensor

ClockTemperature
sensor

Radio

Variables for model
estimation

Add to samples
repository

Send
beacons

MAC Coordinated
Actuation

Synchronized
sampling

MAC Coordinated
Actuation

Synchronized
sampling

CLIENTS

Predictive long-term synchronization

Error requirements

Humidity
sensor

ClockTemperature
sensor

Radio

Variables for model
estimation

Add to samples
repository

Send
beacons

Figure 16. Predictive Synchronization Architecture1
At the core is the prediction engine (same as Figure 2). The MAC
layer can use this engine to obtain a tight bound on the error with
a neighboring node. This knowledge of uncertainty can be used to
send a message with minimal radio overhead, while ensuring that
the neighbor will be awake to receive the message. Note that other
applications such as synchronized sampling and coordinated
actuation can also use this engine simultaneously.

8.1 Uncertainty-driven BMAC
BMAC [2] is a carrier sense media access protocol for wireless
sensor networks. It provides a flexible interface to obtain ultra low
power operation, effective collision avoidance, and high channel
utilization. To achieve low power operation, BMAC employs low-
power listening which reduces energy cost of idle network

1 Our current clock model is agnostic about the variations in

ambient conditions but in future we plan to develop more
efficient clock models.

listening by pushing an increased cost to the transmitter. In its
current form, the transmitter uses a preamble with every packet
that is guaranteed to handle the worst case time uncertainty
between the transmitter and receiver. This results in a huge
overhead. For example, with 11.5% and 2.22% duty-cycle a
preamble size of 250 and 1212 bytes respectively is used for
transmitting a 29 byte payload. Of these bytes, only four bytes are
required if the sender and receiver were perfectly synchronized.
Two of these bytes correspond to the minimum preamble size, and
two bytes are normally added to take care of miscellaneous factors
such as radio on/off time, software variations etc. Extra bytes over
the minimum of 4 bytes are added by BMAC to take care of time
uncertainty between the nodes. Specifically, addition of 1 byte
allows a leverage of around 416µs. We demonstrate an easy
integration of RATS and BMAC, termed as Uncertainty-driven
BMAC (UBMAC) that can help reduce this energy overhead.
UBMAC has two modes of operation:
Fixed preamble: In this proactive mode, UBMAC specifies an
uncertainty bound to RATS, which achieves the bound through
appropriate time synchronization beacon packets. UBMAC can
now use a fixed preamble corresponding to this bound irrespective
of the duty-cycle. For instance, if the uncertainty bound provided
to RATS is 900us, UBMAC needs to use a fixed preamble size of
(4+ 900/416 = 6) 6 bytes. Such a mode is useful when there is
frequent traffic in a sensor network since the cost of sending
beacons can be amortized over the reduction in preamble size for
many packets.
Variable preamble: This is a reactive mode in which no
uncertainty bound is provided to RATS. Instead, when the
application requests to transmit a packet, UBMAC uses the RATS
module to estimate the uncertainty between the clocks of the
sender and receiver. Based on this, the preamble size is decided on
the fly. For example, if RATS predicts the time uncertainty
between the clocks to be 2 ms, a preamble size of (4+2000/416
= 9) 9 bytes is used. Such a mode is useful when traffic is
infrequent and bursty. Note that some minimum time
synchronization traffic (say 1packet/4hours) will always be
present so that the sample repository does not become obsolete.
Note that the time synchronization control packets are always
transmitted using the worst case preamble size. Thereby, even
when the drift between the nodes suddenly changes, they will
always be able to exchange RATS packets and hence, will be able
to rectify the relative clock model between them.

8.2 Implementation
We have developed a prototype implementation of UBMAC on
Mica2 motes. In this section, we present the results for the fixed
preamble mode. We decided to use 6 bytes of preamble giving us
a leverage of 2 bytes (or 832µs). The objective of RATS is to keep
the nodes in sync within this error bound. Unlike the last section,
we use a clock resolution of 32µs2 so that the highest allowed
sampling period of RATS can be 64 minutes.
The experimental set up consists of three motes each running
UBMAC with 35.5% duty-cycle. We designated one node to be
the parent and the other two to be the children nodes. Each child

2 Higher accuracy requirement of 832µs allows us to use a lower

resolution clock.

maintains a virtual clock with respect to the parent, which is used
for the duty-cycling of the radio. Each child also runs the
predictive engine shown in Figure 2, calculates the desired
sampling period and sends it back to the parent in a special RATS
packet. The parent node chooses the minimum (maximum) of the
two sampling periods (rates) at which to broadcast the timing
synchronization packets. Besides this, the parent node sends an
application level packet every 30s. As mentioned earlier, BMAC
will use a preamble of 94 bytes (corresponding to 35.5% duty-
cycle) for this packet, whereas UBMAC uses a preamble of 6
bytes. Figure 17 shows the current consumption in transmitting a
packet, as observed on an oscilloscope, using BMAC and
UBMAC respectively. This figure clearly highlights the energy
gains brought about by the integration of RATS with BMAC.

3.7 3.75 3.8 3.85 3.9 3.95 4

x 10 5

4

6

8

10

12

14

16
x 10 -3

Time(0.01ms)

C
ur

re
nt

(A
)

sending
short preamble
+ packet

listening
after tx

normal
duty-cycle

3.7 3.75 3.8 3.85 3.9 3.95 4

x 10 5

4

6

8

10

12

14

16
x 10 -3

Time(0.01ms)

C
ur

re
nt

(A
)

sending
short preamble
+ packet

listening
after tx

normal
duty-cycle

3.9 3.95 4 4.05 4.1 4.15 4.2

x 10
5

4

6

8

10

12

14

16

x 10 -3

Time(0.01ms)

C
ur

re
nt

(A
)

normal
duty-cycle

sending
long preamble
+ packet

3.9 3.95 4 4.05 4.1 4.15 4.2

x 10
5

4

6

8

10

12

14

16

x 10 -3

Time(0.01ms)

C
ur

re
nt

(A
)

normal
duty-cycle

sending
long preamble
+ packet

3.7 3.75 3.8 3.85 3.9 3.95 4

x 10 5

4

6

8

10

12

14

16
x 10 -3

Time(0.01ms)

C
ur

re
nt

(A
)

sending
short preamble
+ packet

listening
after tx

normal
duty-cycle

3.7 3.75 3.8 3.85 3.9 3.95 4

x 10 5

4

6

8

10

12

14

16
x 10 -3

Time(0.01ms)

C
ur

re
nt

(A
)

sending
short preamble
+ packet

listening
after tx

normal
duty-cycle

3.9 3.95 4 4.05 4.1 4.15 4.2

x 10
5

4

6

8

10

12

14

16

x 10 -3

Time(0.01ms)

C
ur

re
nt

(A
)

normal
duty-cycle

sending
long preamble
+ packet

3.9 3.95 4 4.05 4.1 4.15 4.2

x 10
5

4

6

8

10

12

14

16

x 10 -3

Time(0.01ms)

C
ur

re
nt

(A
)

normal
duty-cycle

sending
long preamble
+ packet

 (a) BMAC (b) UBMAC

Figure 17. Current consumption

We ran a 24hr experiment in an indoor setting and measured the
packet drop rate at both the children nodes and an always-on
(100% duty-cycle) receiver. A relative comparison with an
always-on receiver helps us remove the bias of channel effects.
Table 8 summarizes the results.

Table 8. Packet loss rates (Indoors)
First child Second child Always-on

2.2% 1.95% 1.92%

Note that the packet drop rates are comparable at all the three
receivers. Furthermore, we observed that the packet drops were
correlated, implying that they are mainly lost owing to the
underlying channel characteristics. There were no bulk packet
losses at any of the two children nodes, indicating that no packets
are lost because of the time uncertainty between the children and
the parent node. The average sampling period of RATS was about
54 minutes. Over the course of the complete experiment, the
parent node would transmit 2800 packets in BMAC, each with a
preamble size of 94 bytes. In our system all these packets were
transmitted with a preamble size of 6 bytes. In addition 28 time
synchronization packets are transmitted and as mentioned earlier,
we use a preamble size of 94 bytes for transmitting these control
packets. Overall, this converts to 3x improvement in transmit
energy consumption. Clearly, these benefits will increase as the
number of packets transmitted grows. We conducted a similar
experiment in an outdoor setting with three children nodes. The
packet loss rates are summarized in Table 9. The average
sampling period of RATS was around 51 minutes. Both these
experiments clearly highlight the efficacy of our approach and
implementation. The time synchronization information can also be
piggybacked with event data packets, whenever possible, further
increasing the energy gains. Similar energy gains will also be

observed at the receiver, as they would have to keep the radio in
receive mode for a shorter duration.

Table 9. Packet loss rates (Outdoors)
First Child Second Child Third Child Always-on

2.45% 3.1% 3.45% 2.95%

8.3 Energy Gains
Figure 19 demonstrates the relative transmit energy gains of
UBMAC over BMAC. Note that the time synchronization
overhead is also added in the energy consumption of UBMAC
while obtaining this plot. The energy gains are calculated vis-à-vis
the relative frequency of the occurrence of events and re-
synchronization. For example, imagine a scenario where, on
average an event packet has to be send after every 5 minutes.
Using the results from previous sections, the average RATS re-
synchronization period will be of the order of 45-55 minutes.
Thereby, the relative frequency (x-axis in Figure 19) will be
around 9-10. With a duty-cycle of 11.5% and 2.2% energy gains
of 5x and 25x (y-axis in Figure 19) can be obtained. Figure 19
reveals two interesting observations. First, there exists a cut-off
point in terms of the relative occurrence of events and re-
synchronization (~5) beyond which the energy gains of UBMAC
over BMAC almost becomes a constant. Second, the relative
energy gains go on improving with shorter duty-cycle. This is
because with shorter duty-cycle, BMAC uses a higher preamble
size to take care of the worst-case uncertainty whereas UBMAC
can keep on using the same preamble size of 6 bytes. This has a
strong implication. The choice of the duty-cycle is typically
governed by the latency constraints; lower the duty cycle, higher
is the latency. For example, with 1% duty-cycle, the worst case
latency can be 1.5s. Thereby, for applications with mild latency
constraints, UBMAC can provide up to two orders of magnitude
reduction in the transmit energy consumption at a node.

10 20 30 40 50 60 70 80 90 100
1

20

40

60

Event / Time Sync rate

R
el

at
iv

e
en

er
gy

 g
ai

ns

35.5 % duty cycle

5.6 % duty cycle

2.2 % duty cycle

11.5 % duty cycle

3.6 % duty cycle

1 % duty cycle

Figure 18. Energy gains at the transmitter

9. DISCUSSION
In this section we will briefly discuss some of the ongoing
research efforts in the context of RATS.
Multihop performance: This paper focuses on long-term
synchronization of adjacent nodes as this is the fundamental
building block of network-wide long-term synchronization. A
simple translation of virtual clocks can be used to synchronize
nodes that are multiple hops away from each other. The problem
arises when one of the local clocks at a node overflows. We have
developed a comprehensive multihop extension of RATS that

takes care of this wrapping around of local clocks. Due to space
constraints we cannot cover the details but the interested readers
can refer to the corresponding technical report [15]. We have
developed a prototype implementation of this protocol in TinyOS;
albeit it has not been comprehensively tested. Some of the initial
results are encouraging. We were able to synchronize nodes across
3 hops within an accuracy of 0.5ms with each node running RATS
at an average sampling period of around 51 minutes.
Atomic clocks: A hardware-based solution for removing the time
uncertainty completely is to use a very stable atomic clock.
Recent advances suggest the possibility of a low-power atomic
clock that consumes 75mW [17]. This is still much too high for
sensor nodes. To put it into perspective, the energy overhead of
re-synchronizing the nodes in RATS will be comparable to the
energy overhead of running a stable clock, if the power
consumption of the clock is of the order of hundreds of nW.

10. CONCLUSIONS
We perform a detailed empirical study of long-term time
synchronization across sensor nodes in many different
environments including indoors and outdoors. A thorough
empirical and analytical study reveals complex relationships
between the sampling rate, window of past samples and the
estimation scheme. We show that there is an optimal time window
that will provide best estimation and error prediction. We provide
analytical techniques to bound the prediction error and
demonstrate an empirical verification of this bound. We use the
measurement-based study to design a multiplicative increase,
multiplicative decrease synchronization protocol. For a given
user-defined synchronization error bound, this scheme consumes
an order of magnitude less energy than the best possible periodic
synchronization scheme. Our algorithm is adaptive to varying
environmental conditions as well as unpredictable factors that
impact clock precision. It can handle arbitrary time
synchronization precision requirements from different
applications without any customization and can be integrated with
any lower-level timing synchronization approach.
This protocol paves the way for the development of uncertainty-
driven duty-cycling techniques for sensor networks. We
demonstrate a prototype implementation of such an approach by
integrating our time synchronization scheme with BMAC. We
show that this scheme achieves one to two orders of magnitude
reduction in the transmit energy consumption at a node.

11. ACKNOWLEDGMENTS
This material is based on research supported in part by the Center
for Embedded Networked Sensing (CENS), a NSF Science &
Technology Centre, and by the Office of Naval Research (ONR)
under the AINS Program. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the CENS or
the ONR.

12. REFERENCES
[1] Dutta, P., Grimmer, M., Arora A., Bibyk S., Culler D..

Design of a wireless sensor network platform for detecting
rare, random, and ephemereal events. Special Track on
Platform Tools and Design Methods for Network Embedded
Sensors (SPOTS), 2005.

[2] Polastre, J., Hill, J., Culler, D.. Versatile low power medium
access for wireless sensor networks. In Proceedings of the
ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2004.

[3] Ye, W., Heidemann, J., Estrin, D.. An energy-efficient
MAC protocol for wireless sensor networks. In Proceedings
of the 21st International Conference of the IEEE Computer
and Communications Societies (Infocom), 2002.

[4] Dam, T. V., Langendoen, K.. An adaptive energy-efficient
MAC protocol for wireless sensor network. In Proceedings
of the ACM Conference on Embedded Network Sensor
Systems (SenSys), 2003.

[5] Maroti, M., Kusy, B., Simon, G., Ledeczi, A.. The flooding
time synchronization protocol. In Proceedings of the Second
ACM Conference on Embedded Networked Sensor Systems
(SenSys), November 2004.

[6] Elson, J., Girod, L., Estrin D.. Fine-grained network time
synchronization using reference broadcasts. In Proceedings
of the Fifth Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, December 2002.

[7] Ganeriwal, S., Kumar, R., Srivastava, M. B.. Timing-sync
protocol for sensor networks. In Proceedings of the First
ACM Conference on Embedded Networked Sensor Systems
(SenSys), Los Angeles, CA, November 2003.

[8] CENS habitat sensing group at James Reserve.
http://www.jamesreserve.edu/

[9] Simon G., Maroti, M., Ledeczi, A., Balogh, G., Kusy, B.,
Nadas, A., Pap, G., Sallai, J., Frampton, K.. Sensor network-
based counter sniper system. In Proceedings of the Second
ACM Conference on Embedded Networked Sensor Systems
(SenSys), November 2004.

[10] Mills, D. L. Internet time synchronization: The network
time protocol. Global States and Time in Distributed
Systems, IEEE Computer Society Press, 1994.

[11] Sundararaman, B., Buy, U., Kshemkalyani, D.. Clock
synchronization for wireless sensor networks: A Survey. Ad-
hoc Networks, 3(3): 281-323, May 2005.

[12] Mills, D. L.. Adaptive hybrid clock discipline algorithm for
the Network Time Protocol. IEEE/ACM Transactions on
Networking 6, 5 (October 1998), 505-514.

[13] Rao, C. R.. Linear statistical inference and its applications.
John Wiley & Sons, New York, 1973.

[14] Allan Variance. http://www.allanstime.com/AllanVariance.

[15] Tsiatsis, V., Sim, H., Ganeriwal, S., Ganesan, D.,
Srivastava, M. B.. Implementation of rate adaptive time
synchronization protocol in TinyOS. Technical Report,
NESL 2005.

[16] Softfloat. http://www.jhauser.us/arithmetic/SoftFloat.html

[17] Chip-scale vapor-cell atomic clocks at NIST.

http://www.bouldernist.gov/timefreq/ofm/smallclock/

