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ABSTRACT 
Radio duty cycling has received significant attention in sensor   
networking literature, particularly in the form of protocols for 
medium access control and topology management. While many 
protocols have claimed to achieve significant duty-cycling 
benefits in theory and simulation, these benefits have often not 
translated to practice. The dominant factor that prevents the 
optimal usage of the radio in real deployment settings is time 
uncertainty between sensor nodes. This paper proposes an 
uncertainty-driven approach to duty-cycling where a model of 
long-term clock drift is used to minimize the duty-cycling 
overhead. First, we use long-term empirical measurements to 
evaluate and analyze in-depth the interplay between three key 
parameters that influence long-term synchronization - 
synchronization rate, history of past synchronization beacons and 
the estimation scheme. Second, we use this measurement-based 
study to design a rate-adaptive,   energy-efficient long-term time 
synchronization algorithm that can adapt to changing clock drift 
and environmental conditions while achieving application-specific 
precision with very high probability. Finally, we integrate our 
uncertainty-driven time synchronization scheme with a MAC 
layer protocol, BMAC, and empirically demonstrate one to two 
orders of magnitude reduction in the transmit energy consumption 
at a node with negligible impact on the packet loss rate. 

Categories and Subject Descriptors 
C.2.2 [Computer Systems Organization]: Computer 
Communication Networks – Network Protocols.  

General Terms 
Algorithms, Experimentation, Performance, Verification. 

Keywords 
Sensor Networks, Time Synchronization, Sampling Period, Clock 
Drift, Polynomial Model Estimation, Rate Adaptation. 

1. INTRODUCTION 
Many important applications of sensor networks involve the 

detection of rare, random and ephemeral events [1]. Examples of 
such event-response applications are diverse and include intrusion 
detection, chemical spill monitoring, warning of imminent natural 
disasters, condition-based monitoring of complex equipment and 
structural integrity monitoring. In theory, sensor nodes deployed 
for these applications need to use the radio only when the rare 
events are observed, hence, radio energy consumption should be 
minimal. However, this is far from true in practice since much 
energy is expended in addressing time uncertainty between 
communicating nodes. This can be illustrated by a simple 
example. Consider a generic event-response network where, to 
save energy, the nodes are duty-cycled. By default the radio 
would be off but would wake up periodically to participate in 
potential network communication. Consider two nodes A and B 
that simultaneously decide to wakeup after time t to check if the 
other node has observed an interesting event. During this period t, 
clocks on both A and B can vary in several uncorrelated ways due 
to ambient conditions and clock crystal characteristics. Therefore, 
the local time at A and B can be quite different at time t, hence, A 
and B would wakeup at different times.  
Existing duty-cycling techniques use a variety of approaches to 
deal with this uncertainty. A popular MAC layer protocol, BMAC 
[2], uses an asynchronous technique that involves no time 
synchronization or clock estimation whatsoever. Instead, each 
packet is transmitted with a long preamble which is chosen such 
that the receiver would wakeup some time during the preamble 
(refer to Figure 1). This incurs significant transmission overhead. 
For example with 11.5% duty-cycle a preamble of 250 bytes is 
used to transmit a 29 byte payload! Other techniques such as 
SMAC [3] and TMAC [4] use synchronized techniques where 
explicit time synchronization beacons are transmitted periodically 
between neighboring nodes. This enables the transmitter to turn on 
the radio at the right moment (refer to Figure 1), but the inability 
to deal effectively with time varying changes in clock drift force 
these techniques to re-synchronize frequently. For instance, one of 
the most efficient time synchronization protocols available in 
literature, FTSP [5], synchronizes once every minute to achieve 
90µs synchronization error. To put it into perspective, if the event 
rate is once every hour, 60 extra synchronization beacons will be 
transmitted for every event notification packet. Thus, existing 
radio duty-cycling approaches expend a lot of energy in handling 
time uncertainty between sensor nodes.  
The lack of techniques to accurately estimate time uncertainty 
also impacts the ability to deploy long-lived sensor network 
applications. Although available time synchronization 
implementations such as FTSP [5], RBS [6] and TPSN [7] can 
synchronize a pair of nodes within a few microseconds, their 
focus has been on achieving accurate instantaneous 
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synchronization. These approaches do not enable us to understand 
either how error accumulates over long periods into the future or 
how to choose the synchronization frequency for bounding the 
time uncertainty. While these schemes are important for several 
applications that require short-term synchronization such as 
measuring the time-of-flight, acoustic beamforming and tracking, 
they are insufficient for efficient duty-cycling as well as for 
applications that require continuous time synchronization such as 
coordinated actuation and synchronized sampling. In real 
application scenarios where these approaches have been 
employed, the choice of synchronization frequency has been 
handpicked to correspond to the precision requirements of the 
application.  For example, the CENS deployment at James 
Reserve [8] uses RBS to synchronize after every 5 minutes and 
the Shooter localization system [9] uses FTSP to synchronize once 
every 45 seconds. This has two drawbacks. First, the 
synchronization frequency needs to be manually configured for 
each new application synchronization requirement and 
deployment environment. Second, the chosen synchronization 
frequency is often highly suboptimal energy-wise as a result of the 
manual configuration. 
Thus, there is a critical need for better datasets, models and 
techniques for estimating and bounding the long-term uncertainty 
in clocks. This will have significant benefits across a broad 
spectrum of sensor network applications as well as for energy-
efficient MAC layer design. The re-synchronization period in 
SMAC can be of the order of tens of minutes (from the current 
periods of a few seconds), and BMAC can use significantly 
shorter sender-side preambles (from hundreds of bytes to a few 
bytes). Furthermore, the sleeping periods of nodes can be 
increased significantly (from 100ms to many tens of minutes) 
while not sacrificing synchronization error. Applications with 
different long-term synchronization requirements such as 
triggered actuation (100 ms bound), synchronized sampling (e.g.: 
structural monitoring with 10ms bound) can use our scheme 
without pre-configured parameters to obtain the minimum energy 
synchronization solution for the specified error bound. Data 
processing techniques can use the uncertainty in time between 
clocks to determine how to align and compress time series data 
that was sensed at different nodes. 
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Figure 1.  Transmission Mechanisms 

1.1 Contributions 
Our core contributions are three-fold. First, we experimentally 
obtain long time-scale data sets both in indoor and outdoor 
settings for Berkeley Mica2 motes. We then perform a detailed 
characterization of size of history and time synchronization 
beaconing period (or rate) on accuracy and energy requirements. 

A very important revelation of this study is that the optimal 
history of samples to choose for prediction is roughly constant 
across different sampling rates for polynomial estimators. 
Second, we use the results of our empirical analysis to design an 
adaptive time synchronization protocol that can provide bounded 
error under varying ambient conditions, simultaneously 
optimizing the energy overhead. We will show that in comparison 
to the best possible hypothetical periodic re-synchronization 
scheme, the minimum and maximum energy gains are 1.1x and 
12.5x respectively for achieving the same error bound. Our 
scheme outperforms the point solutions proposed by existing time 
synchronization schemes by one to two orders of magnitude. 
Lastly, we develop a prototype implementation on Mica2 motes 
for sense-response applications. This system integrates our long-
term time synchronization protocol with BMAC. We use a much 
shorter preamble for transmitting the packets at a nominal 
overhead of keeping the nodes in sync within a desired error 
bound. We will demonstrate that this reduces the transmit energy 
consumption by one to two orders of magnitude.  

2. RELATED WORK 
Time synchronization algorithms aim at synchronizing the local 
clocks of the nodes in the network. The most widely adopted 
protocol is the Network Time Protocol (NTP) [10]. NTP has been 
widely deployed and proven to be effective, secure and robust in 
Internet. However, the time synchronization requirements in 
sensor networks are more stringent, often requiring an accuracy of 
a few microseconds. NTP is also computationally intensive and is 
not focused on energy efficiency.  
Several time synchronization protocols have been developed to 
deal with the precision and energy requirements of sensor network 
applications [11]. Some of the notable ones are Reference 
Broadcast Synchronization (RBS) algorithm [6], Timing-sync 
Protocol for Sensor Networks (TPSN) [7] and Flooding Time 
Synchronization Protocol (FTSP) [5]. There exist prototype 
implementations for each of these approaches that can achieve 
within a few microseconds synchronization accuracy over a 
minute period.  However, these results are based on short-term 
synchronization. To the best of our knowledge, there exists no 
work in sensor networks that enables us to understand the 
accumulation of error over a long period of time.  
While long-term synchronization has not been the focus of sensor 
network research, it has been studied in the context of NTP [10] 
for the Internet. Mills [12] reports computer clock drifts over 
several days and uses this data to design interesting extensions to 
NTP. However, since energy is not a constraint, this work focuses 
on achieving tighter synchronization rather than minimizing the 
energy overhead. Moreover, this solution is static and does not 
adapt to the varying user-level precision requirements.  

3. PROBLEM FORMULATION 
We consider the problem of adaptive long-term synchronization of 
a pair of sensor nodes A and B, where node A sends beacons to B. 
Each beacon results in generating a new sample (TA, TB). TA is the 
time at which the beacon packet is transmitted by node A and TB is 
the receipt time of this packet at node B. Note that TA and TB are 
measured by the local clocks of A and B respectively. Node B has 
a history of these samples and wishes to estimate the minimum 
frequency of beaconing such that it can synchronize with node A 



within a user-defined synchronization error bound, Emax. The 
problem can be represented by the feedback control loop shown in 
Figure 2. A window of past samples (TA, TB) from the samples 
repository (Block A) is input to an estimator (Block B). The 
estimator uses these observations to estimate the relative clock 
model between A and B. This model can then be used to predict 
the future time at node B. Besides predicting the future time, a 
confidence estimate of this prediction is also calculated (Block C). 
This prediction error is then compared with the given error bound, 
based on which a minimum beaconing period is calculated. A new 
sample is taken (Block D) based on this new sampling period, 
which then gets added to the repository of samples. 
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Figure 2.  Time Synchronization Control Loop 

3.1 Model Estimation 
Throughout this paper, we will use the following polynomial 
model for representing the relative clock model between A and B: 
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In (1), TB is represented as a simple Kth degree polynomial in TA. 
The error, ε, is meant to capture both measurement errors as well 
as environmental factors that are known to influence clock 
behaviors but are not explicitly modeled by the simple polynomial 
model in (1). We return to the incorporation of these factors later 
in the paper. Given a window of n observations (TA,i, TB,i), i=1,..,n, 
we estimate the parameters, β0,…,βK, using ordinary least squares 
(OLS) as: 
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Refer to [13] for computational and theoretical details. Here, RSS 
stands for the residual sum of squares, the accumulated squared 
errors between the fitted model and the original data, TB,i. The 
method of OLS assumes that the best-fit curve of a given type is 
the curve that has the minimal sum of the deviations squared 
(least square error) from a given set of data. The values of the 
parameters that minimize (2) are denoted by

Kβββ ˆ,,ˆ,ˆ
10 K .  

3.2 Sample Repository 
The sample repository consists of tuple of the form (TA, TB). A 
new sample is formed when node A sends a beacon packet to B. 
The sampling period, S, corresponds to the periodicity with which 
A sends these beacon packets to B (inverse of the sampling rate). 
Taking a new sample imposes an energy cost on the system. 
However, new samples need to be taken to re-estimate the relative 
clock model so that the error remains bounded. Thus, the sampling 
period has a direct impact on both the energy and error 
performance of the system. Intuitively a higher sampling period 
will correspond to less energy consumption and a higher 
synchronization error and vice-versa. Our objective is twofold – 
(1) S should change adaptively in accordance with the system and 

environmental dynamics, and (2) The system should be operating 
at maximum S possible to meet the desired user level precision. 
Instead of using all the samples from the repository, we only use a 
few most recent samples, equal to the window size, for estimating 
the clock model. The impact of the window size on both the 
energy and error performance is less intuitive. 

3.3 Prediction Error Estimation 
Equation (1) can be used for predicting the future time at node B 
based on the time at node A. However, going even one step 
further, we want to estimate the uncertainty in this prediction. In 
this paper, we describe an approach of estimating this uncertainty 
based on a combination of analytical and empirical techniques. 
We concentrate only on the one-step look-ahead prediction i.e. the 
prediction uncertainty in the next immediate sample. From now 
onwards, we will use prediction error (Ep) to refer to the error at 
just this specific point.  

3.4 Objective 
The optimization problem can be formulated as: Given a 
repository of samples, find the combination of window size (W) 
and the degree of fit (K) that can maximize the sampling period 
(S) (and correspondingly minimize energy) while bounding the 
prediction error (Ep) within a user-defined error bound (Emax).  

Given: Past repository of samples 
Find: W, K and S 
Optimize: Maximize S 
Constraint: Ep < Emax  

Figure 3.  Optimization Problem  

4. EMPIRICAL STUDY 
The experimental set-up consists of two motes, A and B, with A 
periodically sending beacon packets to B. Node A notes the send 
time (TA) and node B the receipt time (TB) with their local clocks 
respectively. Motes send the timestamp information to IPAQs 
over the serial port, where it gets written in a file. The motes as 
well as the IPAQs are powered through a 5V DC supply. We also 
kept a log of the temperature throughout the duration of the 
experiment using two Mica2 sensor boards, one attached on each 
A and B.  We have used MTS420 sensor boards that come with 
calibrated temperature sensors (accuracy within 10C). We 
conducted different experiments across widely varying 
environments as well as on different pairs of devices. The 
objective was two-fold – (1) study the behavior across different 
environments to validate our algorithms in different potential 
sensor network deployment environments, and (2) isolate 
hardware/clock crystal effects on individual devices. We collected 
four data sets; the salient features are described in Table 1.  

Table 1. Salient features of the data sets 
Mote  Identification tag Duration  

(hours) 
Temperature 
range (0C) A B 

Indoor-I 30 25 – 26  1 2 

Indoor-II 12 25 – 26  3 4 

Outdoor-I 26 17 – 21  5 6 

Outdoor-II 12 22 – 27 3 4 



Every data set was collected by keeping the sampling period to 5 
seconds. For the empirical study, we extract higher sampling 
period from this basic data set. For example, if we want to analyze 
a data set with a sampling period of 1 minute, we consider every 
12th (60 / 5) sample. A simple sliding window scheme is used for 
this empirical study, whereby after choosing W, S and K we 
estimate the clock model and Ep. After this, we slide the window 
by one, thereby dropping the oldest sample in the window and 
taking in the new sample. This is repeated throughout the duration 
of the data set; the following sections show the average statistics.  
To understand the interaction between sampling period, sample 
history and estimation scheme, we first study these parameters in 
isolation and then in conjunction. Over short timescales, there is 
general agreement that a linear relative clock model (K=1) is 
sufficient [5, 6, 7]. We first study the interplay between the 
sampling period and the window size making this assumption. We 
will compare and contrast the performance of higher degree 
polynomial estimators with linear regression in later sections.  

4.1 Impact of History 
In this section, we study the impact of sample history on error. We 
fix the sampling period and the degree of fit (linear) and vary the 
window of samples used by the estimator to estimate the clock 
model. Figure 4 plots the prediction error for a sampling period of 
1 minute over varying window sizes for Indoor-I.  
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Figure 4.  Optimal window size 

The key revelation is the existence of an optimal window size, 
represented as W*, at which the error is minimized. In Figure 4, 
W* is equal to 8. The existence of an optimal window size and 
rapidly increasing error for both less (W<W*) and greater history 
(W>W*) suggests that the choice of history window should be 
carefully performed. At lower window sizes (W<W*), there are 
not enough samples available for obtaining the accurate clock 
model, whereas for higher window sizes (W>W*) the drift no 
longer remains a constant and hence, the available degrees of 
freedom (2 as it is a linear estimator) are not enough to accurately 
capture the dynamics of the clock model. 

4.2 Impact of Sampling Period 
We now study the dependency of this optimal window size on the 
sampling period. Figure 5 plots the optimal window size for 
different sampling periods for all the data sets. Two interesting 
observations can be made from Figure 5. First, the value of the 
optimal window size changes with the sampling period. For 
example, in the case of Indoor-I, the optimal window size is 
approximately 4 for a sampling period of 2 minutes, whereas it 
changes to 25 for a sampling period of 15 seconds. For sampling 
periods higher than 2 minutes, the optimal window size is the 

minimum (=2), thus the use of time history is not useful for high 
sampling periods. Second, although the trends and knee points are 
very similar for different datasets, the choice of optimal window 
size corresponding to each sampling period varies slightly with 
the choice of the environment. 
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Figure 5.  Sampling period v/s optimal window size 

Figure 6 plots the prediction error at these optimal points of 
operation. The prediction error increases monotonically with the 
sampling period. Although intuitive, this is the tradeoff that we 
seek to exploit while developing an adaptive scheme for 
resynchronization. Operating at a higher sampling period will lead 
to less energy consumption but more error and vice-versa. 
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Figure 6.  Error at the optimal point of operation 

4.3 Optimal Time Window 
In the previous section, we were focused on the optimal window 
size. However, an interesting metric is the optimal time window 
calculated as the product of optimal window size and sampling 
period. Figure 7 plots this time window for varying sampling 
periods for different data sets.  
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Figure 7.  Existence of an optimal time window 

Two very interesting observations emerge. First, the optimal time 
window is quite small, within 8 minutes for all the datasets. 



Second, the time window is roughly constant for a given dataset, 
although Outdoor-II shows some discrepancy. We represent this 
optimal time window by T and it can be approximated to be 8, 6 
and 5 minutes for Indoor-I, Indoor-II and Outdoor-I respectively. 
The existence of the optimal time window can also be predicted 
and explained by a non-classical statistic, Allan Variance [14], 
which is used to estimate the stability of clocks. For lack of space, 
we will not describe this in greater detail in this paper.  
The existence of the optimal time window implies that if model 
estimation is done over this window of time, the prediction error is 
minimized. For example, any time history beyond 8 minutes of 
data does not improve prediction error for future timestamps in 
Indoor-I. However, for higher sampling periods the time history 
will automatically exceed T; in which case the minimum window 
size (=K+1) will be optimal. Note that we need a minimum of 
K+1 samples for doing a K-polynomial model estimation. This 
explains why W* is always equal to 2 for all sampling periods 
greater than 8 minutes for every data set in Figure 5. The 
existence of the optimal time window also makes it easy to 
discover the optimal point of operation. If T is known W* can be 
calculated for any given S as follows:  
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5. ERROR PREDICTION 
Revisiting Figure 2, we know how to choose the window size for 
a given sampling period and do relative clock model estimation. 
The next building block in Figure 2 is the ability to accurately 
predict the error (Ep) given past history of beacons.  

5.1 Estimating Prediction Error 
Given a time window of n observations, (TA,i, TB,i), we can predict 
the time at node B given a new time at node A, TA, using our OLS 
estimates derived in (2) as: 
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Following standard regression theory [13], we can construct a (1-
α) confidence interval for this prediction as: 
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The first term in the product in equation (5) refers to an upper 
quantile of the t distribution with n-2 degrees of freedom, and the 
second term is the standard error of the predicted value [13]. We 
represent this product, the estimate of the prediction error (Ep), by 
δ. In this paper, we use the 95% confidence interval to estimate δ. 
Note that 95% confidence interval is the typical choice made in 
existing literature due the Gaussian assumption on the error 
distribution, ε (see equation (1)). 

5.2 Accuracy of Estimation 
If the error term, ε, in (1) has a normal distribution, then these 
confidence intervals behave as given by (5). However, there are 
many variables left out of (1), including temperature and 
humidity, hardware and other system errors that we cannot take 
into account explicitly to avoid the estimator from becoming too 
complex for simple sensor nodes. As a result the error term is 

likely to have more structure in it. Instead, a model of the form in 
equation (6) might be more appropriate. 
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Here f(.) is some function that depends on TA as well as the 
environmental conditions (described here by the vector of 
variables  x), and ε* is a zero mean, normal error term. When we 
fit a linear relative clock model, we are leaving out something 
systematic, calling into question our original assumptions about 
the error terms in (1). When a more elaborate model is actually 
true, our calculations leading to the confidence set (5) are now 
incorrect. Instead, one can decompose the prediction error into: 
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estimates. Recall that *
0β  and *

1β  are given explicitly as the OLS 
solutions to equation (2), where we replace the polynomial fitting 
model with f(TA, x), see [13] for details. The first two terms on the 
right in (7) are used in calculating the standard error that appears 
in our confidence interval (5); the first reflects an irreducible 
error, and the second describes the variance in our estimate (the 
difference between a random variable, BT̂ , and its expectation). 
The last expression in brackets is known as a bias term and is 
what we leave out by not knowing the proper form of f(.).  
By ignoring the bias, our confidence intervals do not have the 
correct coverage properties. There are many techniques in the 
statistics literature that attempt to estimate or correct for the bias, 
many of which are computationally expensive. Given our need for 
efficient calculations, we have chosen a simple approach in which 
we widen the confidence bands, introducing a scaling factor, ∆: 
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5.3 Scaling Factor 
More formally, scaling factor, ∆, is defined as the ratio of actual 
prediction error, Ep, and the estimation of this error obtained from 
equation (5), δ:  
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Figure 8 plots the cumulative distribution function of the scaling 
factor, for Indoor-I for different sampling periods. For every 
sampling period, we fix the window size corresponding to the 
optimal time window. Figure 8 can be used for deciding the value 
of scaling factor that probabilistically bounds x% of the prediction 
error. For example choosing ∆=6 will probabilistically bound 
90% the prediction error whereas ∆=2 will only bound 60% of the 
prediction errors. We refer to x% as the cut-off threshold and 
represent it by λ. We now evaluate the impact of varying 
environmental conditions on the scaling factor. For this, we 
calculate the cumulative distribution function of the scaling factor 
for various data sets and sampling periods. From these plots, we 
calculate the value of the scaling factor corresponding to the cut-
off threshold of 60, 80 and 95 respectively. The results are 
summarized in Table 2. 
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Figure 8.  Cumulative distribution of scaling factor 

For any particular dataset, the value of ∆ increases with increasing 
sampling period (for a chosen threshold). Finding out the exact 
relationship between the scaling factor and the sampling period is 
rather complex and outside the scope of this paper. In this paper, 
we find out the scaling factor for a given cut-off threshold, λ, at a 
medium sampling period, say 4 minutes, and  then assume it to be 
same across every sampling period. We will show that even such 
simplistic scheme is able to give us considerable gains. A more 
surprising and pertinent observation is that the scaling factor is 
roughly constant across different environments (for a chosen 
threshold and a set sampling rate). This has an important 
implication for protocol design: the scaling factor can be expected 
to be consistent across different deployments and times. 

Table 2. Scaling factor 
Data Set S = 1 minute S = 16 minute 

 λ =60 λ =80  λ =95 λ =60 λ =80 λ= 95 

Indoor-I  1.1 1.7 2.8 2.1 3.6 6.1 

Indoor-II  1.0 1.6 2.8 2.0 2.9 6.3 

Outdoor-I  1.3 2.0 3.7 2.2 2.7 6.9 

Outdoor-II  1.0 1.8 3.2 1.6 2.9 6.3 

6. RATE ADAPTIVE SYNCHRONIZATION  
Our empirical study provides an in-depth understanding of the 
impact of history and sampling period on the synchronization 
error. In this section, we propose the Rate Adaptive Time 
Synchronization (RATS) protocol based on the empirical study. 

6.1 Learning Parameters 
The time synchronization control loop shown in Figure 2 requires 
two parameters for its operation: optimal time window (T) and 
scaling factor (∆). A simple strategy of learning these parameters 
in a deployed system can be to use an initialization phase. Since 
the scaling factor varies little with the actual environment, this 
initialization can be done together with in-factory calibration 
before the nodes are even deployed. This will reduce the power 
requirements of this initialization. A post-deployment 
initialization phase for calculating the optimal time window will 
always be needed, as the optimal time window changes with the 
environment in which the system is deployed. In the initialization 
phase, a data set can be collected in a similar manner as in Section 
4, and then the empirical analysis of section 4 and 5 can be used to 
calculate these parameters. This approaches hinges on the 
assumption that the optimal time window and scaling factors have 
a temporally stationary distribution so that the values learned over 
an initial window of time are valid for long durations.  

We evaluated the efficacy of this assumption and the training-
based approach.  Figure 9 plots the value of the optimal time 
window v/s duration of the learning phase for Indoor-I and 
Outdoor-I. For a given duration of the learning phase, we took 50 
different measurements by varying the starting point randomly 
over the duration of the data set. The plot shows the average 
statistics; the standard deviation is shown by the vertical bars. As 
expected, the accuracy is higher for a longer duration of the 
learning phase. A 2-4 hour learning phase seems to hit the sweet 
spot across all the datasets that we studied. We also calculated the 
scaling factor for varying durations of the learning phase and a 2-4 
hour learning phase seems appropriate here as well. This clearly 
highlights the feasibility of training the system to estimate the two 
parameters within reasonable levels of accuracy, by using a small 
window of training information. 
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Figure 9.  Impact of the duration of learning phase 

6.2 Protocol Description 
The Rate Adaptive Time Synchronization (RATS) protocol tries 
to imitate the time synchronization control loop of Figure 2 at 
runtime. The objective of RATS is to repeatedly calculate the new 
sampling period so that the synchronization error remains 
bounded within the user specifications. The pseudo-code for the 
protocol is shown in Figure 10.  

1. Compute W* = max( K+1, T/S) 

2. Find ( oβ̂ , 1β̂ )using a window of W* samples in equation (2) 
3. Compute δ using equation (5) 
4. Find Ep = ∆ * δ  
5. if (Ep < [Emax * ηlow])  S  = S * MIMDinc 
    elseif  (Ep > [Emax * ηhigh]) S = S / MIMDdec  
6. if (S < Smin ) S  = Smin 
    elseif (S > Smax ) S = Smax  

Figure 10.  Psuedo code for RATS 

It starts with calculating the optimal window size, W* (using the 
optimal time window), for the given sampling period, S. The 
relative clock model is estimated using a linear estimator on the 
sample history equal to the optimal window size. The prediction 
error, δ, is then computed and scaled using the scaling factor, ∆. If 
the error is below the lower threshold, we multiplicatively 
increase sampling period, and if it is above the higher threshold, 
the sampling period is decreased multiplicatively. The sampling 
period remains unchanged if the error is between the two 
thresholds. At the end, we make sure that the new sampling period 



is within [Smin, Smax] to avoid the unbounded increase/decrease of 
the sampling period.  
Our reasons for choosing a multiplicative increase, multiplicative 
decrease (MIMD) strategy are two-fold. First, an MIMD scheme 
enables fast convergence to a sampling rate that minimizes energy 
as well as provides quick response to changing environmental or 
system conditions that result in loss of time synchronization 
precision. Second, MIMD is not as complex as an exponential 
scheme and becomes really simple if the multiplicative factors are 
powers of two.  Although additive increase/decrease is equally 
simple, it doesn't adapt fast. Table 3 summarizes the parameter 
settings of the RATS protocol that were kept fixed in our analysis. 
For lack of space, we do not provide an in-depth study of the 
impact of all these parameters settings. Instead, we provide a set 
of representative instances in this paper.  

Table 3. Parameter settings of MIMD 
Parameter Value 

Upper threshold fraction  ηhigh = 0.9  

Lower threshold fraction  ηlow  = 0.75  

Mode of operation  Optimistic (λ=60) 
Balanced (λ=75) 
Pessimistic (λ=90) 

Multiplicative increase factor  MIMDinc = 2  
Multiplicative decrease factor  MIMDdec = 2  
Minimum sampling period   Smin = 30 seconds  
Maximum sampling period  Smax  = 64 minutes  

6.3 Performance Evaluation 
We evaluated the performance of RATS on all the four datasets. 
Note that no prior knowledge of any parameter in the system 
including the deployment conditions is provided to the protocol at 
startup. Instead, a 2 hr long learning phase is used to learn the 
optimal time window and the scaling factor, as mentioned in 
Section 6.1. Table 4 summarizes the values of these learned 
parameters, which we use in the following subsections. 

Table 4. Parameter settings for the data sets 
Value Parameter 

Indoor-I Indoor-II Outdoor-I Outdoor-II 

T (in minutes) 8 6 6 3 

Optimistic 1.86 1.71 1.47 1.96 

Balanced 2.61 2.14 1.95 2.62 

∆ 

Pessimistic 3.62 3.9 3.4 4.12 

6.3.1 Metric of Evaluation 
The dual goal of our algorithm is to minimize the energy 
consumption in terms of synchronization beacons while achieving 
bounded synchronization error as requested by the application. 
We use the following two metrics to capture these goals: 
Faulty ratio (EF): This is defined as the percentage number of 
times the synchronization error crosses the desired user-defined 
synchronization error bound, Emax. EF is normalized to the total 
number of measurements in order to express it as a percentage. To 
calculate the faulty ratio, we calculate Ep for every sample in the 
data set i.e. at the minimum granularity of 5 seconds.  
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Average sampling period (Savg): This is expressed as average of 
the sampling period at which the system operates over the 
complete duration of the data set. If the algorithm samples for 
time Ti at sampling rate Si and there are a total of M different 
sampling rates, then:  
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6.3.2 Gauging the Adaptive Nature of RATS 
Figure 11(a) plots the variation of temperature and drift between 
the nodes over the complete duration of Outdoor-I. As anticipated, 
the rate of change of drift is highly correlated with the rate of 
change of temperature. Figure 11(b) shows the performance of 
RATS (balanced version); it plots the sampling period at which 
the system operates over the course of the experiment. The user-
defined error bound is 60µs. 

(a) Drift and temperature variation    (b) Performance of RATS 
Figure 11.  Runtime adaptation to system dynamics 

RATS makes just 5 transitions in the first half compared to 15 
transitions in the second half. The average sampling period during 
the first and second half of the experiment is 59 and 42 minutes 
respectively. Thereby, RATS adapts itself to the more dynamic 
nature of the system during the second half when temperature 
variations result in rapid changes in drift.  

6.3.3 Energy v/s Error Tradeoff 
Figure 12 plots the average sampling period (Savg) and the faulty 
ratio (EF) for different user-defined error bounds for Outdoor-I. 
For any version of RATS, Savg increases and EF decreases with 
Emax, implying that RATS adapts itself automatically to meet the 
desired precision.  
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Figure 12.  Energy & Error performance of RATS 
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6.3.4 Comparing with Existing Approaches 
Existing long-term time synchronization protocols are based on 
periodically re-synchronizing the network. Figure 13 plots the 
faulty ratio and the average sampling period for the periodic 
scheme for Indoor-I. These protocols are non-adaptive and hence 
the average sampling period will be equal to the fixed sampling 
period at which the system operates. The desired error bound is 
fixed to 90µs. Unlike RATS, the error bound does not have any 
effect on the operation of the periodic scheme; its only 
significance is for calculating EF. The window size is fixed to the 
corresponding W* for every sampling period. Note that all 
proposed implementations in literature (S=30s & W=8, S=300s & 
W=8 in FTSP, S=10min & W=5 in Great Duck Island, S=5min & 
W=5 in James Reserve, S=1min & W=8 in shooter localization) 
will be just different points of operation on the curve in Figure 14. 
The different points of operation for the three versions of RATS 
are also shown in Figure 13 for comparison.  
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Figure 13.  Comparison with the non-adaptive sceheme 

As can be seen from Figure 13, all the versions of RATS lie on the 
right side of the curve corresponding to the periodic scheme. This 
implies that RATS either achieves same error operating at a higher 
average sampling period (viewed horizontally) or achieves less 
error operating at the same sampling period (viewed vertically) as 
compared to the periodic scheme. Thereby, RATS gives a superior 
performance both in terms of energy and error as compared to the 
existing approaches or any possible implementation (choice of S 
and W) of the periodic scheme. 

6.3.5 Comparison with Ideal Periodic Scheme 
We now evaluate the benefit of using adaptive MIMD 
synchronization in RATS by comparing it to a hypothetical ideal 
periodic synchronization scheme. We take a version of the RATS 
scheme and calculate the tuple (Savg, EF)RATS for a given error 
bound. We then obtain a similar plot as in Figure 14 for the 
periodic scheme. From this plot, we find the sampling period, 
(Savg)FIXED, at which (EF)RATS = (EF)FIXED. Note that (Savg)FIXED 
represents the upper bound, from an energy perspective, that any 
periodic scheme can hope to achieve for the same error 
performance as RATS. The ratio (Savg)RATS / (Savg)FIXED represents 
the relative energy gains of RATS vis-à-vis the best possible 
periodic scheme. Similarly, we gauge the relative error gains of 
RATS with the best possible periodic scheme by calculating 
(EF)FIXED for which (Savg)RATS = (Savg)FIXED.  Table 5 presents the 
results for a fixed error bound of 90 microseconds over different 
data sets. The minimum energy gains we got are approximately 
1.1x over the periodic scheme whereas the maximum energy 

improvement is an order of magnitude, 12.5x. Similarly the 
minimum and maximum error gains are of the order of 1.25x and 
13.5x respectively. We repeated this experiment for an error 
bound of 60 and 120 microseconds and we did not observe even a 
single scenario in which the performance of RATS was worse 
than the periodic scheme either in terms of energy or error. 

Table 5. Comparison of RATS with ideal periodic scheme 

These results demonstrate two key benefits of our adaptive 
scheme. First, an adaptive scheme always out-performs the best 
periodic synchronization scheme both in terms of energy and 
error. This demonstrates the effectiveness of our protocol and the 
potential benefits that can be obtained. Secondly, and very 
importantly, our algorithm requires no initial parameters, no 
application specific customization, and it can adapt automatically 
to system dynamics.  The periodic sampling scheme can perform 
poorly in terms of error under constantly varying outdoor 
environments, whereas our adaptive scheme achieves low error 
even under these conditions. 

6.3.6 Impact of Higher Order Polynomial Estimation 
Although RATS is always able to outperform a periodic strategy, 
its relative performance in an outdoor setting is worse than 
indoors (refer Table 5). This hints towards looking for better 
estimators and as a first step in this direction, we wanted to 
investigate the performance benefits of using higher degree 
polynomial estimators such as quadratic and cubic. For this, we 
repeated the performance evaluation of the previous section with a 
quadratic estimation strategy. Table 6 summarizes the results.  
The observations to be made from Table 6 are twofold. First, in an 
indoor setting linear estimation always performs better. Second, in 
an outdoor setting, where the performance of RATS was worse, 
the quadratic estimation strategy does not seem to give consistent 
improvement. In fact in most of the cases, the performance is 
worse than using linear regression. These results indicate that 
using higher degree polynomial estimators results in diminishing 
gains for the additional complexity. The right approach to obtain 
more accurate results is to explicitly include ambient conditions 
such as temperature and humidity, hardware and other systems 
error into the estimator. We are currently exploring both empirical 
and statistical techniques such as Kalman filtering in this regard.  
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Optimistic 56.99 1.36 3.63 2.51 

Balanced 52.82 1.19 4.42 1.67 

Indoor-I 

Pessimistic 49.53 1.69 1.00 6.72 

Optimistic 56.1 3.57 0.93 13.47 

Balanced 54.26 5.16 2.03 5.76 

Indoor-II 

Pessimistic 49.48 12.52 0.87 10.93 

Optimistic 54.33 1.1 14.81 1.31 

Balanced 53.62 1.26 10.55 1.78 

Outdoor-I 

Pessimistic 47.4 1.16 9.65 1.38 

Optimistic 22.02 1.15 18.43 1.45 

Balanced 21.72 1.11 19.71 1.31 

Outdoor-II 

Pessimistic 19.55 1.08 15.9 1.24 



Table 6. Comparison of linear v/s quadratic estimation 

7. IMPLEMENTATION 
RATS has been implemented and is successfully working on 
Mica2 motes. The implementation is in NesC and the underlying 
operating system is TinyOS. Due to space constraints, we only 
briefly discuss the implementation details but interested readers 
can refer to a more detailed design document [15]. 

7.1 Components 
Figure 14 shows the TinyOS component graph for RATS. 
FRClockM implements a free running 32-bit local clock based on 
the hardware Timer1 of the AVR microcontroller. VClockC 
maintains one (or multiple) virtual clock(s); it uses the model 
parameters (β0, β1) to map the local time given by FRClockM to 
the local time of the neighboring node. The estimation error and 
the model parameters are calculated and maintained by the 
module LinearEstM, which in turn uses the SoftFloatC 
component. The latter implements the double precision floating 
point arithmetic and is a TinyOS ported version of the SoftFloat C 
library [16]. TSCommC component is responsible for sending, 
receiving and timestamping the RATS packets. The 
CC1000RadioC component is a modified version of the 
corresponding component of the TinyOS source tree. 
CC1000RadioC uses the component HTimerM (hardware 
abstraction of the AVR hardware Timer 3) for accurate timing of 
the handler that duty-cycles the radio. Note that VClockC instead 
of FRClockM governs the duty-cycle of the radio. VClockC also 
provides an interface for the application writer to specify an 
alarm-like event based on a virtual clock. 

 
 
 
 
 
 

Figure 14.  TinyOS component graph for RATS 

7.2 Troubleshooting 
Implementing RATS on Mica2 motes involved numerous 
challenges, a few of which we highlight in this section. First, the 
single precision of the emulated floating-point arithmetic on a 
mote results in large quantization errors that impact accuracy of 
linear regression. The truncation error in terms of clock ticks is +/- 
128, and depending on the resolution of the local clock, the error 
can vary from +/- 17µs to +/- 17.7ms. Double-precision operations 
require 64-bit arithmetic which is computationally intensive 
(linear regression and error estimation over a window of 16 
samples takes 70ms and 120ms respectively), but it is 
significantly more accurate. As a proof of concept, we were able 
to replicate all the results obtained via MATLAB in Section 6. 
Since the model and error estimation needs to be done once every 
few minutes, this overhead may not be significant. For this reason 
we decided to port SoftFloat [16], a C implementation of the IEEE 
754 Floating Point Standard, to TinyOS. 
Second, the choice of the resolution of the timer offers a tradeoff. 
If we choose a very high resolution, the clock wraps around too 
often that limits the choice of the highest sampling period (Refer 
to [15] for the mathematical details). In our current 
implementation, we choose the resolution of the clock to be 8µs, 
which restricts the highest sampling period to be 32 minutes. As a 
result, the average sampling period numbers in the next section 
are smaller than their counterparts in the simulations. 

7.3 Performance Evaluation 
We ran several RATS experiments on motes, with varying error 
bounds and environmental conditions to gauge its performance in 
real settings. The duration of experiments varied from 20-48 
hours. We use a scaling factor of 4 and the optimal time window 
of 8 minutes in all our experiments. Future work involves 
implementing the learning phase in TinyOS, as described in 
Section 5.3, to learn these parameters. Figure 15 shows an 
instance of such an experiment – it shows the sampling period at 
which RATS operate and the actual error between the motes in an 
indoor (inside an air conditioned lab) and an outdoor (open ground 
with temperature varying from 24-400C) setting with an error 
bound of 0.45ms. As can be observed from Figure 15, RATS is 
able to self-adapt; whenever the error crosses the desired 
threshold, it lowers the sampling period. Table 7 summarizes the 
results which are consistent with our earlier analysis.  
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  (a) Indoor                                     (b) Outdoor 

Figure 15.  Real-time performance of RATS  

 
 

Linear  Quadratic  Data set Version 

Savg  EF Savg EF 

Optimistic 56.99 3.63 55.13 4.4 

Balanced 52.82 4.42 53.14 3.28 

 

Indoor-I 

Pessimistic 49.53 1.00 47.00 1.42 

Optimistic 56.1 0.93 54 8.1 

Balanced 54.26 2.03 54 8.1 

Indoor-II 

Pessimistic 49.48 0.87 50.24 2.1 

Optimistic 54.33 14.81 56.3 16.46 

Balanced 53.62 10.55 52.83 15.68 

Outdoor-I 

Pessimistic 47.4 9.65 46.12 9.2 

Optimistic 22.02 18.43 39.64 26.5 

Balanced 21.72 19.71 38.45 35.32 

Outdoor-II 

Pessimistic 19.55 15.9 17.36 8.99 

CC1KRadioC
VClockM 

FRClockM LinearEstM 

VClockC TSCommC 

HTimerC
SoftFloatC 



Table 7. RATS performance on motes 
Setting Error 

Bound (µs) 
Av. Sampling 
period (minutes) 

Faulty 
ratio(%) 

Indoor 225 29.8 1.8% 

Indoor 450* 31.7 3.7% 

Indoor 700 31.34 0.0% 

Outdoor 225 25.6 2.1% 

Outdoor 450* 30.49 18.7% 

Outdoor 700 31.75 6.4% 
* Experiments of Figure 15 

8. PREDICTIVE DUTY-CYCLING  
Duty-cycling of the radio is a commonly used energy-
management technique for event-response applications. The 
dominant factor that prevents optimal usage of the radio in real 
settings is clock uncertainty (as described in Section 1). All 
existing protocols incur overhead to handle this but are currently 
limited by the lack of approaches that accurately estimate this 
uncertainty. Our approach seeks to develop predictive techniques 
for long term timing synchronization so that energy wastage both 
due to time uncertainty and re-synchronization overhead is 
minimized. Our proposed predictive duty-cycling and 
synchronization architecture is shown in Figure 16.  
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Figure 16.  Predictive Synchronization Architecture1 
At the core is the prediction engine (same as Figure 2). The MAC 
layer can use this engine to obtain a tight bound on the error with 
a neighboring node. This knowledge of uncertainty can be used to 
send a message with minimal radio overhead, while ensuring that 
the neighbor will be awake to receive the message. Note that other 
applications such as synchronized sampling and coordinated 
actuation can also use this engine simultaneously. 

8.1 Uncertainty-driven BMAC 
BMAC [2] is a carrier sense media access protocol for wireless 
sensor networks. It provides a flexible interface to obtain ultra low 
power operation, effective collision avoidance, and high channel 
utilization. To achieve low power operation, BMAC employs low-
power listening which reduces energy cost of idle network 

                                                                 
1 Our current clock model is agnostic about the variations in 

ambient conditions but in future we plan to develop more 
efficient clock models. 

listening by pushing an increased cost to the transmitter. In its 
current form, the transmitter uses a preamble with every packet 
that is guaranteed to handle the worst case time uncertainty 
between the transmitter and receiver. This results in a huge 
overhead. For example, with 11.5% and 2.22% duty-cycle a 
preamble size of 250 and 1212 bytes respectively is used for 
transmitting a 29 byte payload. Of these bytes, only four bytes are 
required if the sender and receiver were perfectly synchronized. 
Two of these bytes correspond to the minimum preamble size, and 
two bytes are normally added to take care of miscellaneous factors 
such as radio on/off time, software variations etc. Extra bytes over 
the minimum of 4 bytes are added by BMAC to take care of time 
uncertainty between the nodes. Specifically, addition of 1 byte 
allows a leverage of around 416µs. We demonstrate an easy 
integration of RATS and BMAC, termed as Uncertainty-driven 
BMAC (UBMAC) that can help reduce this energy overhead. 
UBMAC has two modes of operation: 
Fixed preamble: In this proactive mode, UBMAC specifies an 
uncertainty bound to RATS, which achieves the bound through 
appropriate time synchronization beacon packets. UBMAC can 
now use a fixed preamble corresponding to this bound irrespective 
of the duty-cycle. For instance, if the uncertainty bound provided 
to RATS is 900us, UBMAC needs to use a fixed preamble size of 
(4+ 900/416 = 6) 6 bytes. Such a mode is useful when there is 
frequent traffic in a sensor network since the cost of sending 
beacons can be amortized over the reduction in preamble size for 
many packets. 
Variable preamble: This is a reactive mode in which no 
uncertainty bound is provided to RATS. Instead, when the 
application requests to transmit a packet, UBMAC uses the RATS 
module to estimate the uncertainty between the clocks of the 
sender and receiver. Based on this, the preamble size is decided on 
the fly. For example, if RATS predicts the time uncertainty 
between the clocks to be 2 ms, a preamble size of (4+2000/416 
= 9) 9 bytes is used. Such a mode is useful when traffic is 
infrequent and bursty. Note that some minimum time 
synchronization traffic (say 1packet/4hours) will always be 
present so that the sample repository does not become obsolete. 
Note that the time synchronization control packets are always 
transmitted using the worst case preamble size. Thereby, even 
when the drift between the nodes suddenly changes, they will 
always be able to exchange RATS packets and hence, will be able 
to rectify the relative clock model between them. 

8.2 Implementation 
We have developed a prototype implementation of UBMAC on 
Mica2 motes. In this section, we present the results for the fixed 
preamble mode. We decided to use 6 bytes of preamble giving us 
a leverage of 2 bytes (or 832µs). The objective of RATS is to keep 
the nodes in sync within this error bound. Unlike the last section, 
we use a clock resolution of 32µs2 so that the highest allowed 
sampling period of RATS can be 64 minutes. 
The experimental set up consists of three motes each running 
UBMAC with 35.5% duty-cycle. We designated one node to be 
the parent and the other two to be the children nodes. Each child 

                                                                 
2 Higher accuracy requirement of 832µs allows us to use a lower 

resolution clock. 



maintains a virtual clock with respect to the parent, which is used 
for the duty-cycling of the radio. Each child also runs the 
predictive engine shown in Figure 2, calculates the desired 
sampling period and sends it back to the parent in a special RATS 
packet. The parent node chooses the minimum (maximum) of the 
two sampling periods (rates) at which to broadcast the timing 
synchronization packets. Besides this, the parent node sends an 
application level packet every 30s. As mentioned earlier, BMAC 
will use a preamble of 94 bytes (corresponding to 35.5% duty-
cycle) for this packet, whereas UBMAC uses a preamble of 6 
bytes. Figure 17 shows the current consumption in transmitting a 
packet, as observed on an oscilloscope, using BMAC and 
UBMAC respectively. This figure clearly highlights the energy 
gains brought about by the integration of RATS with BMAC.  
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                        (a) BMAC                                   (b) UBMAC 

Figure 17.  Current consumption 

We ran a 24hr experiment in an indoor setting and measured the 
packet drop rate at both the children nodes and an always-on 
(100% duty-cycle) receiver. A relative comparison with an 
always-on receiver helps us remove the bias of channel effects. 
Table 8 summarizes the results.  

Table 8. Packet loss rates (Indoors) 
First child Second child Always-on 

2.2% 1.95% 1.92% 

Note that the packet drop rates are comparable at all the three 
receivers. Furthermore, we observed that the packet drops were 
correlated, implying that they are mainly lost owing to the 
underlying channel characteristics. There were no bulk packet 
losses at any of the two children nodes, indicating that no packets 
are lost because of the time uncertainty between the children and 
the parent node. The average sampling period of RATS was about 
54 minutes. Over the course of the complete experiment, the 
parent node would transmit 2800 packets in BMAC, each with a 
preamble size of 94 bytes. In our system all these packets were 
transmitted with a preamble size of 6 bytes. In addition 28 time 
synchronization packets are transmitted and as mentioned earlier, 
we use a preamble size of 94 bytes for transmitting these control 
packets. Overall, this converts to 3x improvement in transmit 
energy consumption. Clearly, these benefits will increase as the 
number of packets transmitted grows. We conducted a similar 
experiment in an outdoor setting with three children nodes. The 
packet loss rates are summarized in Table 9. The average 
sampling period of RATS was around 51 minutes. Both these 
experiments clearly highlight the efficacy of our approach and 
implementation. The time synchronization information can also be 
piggybacked with event data packets, whenever possible, further 
increasing the energy gains. Similar energy gains will also be 

observed at the receiver, as they would have to keep the radio in 
receive mode for a shorter duration.  

Table 9. Packet loss rates (Outdoors) 
First Child Second Child Third Child Always-on 

2.45% 3.1% 3.45% 2.95% 

8.3 Energy Gains 
Figure 19 demonstrates the relative transmit energy gains of 
UBMAC over BMAC. Note that the time synchronization 
overhead is also added in the energy consumption of UBMAC 
while obtaining this plot. The energy gains are calculated vis-à-vis 
the relative frequency of the occurrence of events and re-
synchronization. For example, imagine a scenario where, on 
average an event packet has to be send after every 5 minutes. 
Using the results from previous sections, the average RATS re-
synchronization period will be of the order of 45-55 minutes. 
Thereby, the relative frequency (x-axis in Figure 19) will be 
around 9-10. With a duty-cycle of 11.5% and 2.2% energy gains 
of 5x and 25x (y-axis in Figure 19) can be obtained. Figure 19 
reveals two interesting observations. First, there exists a cut-off 
point in terms of the relative occurrence of events and re-
synchronization (~5) beyond which the energy gains of UBMAC 
over BMAC almost becomes a constant. Second, the relative 
energy gains go on improving with shorter duty-cycle. This is 
because with shorter duty-cycle, BMAC uses a higher preamble 
size to take care of the worst-case uncertainty whereas UBMAC 
can keep on using the same preamble size of 6 bytes. This has a 
strong implication. The choice of the duty-cycle is typically 
governed by the latency constraints; lower the duty cycle, higher 
is the latency. For example, with 1% duty-cycle, the worst case 
latency can be 1.5s. Thereby, for applications with mild latency 
constraints, UBMAC can provide up to two orders of magnitude 
reduction in the transmit energy consumption at a node. 
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Figure 18.  Energy gains at the transmitter 

9. DISCUSSION  
In this section we will briefly discuss some of the ongoing 
research efforts in the context of RATS.  
Multihop performance: This paper focuses on long-term 
synchronization of adjacent nodes as this is the fundamental 
building block of network-wide long-term synchronization. A 
simple translation of virtual clocks can be used to synchronize 
nodes that are multiple hops away from each other. The problem 
arises when one of the local clocks at a node overflows. We have 
developed a comprehensive multihop extension of RATS that 



takes care of this wrapping around of local clocks. Due to space 
constraints we cannot cover the details but the interested readers 
can refer to the corresponding technical report [15]. We have 
developed a prototype implementation of this protocol in TinyOS; 
albeit it has not been comprehensively tested. Some of the initial 
results are encouraging. We were able to synchronize nodes across 
3 hops within an accuracy of 0.5ms with each node running RATS 
at an average sampling period of around 51 minutes.  
Atomic clocks: A hardware-based solution for removing the time 
uncertainty completely is to use a very stable atomic clock. 
Recent advances suggest the possibility of a low-power atomic 
clock that consumes 75mW [17]. This is still much too high for 
sensor nodes. To put it into perspective, the energy overhead of 
re-synchronizing the nodes in RATS will be comparable to the 
energy overhead of running a stable clock, if the power 
consumption of the clock is of the order of hundreds of nW.  

10. CONCLUSIONS  
We perform a detailed empirical study of long-term time 
synchronization across sensor nodes in many different 
environments including indoors and outdoors. A thorough 
empirical and analytical study reveals complex relationships 
between the sampling rate, window of past samples and the 
estimation scheme. We show that there is an optimal time window 
that will provide best estimation and error prediction. We provide 
analytical techniques to bound the prediction error and 
demonstrate an empirical verification of this bound. We use the 
measurement-based study to design a multiplicative increase, 
multiplicative decrease synchronization protocol. For a given 
user-defined synchronization error bound, this scheme consumes 
an order of magnitude less energy than the best possible periodic 
synchronization scheme. Our algorithm is adaptive to varying 
environmental conditions as well as unpredictable factors that 
impact clock precision. It can handle arbitrary time 
synchronization precision requirements from different 
applications without any customization and can be integrated with 
any lower-level timing synchronization approach. 
This protocol paves the way for the development of uncertainty-
driven duty-cycling techniques for sensor networks. We 
demonstrate a prototype implementation of such an approach by 
integrating our time synchronization scheme with BMAC. We 
show that this scheme achieves one to two orders of magnitude 
reduction in the transmit energy consumption at a node. 
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