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Abstract

This paper presents the design and implementation of a
dual-camera sensor network that can be used as a mem-
ory assistant tool for assisted living. Our system performs
energy-efficient object detection and recognition of com-
monly misplaced objects. The novelty in our approach is
the ability to tradeoff between recognition accuracy and
computational efficiency by employing a combination of
low complexity but less precise color histogram-based im-
age recognition together with more complex image recog-
nition using SIFT descriptors. In addition, our system can
seamlessly integrate feedback from the user to improve the
robustness of object recognition. Experimental results re-
veal that our system is computation-efficient and adaptive
to slow changes of environmental conditions

1. Introduction

As the baby boomer generation ages, health care for the
elderly poses a major challenge over the next decade. Wire-
less sensor networks have often been referred to as the tech-
nology that can provide an affordable solution to this prob-
lem. Consequently, many research projects have explored
the use of wireless sensors for medical care at home includ-
ing a combination of wearable and ambient sensors for vital
sign, gait, and fall monitoring [6, 19]. In addition to mon-
itoring for illnesses and potentially life-threatening situa-
tions, an equally important challenge in home healthcare of
the elderly is providing assistance in their day-to-day life.
Moderate memory impairment is common as people age,
hence a major problem for the elderly is locating frequently
used ”common” objects such as keys, cellphones, PDAs,
books and others.

There has been considerable recent interest in addressing
the problem of ”object finding” both in academia and indus-
try. Many of these services seek to attach wireless tags on
the object, such as RFIDs [9, 17, 35], Bluetooth chips [15],
or 802.15.4 radios [23, 25], making it easier to localize the

object. While this offers a feasible solution for objects such
as car keys and PDAs that already have wireless tags on
them, the solution is cumbersome since it requires that every
possible object that may be misplaced needs to be tagged a
priori. Other approaches utilize visual information [24, 34],
e.g., the ASSIST project proposed the use of PTZ (pan-tilt-
zoom) cameras for object finding [34]. However, such PTZ
cameras are usually bulky and power hungry, making them
hard to deploy around homes.

In this paper, we explore how low-power camera sen-
sors can be distributed in a home environment to facilitate
retrieval of misplaced objects. Small, battery powered cam-
eras are portable, easy to deploy, and can be densely de-
ployed for greater coverage. In addition, such as system can
be used across many untagged objects at home without re-
quiring that each object be tagged individually. While there
have been many efforts in recent years to design low-power
smart camera networks for surveillance, object tracking,
and object detection [14, 31, 16, 7], our work is fundamen-
tally different in that we focus on achieving energy-efficient
recognition of commonly misplaced objects at home using
such a camera network.

The design of an object recognition system using low-
power cameras poses significant technical challenges. The
first challenge is that state-of-art image matching tech-
niques (e.g. SIFT [18]) require complex processing that is
computationally intensive on embedded processors that are
typically used on sensor nodes, and consequently energy-
intensive. This makes it essential to develop techniques that
are less complex and consume less energy but can still en-
able robust image recognition. The second challenge is that
image recognition typically requires a high-end sensor de-
vice with a high-resolution camera, and substantial compu-
tation and memory resources. However, the use of higher-
end sensor platforms (e.g. iMote2 [3]) comes at the cost of
energy-efficiency, and consequently lowers sensor lifetime.
One commonly proposed approach is to use a multi-tier net-
work [16], where a low-power and low-resolution wireless
camera node (e.g. Cyclops [5]) is used for object detec-
tion, and wakes up a higher power camera to perform ob-



ject recognition only when needed. However, this does not
entirely solve the problem since the high-power camera still
needs to wakeup and take images periodically to update its
background model.

1.1. Contributions

This paper presents the design and implementation of a
low-power wireless camera network that can be used as a
memory assistant tool to find a small set of pre-selected
common objects (cup, cellphone, etc) around the house.
The contributions of our system are summarized below.

Energy-efficient Region-of-object Estimation: Our
first contribution is robust object detection and region-of-
object (ROO) estimation using a dual-camera platform that
combines a low-power Cyclops camera and a higher power
iMote2 camera. Our dual-camera platform is configured
such that the Cyclops and iMote2 camera lenses have very
similar fields-of-view (FOV). A key contribution of our
work is that we exploit the Cyclops camera not only for
object detection but also to determine where the object
is located relative to the iMote2 camera’s image by us-
ing a SIFT (Scale-invariant Feature Transform) [18] based
image-mapping algorithm. Such a technique eliminates the
need for background detection at the high-power camera,
thereby saving energy.

Energy-efficient Object Recognition: Image process-
ing techniques for object recognition typically use the SIFT
algorithm, which is computationally expensive and requires
at least a few seconds of processing per image (on low
power processors of the type used here). A second con-
tribution of our work is the use of two types of features -
color and SIFT features - in order to reduce the energy re-
quired for object recognition. The color and SIFT features
are applied in a cascading manner which reduces energy
consumption without a significant drop in accuracy. For
every new object, the color features are extracted quickly
with limited computation, and the object is classified using
a semi-supervised clustering algorithm. If the color features
provide an accurate match, no further action is taken. If not,
SIFT features are extracted for the object and used for more
accurate classification. Our results show that this combina-
tion of techniques almost three times more efficient than a
scheme that only uses SIFT features, while being only 12%
less accurate across a range of illuminations.

Incorporating User Feedback: A unique aspect of our
system is the ability to incorporate user feedback to contin-
ually improve the results of object classification. The sen-
sor proxy provides a simple GUI to enable an elderly user to
query for objects that have been misplaced. The system then
returns to the user the candidate object images that are most
likely to match the query. The user is provided the option
of confirming the results and labeling the correct categories

of the images, which provides valuable real-time feedback
to the system to refine the data model of semi-supervised
clustering. Such user feedback enables more robust object
recognition in the presence of environmental dynamics.

The remainder of this paper is structured as follows. Sec-
tion 2 presents an overview of our system. Section 3 and 4
present the techniques of object detection and recognition.
Section 5 presents the method for tag-based object retrieval.
In Section 6 we give the implementation details of our sys-
tem. The experimental results are presented in Section 7.
Section 8 discusses related work. We present our conclu-
sions and future works in Section 9.

2. System overview

In this section we present an overview of the system.
The software and hardware architectures of our system are
shown in Figure 1.

2.1. System framework

Our system involves a network of dual-camera nodes,
each of which comprises of a low-power and high-power
tier that are physically connected together as shown in Fig-
ure 2. The low-power camera sensor node (Tier-1) com-
prises of a MICAz mote [1] equipped with a low fidelity
Cyclops camera sensor (CyclopsCam) [5, 28], and a 1GB
NAND flash for storing images [21]. The high-power cam-
era sensor node (Tier-2) comprises of a more-capable plat-
form, the Intel Mote2 (iMote2) [3] equipped with a high fi-
delity Enalab camera (EnalabCam) [2], and a 1GB SD card
for image storage. The two cameras on the dual-camera
node are placed close enough so that they have similar field-
of-view. User queries in our system can be posed from a PC
or PDA that is connected to an 802.15.4 wireless radio, and
can communicate with the MICAz and iMote2 nodes.

Figure 1. System architecture



Figure 2. The dual-camera node

2.2. System operation

The operation of our system can be divided into three
main components: object detection, object recognition and
image retrieval. The Tier-1 low-power camera takes an im-
age every few seconds, and performs still object detection,
i.e., it determines if an object that is detected is likely to be
a misplaced object as opposed to a moving object. If a still
object is detected, the Tier-1 camera stores the location and
size of this object in its local flash memory store. Once a
batch of still objects have been detected, the Tier-1 camera
wakes up the Tier-2 node and transfers the stored images to-
gether with information about the region in the image where
the object was detected.

The Tier-2 node uses an inter-camera region mapping
function to map the Tier-1 ROOs to its own camera co-
ordinates. This enables it to determine which regions in its
own view correspond to the new objects. Next, the Tier-2
node takes an image using its high-resolution camera, ex-
tracts the ROOs corresponding to new objects, and obtains
the color histogram corresponding to each ROO. The ob-
ject recognition procedure first tries to recognize the object
in each ROO by using the color histogram together with a
semi-supervised k-means clustering. For objects that cannot
be classified correctly using color features, the SIFT recog-
nition algorithm is used as additional evidence. The tagged
classification results from the Tier-2 node together with a
detection timestamp are transmitted to a sensor proxy, and
the raw image data is locally stored on the flash memory.
The Tier-2 camera node then goes back to sleep.

The user can query the system by specifying an object
tag that needs to be located. An approximate time frame
of interest can also be provided by the user to further re-
fine the search. The proxy locates the most recent event
corresponding to the requested object, and queries Tier-2
sensors that have reported the object. Since the Tier-2 sen-
sor is asleep, this query is first received by the Tier-1 node
which wakes up the Tier-2 sensor and forwards the query
over the serial connection. The matching image ROOs are
retrieved, and displayed on a GUI to the user, who can mark

images to be ”Valid” or ”Invalid”. If the required object is
not found, the proxy retrieves the previous event matching
the query, and repeats the same procedure. This continues
either until the object is located, or until no more objects
were detected in the timeframe of interest. Periodically, the
proxy also returns user feedback to the appropriate sensors,
which use this information to refine their clusters, thereby
enabling more efficient and more robust recognition.

3. Object detection

The object detection procedure in our system involves
two steps. The first step is detecting the presence of a still
object at each Tier-1 CyclopsCam. This procedure aims to
filter out transient motion in the field of view of the camera
such that only objects that stay relatively still are detected.
The second step involves triggering the Tier-2 EnalabCam,
and mapping from the ROO in the CyclopsCam to the Enal-
abCam. This procedure aims to address the fact that the
EnalabCam is woken up infrequently and cannot maintain
a reliable background model locally. Hence the EnalabCam
needs to be told approximately where the detected object is
located in its image.

3.1. Object detection in low power tier

For object detection, the Cyclops node maintains the
background using an average update model, which is
computational-efficient. The background image Bm is up-
dated by integrating the new frame Ic into the current back-
ground with a first order recursive filter: Bm = (1 −
α)Bm + Ic. By computing the differences between corre-
sponding pixels in Ic and Bm, a motion mask Mmot is ob-
tained to identify the foreground part in the current frame.
A connected components analysis is performed on Mmot,
and a set of blobs exceeding a minimum size is extracted.
These blobs represent potential objects added to the scene.

To detect that a candidate blob represents a new object
placement event as opposed to a transient motion event, we
need to check if this blob has been detected before and has
been still for a sufficiently long time. To achieve this, we
compare all the blobs in the current frame with those in the
previous frame. If the size and center of a blob is similar
enough to those of a blob in the previous frame, these two
blobs are considered to be the same object. When the de-
tection duration of an object blob becomes longer than a
pre-defined threshold, it is classified as a still object. The
object blob is then extracted and saved on the local flash
memory of the MICAz mote.



3.2. Inter-tier triggering and ROO mapping

After the still objects are detected, the Tier-1 node needs
to wake-up the Tier-2 camera from Deep-sleep mode. Since
the wake-up of the iMote2 node from this state has long la-
tency and consumes significant energy, the Tier-1 node trig-
gers the Tier-2 node after a batch of still objects are de-
tected. In this manner, the energy consumed to wakeup
the Tier-2 camera is amortized across multiple detections.
Note that the wakeup delay is not a problem for our appli-
cation since we are trying to detect still objects that remain
in the scene for a significant duration. Our system will not
be as effective in a tracking scenario since the latency of
wakeup needs to be low in order to track motion. Although
the FOVs of two cameras are similar, there may be slight
translation, rotation and considerable scaling between them
due to installation bias and the nature of the mechanical
mounts. To achieve robust region mapping from the pix-
els Pj = [ux, uy, 1]T in CyclopsCam image to the pixels
P

′

j = [vx, vy, 1]T in EnalabCam image, a motion model is
defined based on the affine transformation.

P
′

j = Dx0,y0Ssx,syRθPj

where Dx0,y0 is the translation matrix, Ssx,sy is the scale
matrix and Rθ, the rotation matrix. In order to solve the
motion model, the dual-camera node executes a calibration
procedure at system deployment time. Both cameras take
an image simultaneously, and the Tier-1 node transfers its
image over the serial port to the Tier-2 node. The Tier-2
node then extracts SIFT descriptors [18] from the two im-
ages. Since the SIFT descriptors are invariant to the image
rotation, scale, and translation expected in this application,
they provide a consistent set of local descriptors to match
between the two images. This calibration procedure is typi-
cally more computationally intensive than object recogni-
tion since it needs to be performed on the entire image
as opposed to just the ROO. However, this is a one-time
computation, hence its overhead is a very small fraction of
overall energy resources. After the inter-tier calibration is
done, any ROO in CyclopsCam image can be mapped to
the EnalabCam image efficiently using the motion model.
Figure 3.b shows a mapping result, in which the bounding
box around a book that is detected on the desk in the upper
CyclopsCam image is mapped to the appropriate rectangle
in the lower EnalabCam image.

4. Semi-supervised object recognition

Given the Region-of-Object extracted by the object de-
tection module, the next task of the Tier-2 node is to ac-
curately and efficiently recognize the object. Our approach
includes three procedures: feature extraction, object recog-
nition and constrained cluster update.

(a) (b)

Figure 3. An example of Field-of-View and
ROO mapping: (a) Control points found by
SIFT. (b) The ROO mapping result.

4.1. Feature extraction

We use two kinds of features to classify objects. The first
type of feature is a color histogram. Color histogram match-
ing is one of the most widely used algorithms for detecting
and recognizing objects in images [11]. Our system cal-
culates a 32-bin hue histogram for each ROO image. The
second type of feature that we use is the SIFT descriptor,
which represents an image as a collection of local feature
vectors that are invariant to image translation, scaling, ro-
tation, and partially invariant to illumination changes and
affine or 3D projection [18]. Given two images, a matching
algorithm is performed to calculate the number of matching
points between them, which represent the similarity.

Both color and SIFT features have their advantages and
limitations. Color features can be calculated in a compu-
tationally inexpensive manner, and are invariant to severe
scale, rotation and 3D projection; however, they are not in-
variant to illumination changes. SIFT tolerates illumination
changes and is widely considered to be one of the best fea-
ture representation methods, but it is computationally in-
tensive and does not perform well for deformable objects or
object that has no consistent texture in appearance.

Our system uses a combination of the two features in
a cascading multi-feature detection method. The idea is
to use color features to filter out irrelevant images and to
classify images that have distinctive color hues. The SIFT
features are then used to recognize the remaining images
that are hard to classify using only color. This combination
enables us to tradeoff between efficiency and robustness,
since the SIFT matching is performed only on a small set of
un-classified but relevant images. We note that the idea of
combining two kinds of image features for more robust de-
tection has been considered in image processing literature
[29, 32, 27], however, we exploit this technique for energy-
efficiency as opposed to detection accuracy.



4.2. Object recognition procedure.

The object recognition procedure starts by gathering a
small set of object images as training samples and mak-
ing the initial clustering division with standard k-means
algorithm. During this phase, clusters may be tagged by a
user - for instance, one cluster might correspond to PDAs
whereas another might correspond to cellphones. After
this training phase, the system can be used to monitor the
scene continually, and recognize the object detected using
this initial cluster model. The object recognition procedure
works in a batch manner, i.e., it is invoked after n objects
are detected. We now describe the recognition approach on
an object oi. The pseudocode of the algorithm is shown in
Algorithm 1.

4.2.1. Recognize by Color histogram. The recognition
procedure first tries to classify a new object using color his-
togram clustering since this can be done efficiently. Since
color histogram is a less precise feature, we use it in two
ways: (a) to filter irrelevant images that are unlikely to be an
object of interest and hence can be immediately discarded,
and (b) to determine if an object can be recognized solely
using the color histogram, in which case the SIFT descrip-
tor based matching need not be performed. The procedure
is shown in the first four steps of Algorithm 1.

The algorithm first finds the distance between the color
histogram of the new object oi and each cluster centroid,
dij . In step 2, this distance is used to determine a normal-
ized cluster membership metric, Rij , which represents the
likelihood that object oi belongs to cluster j. If the mini-
mum distance of oi to all clusters is two times larger than
the maximum of the distances between all samples to their
cluster centroids, oi will be considered to be an irrelevant
object and will be discarded. Otherwise, in Step 4, the
algorithm checks to see if the best matching cluster (i.e.
the cluster with maximum membership metric) exceeds a
pre-determined threshold, TR. If so, oi is considered to
uniquely belong to the cluster. In this case, the algorithm
matches the object to the tag associated with the cluster
(e.g. cup, or cellphone), and terminates.

4.2.2. Combine the Color and SIFT features. While
the color feature-based classification filters irrelevant im-
ages and identifies images that have clear membership in
one cluster, there may be a number of images that are close
to multiple clusters and cannot be classified accurately. We
use the SIFT features to identify such cases. Classifica-
tion using SIFT features involves three steps. First, a previ-
ously observed image that is closest to the centroid of each
”nearby cluster” (the cluster j such that Rij is larger than
a threshold TL

R ) is chosen as the ”representative” image for
the cluster. Second, the SIFT descriptors for the new image

are compared to the representative images for each cluster,
and a SIFT cluster membership score is assigned based on
the similarity. Finally, a combined score is assigned to the
new object based on a weighted combination of the color-
based and the SIFT-based membership metric. The object
is considered to belong to all clusters, and assigned all tags
for which the weighted score is greater than a pre-defined
threshold.

Algorithm 1: Pseudocode of object recognition procedure.
Input: object oi

Current model: Sample set X and the k clusters {Xh}kh=1

Parameters: TR, T L
R , α, THtag

Method:
1. Calc histogram xi for oi.
2. Calc membership of oi to all cluster centroids µj :

Rij = 1/(d2
ij

Pk
j=1(1/d2

ij)), where dij = ‖xi − µj‖.
3. If min(dij) > 2max(dlj)

l=n,j=k
l=1,j=1 , oi 3 {Xh}kh=1, exit.

4. If min(Rij) > TR, similarityij = Rij , goto step 6.
5. (1) For each µr such that Rir > T L

R , do:
Calc/save SIFT descriptors for oi and the closest sam-
ple sl to µr; Calc number of SIFT matching points Mir

between oi and sl.
(2) For the rest µr such that Rir < T L

R , let Mir = 0.
(3) Calc Rir

SIFT = Mir/
Pk

j=1 Mij for all µr .
(4) l = maxr(R

ir
SIFT = Mir). oi, sl → S.

(5) similarityij = Rij + αRij
SIFT .

6. Let k = maxj(similarityij), oi ∈ Xk.
7. For all j that similarityij > THtag ,

stringof(µi)→ Tags.

This procedure is shown in Steps 5-7 of Algorithm 1. In
step 5, we calculate the number of SIFT matching points
between oi and the representative image sj correspond-
ing to each cluster. For cluster j, sj is the closest sample
to the centroid µj . We can then calculate the number of
SIFT matching points Mij between oi and sj in each clus-
ter. Rij

sift represents the SIFT similarity between oi and the
sample sj in cluster j. Rij

sift represents the evaluation score
of the membership of oi to cluster j given by SIFT features.

The overall evaluation score of the identity of oi

is calculated by combining color and SIFT features:
similarityij = Rij + αRij

sift, where α is a weight that
reflects the importance of SIFT features. If similarityij >
THtag , then the object is associated with a specific tag,
where THtag is a predefined threshold that balances the
false positive and false negative of object recognition. After
an object is recognized, the ROO and the entire scene image
is stored in the flash memory of Tier-2 node, and metadata
about the recognized object (node id, timestamp, tags) is
transmitted to the proxy.



4.3. Constrained cluster updating

Until now, we have discussed how the color-based clus-
ters can be used for classification. We will now describe
how the clusters themselves can be evolved in a dynamic
manner, by taking into account both information gleaned
from the SIFT feature-based matching as well as from user
feedback. SIFT feature-based matching provides links
between two ROOs. For instance, if the matching score
Rij

sift of two samples i, j is high, it is likely that sample
i and j are the same object. In addition, since our object
retrieval application interacts with users, we can even get
more constraints from user feedback. For example, a user
can directly label the class of a sample, or denote if two
samples are the same object. We assume in this work that
user feedback is always accurate.

4.3.1 Constraint definition. We define two broad
classes of constraints - hard-label constraints and pair-link-
constraints. The former captures constraints provided by
user feedback, where the user labels an image ROO, for in-
stance, as a PDA. The latter captures constraints between
pairs of images - for instance, based on SIFT image match-
ing. We now formally define these constraint classes.

Hard-labeled-constraint (HLC) indicates a definite
match between a sample and a certain cluster. H denotes
the set containing HLC.

Pair-link-constraint (PLC) represents the constraint
between pairs of examples. There are three subclasses:

(i) A Must-link constraint indicates that two samples
should belong to the same cluster. (ii) A Cannot-link con-
straint indicates that two samples must belong in different
clusters. (iii) A Soft-link constraint indicates two samples
are probably in one cluster. The evidence of each soft-link
constraint is computed by SIFT descriptor matching, and its
weight is assigned based on the SIFT matching score Rij

sift.
For Pair-link-constraint, we define S, M, C as the

sets containing the soft-link, must-link and cannot-link
constraints.

4.3.2. Constrained k-means. Although clustering al-
gorithms like k-means have the ability to handle hard-
label constraints, it is difficult for them to handle pair-
link constraints. A few techniques have been suggested in
semi-supervised k-means algorithms to address this prob-
lem [33, 8, 12], upon which our approach is based.

Since standard k-means cannot handle pairwise con-
straints explicitly, the goal of clustering is formulated as
minimizing a combined objective function which is the sum
of the total distance between the samples and their cluster
centroids and the cost of violating the pair-link constraints.
The clustering problem can be formulated as minimizing
the following objective function, where xi is assigned to

the partition Xi with centroid µli .

Φ = β
∑

xi∈X
‖xi − µli‖2 +

∑
(xi,xj)∈S

wij
S ⊥[li 6= lj ]

+
∑

(xi,xj)∈M

wM⊥[li 6= lj ] +
∑

(xi,xj)∈C

wC⊥[li = lj ]

in which ⊥ is the indicator function, with ⊥[true] = 1
and ⊥[false] = 0. β is a parameter to trade off the im-
portance of the data set itself with that of the constraints.
The cost of violating a pair link constraint is given by the
weight of this link. wij

S denotes the weight of the soft-link
constraints based on SIFT matching, and wM and wC de-
note the weights on must-link and cannot-link constraints.
Since explicit user feedback is more precise than the result
that SIFT-based matching returns, we use higher value for
wM and wC than that for wij

s .

Algorithm 2: Constrained cluster updating algorithm.
Input: A set of old samples X = {xi}ni=1

The old clusters: disjoint k partitioning {Xh}kh=1

A set of new samples: Xnew = {xi}mi=1

Constraint sets: S, M, C, H
Parameters: β, wM , wC , ws

Method:
1. Load the cluster configuration {Xh}kh=1

2. Repeat until convergence:
(1) Assign all sample with HLC: For the sample (xi →

j) ∈ H , directly assign xi to cluster hj . For the sample
(xi 9 j) ∈ H, assign it to the closest cluster h such that
h 6= j.

(2) Assign each other sample xi to the cluster hL, for

hL = arg min
h

(β‖xi − µ
(t)
h ‖

2 +
X

(xi,xj)∈S

Rij
SIFT⊥[h 6= lj ]

+
X

(xi,xj)∈M

wM⊥[h 6= lj ] +
X

(xi,xj)∈C

wC⊥[h = lj ])

(3) Estimate and update means:
{µ(t+1)

h }kh=1 ← { 1

|X (t+1)
h

|

P
x∈X (t+1)

h

wsx}kh=1

(4) t← (t + 1)
3. Delete a set of the oldest samples from the clustered data.

Algorithm 2 shows the cluster update algorithm. The al-
gorithm alternates between the cluster assignment and cen-
troid estimation steps. In the cluster assignment step, every
sample xi is assigned to a cluster such that it minimizes the
sum of the distance of xi to the cluster centroid and the cost
of constraint violations incurred by that cluster assignment.
The centroid re-estimation step is the same as standard k-
means.



The proof of the convergence property of our algorithm
is similar to the proof in [8]. In our algorithm, the pair-
wise constraints are given only by SIFT features and user
feedback, which are not explicit functions of the centroid,
so in re-estimating the cluster centroid µh, only the compo-
nent

∑k
h=1

∑
xi∈Xh

‖xi − µh‖2 is minimized. Hence the
objective function decreases after every cluster assignment
and centroid re-estimation step till convergence, implying
that the algorithm will converge to a local minimum of Φ.
We give samples with hard constraints more weight in the
centroid re-estimation step.

The computational complexity of k-means is Ondk,
where n, d, k represent the number of data points, dimen-
sions and clusters respectively. It is linear in the size of the
input, which makes the algorithm efficient.

(a) (b)

Figure 4. An example of clustering under con-
straints. Color is used to identify different
clusters. To represent clusters, Two domi-
nating dimensions are calculated by PCA and
used as x, y coordinates.

An illustration of constrained cluster updating is shown
in Figure 4, in which each color represents an actual cluster.
Due to the slight illumination change, there is a little shift
between new samples and old samples in each cluster. As
seen from Figure 4 (a), the new samples in the ”boundary
regions” between clusters may be incorrectly assigned due
to the shift. Figure 4 (b) shows that by using pair-link con-
straints to update clusters, the centroids shift towards the
new samples so that the cluster model represents the new
samples better. In this way, our system is more reactive
to changes in illumination. The cluster update algorithm is
performed infrequently at the Tier-2 node (iMote2) when a
sufficiently large number of constraints have been accumu-
lated, hence the computational overhead of the approach is
not significant.

5. Object retrieval in proxy-tier

Our system employs a proxy-tier to organize the infor-
mation from the dual-camera sensors, as well as process
user queries.

5.1. Event Database

The proxy-tier maintains a database of event messages
sent by sensor nodes. Each time a sensor node detects and
recognize an object, it will send an event notification to
the proxy. In the event that multiple overlapping cameras
are placed to cover an area of interest, it is possible that
multiple nodes can detect and recognize the same object,
thereby suppressing false negatives. To merge the recogni-
tion results from multiple nodes, the proxy combines event
messages with similar timestamps, and stores it in a local
database for future retrieval. Note that consistent times-
tamps can be obtained by using a network-wide time syn-
chronization protocol such as FTSP [20]. Table 1 shows
an example of the stored item in database in the proxy-tier,
where ”Global ID” represent the global sequence number of
the event, ”Node-Addr (Local-ID)” indicates the address of
the nodes detect this event attached with the local event in-
dex in the node. ”Tags” is an intersection of the recognition
results of these nodes that see the same object. ”Times-
tamp” is the average time of the same event detected by
multiple sensors.

Table 1. Database at the proxy-tier
Global
ID

Node-Addr
(Local-ID)

Tags Timestamp

n 2 (14) Key; PDA 2007-10-3-22:25:50
n+1 2 (15) Book 2007-10-3-22:31:27
n+2 2 (16); 3 (15) Book; Cup;

PDA
2007-10-3-22:38:54

5.2. Tag-based object retrieval

Our system provides a tag-based object retrieval capabil-
ity. The user can provide the name of a tag or class as the
command to retrieve the latest location of this object. The
retrieval process is performed in an interactive manner. The
proxy first searches for the query string (object name) in the
Tags field of local database. The proxy locates the latest
item whose Tags field contains the query string, and sends
an ”ROO Request” message to the appropriate sensors in
NodeID field to retrieve the ROOs of interest. Each node
that receives this request compresses the candidate ROO im-
age in JPEG format and transmits it over the wireless radio
to the proxy.



The candidate ROO sent back by the sensor node will
be shown to the user using an easy-to-use GUI. If the user
marks this ROO as ”Valid”, i.e., confirms that it is, in fact,
the queried object, the proxy sends an ”Image Request”
command to the sensor node and a full image containing
the ROO will be transmitted back to the proxy and shown
to the user. Otherwise if the user marks this ROO as ”In-
valid”, it means the ROO is not the queried object due to a
false positive. The proxy will continue to search through its
database to locate an older item that matches the user query.
This process is repeated until an ROO is accepted by the
user. Such an interactive retrieval approach ensures that we
don’t transfer an entire scene image unless we are sure that
it contains the queried object, thereby saving energy.

The user feedback also provides constraints that can be
exploited for better clustering, as described in Section 4.3.2.
In addition to the ”Valid/Invalid” marking, users also have
the option of correctly labeling a candidate ROO, or indi-
cating if two candidate ROOs are the same object or not.
This information is periodically fed back from the proxy to
the appropriate sensor nodes, which use them to update the
cluster model.

6. System implementation

This section describes the implementation details of our
system based on the design discussed in previous sections.

6.1. Hardware implementation

Tier-1: Tier-1 comprises of a Cyclops camera [28] con-
nected to a MICAz [1] mote. The Cyclops comprises of
an Agilent ADCM-1700 CMOS camera module, a Xilinx
FPGA and an ATMega128 microcontroller. The Cyclops
communicates with MICAz via I2C bus and uses a 2.4GHz
CC2420 radio chip as the wireless component.

Tier-2: Tier-2 node comprises of an Enalab camera [5]
and an iMote2 [3]. Enalab camera module comprises an
OV7649 Omnivision CMOS camera chip, which provides
color VGA (640x480) resolution. The iMote2 comprises
an 18-400MHz Xscale PXA271 processor and a CC2420
radio chip. The Enalab camera is connected to the Quick
Capture Interface (CIF) on iMote2. To support large image
data storage, a 1GB external flash memory is attached.

The Tier-1 node and Tier-2 node are connected with a
trigger circuit for wakeup, and communicate through the
serial port. The Cyclops camera and the Enalab camera are
mounted close to each other in order to increase the accu-
racy in inter-tier ROO mapping. The sensor nodes are pow-
ered by batteries.

Base-station: In the prototype system a PC is used as the
base station. An iMote2 node is connected to the PC and
acts as the gateway.

6.2. Software environment

The software environments in our system are different on
the different tiers. In Tier-1, both MICAz and Cyclops run
TinyOS 1.1.14. We enhanced the object detection software
available for the Cyclops to perform still object detection.
The Tier-2 iMote2 runs Arm-Linux. OpenCV library [4] is
used on the iMote2 to facilitate the basic image computa-
tions, such as image conversion, transformation and color
histogram computation. Our SIFT algorithm is based on
the SIFT++ lib, which is a lightweight C++ implementa-
tion of SIFT descriptor extraction. The Intel Integrated Per-
formance Primitives library (IPP) is used to accelerate data
processing. A JPEG compressor was also developed using
IPP lib to compress images. The IEEE 802.15.4 radio pro-
tocol is used to communicate among all nodes in the system.

7. Experimental evaluation

We evaluate the performance of our object recognition
system through an extensive set of experiments. We first
evaluate the benefits of using a dual-camera sensor node in-
stead of a single camera node. We then evaluate the power
consumption and performance of the object detection, and
object recognition algorithms individually, and finally pro-
vide a full system evaluation using multiple cameras in a
realistic environment.

There are a number of key parameters in our system: TR,
TL

R , THtag for Algorithm 1, and wM , wC , ws for Algo-
rithm 2. In all our experiments, TR, TL

R were fixed and set
to 0.7 and 0.2 respectively. Our intuition for picking these
values was that they screen out the samples in the ”bound-
ary regions” (as seen in Figure 4.a). THtag is set to 0.3 in
all experiments except in Section 7.5 where we evaluate the
impact of tuning this parameter. For algorithm 2, the exper-
imental results are not very sensitive to the parameters wM

and wC , as long as they are assigned a value larger than 10.
In our experiment we set wM = wC = 10. ws is also not a
sensitive parameter and is set to 2.

7.1. Energy cost of object detection

In order to provide a better intuition for the energy gains
offered by our system, we compare our system with a
single-tier design that keeps iMote2+EnalabCam node al-
ways on to perform the detection. In our system, the MI-
CAz+CyclopsCam will wake up the iMote2+EnalabCam
every 4 still objects are detected. We also present the power
consumption for two operational modes of the CyclopsCam
- a ”duty-cycle” mode and an ”always on” mode.

Figure 5 (a) shows the power consumption for continu-
ous monitoring as a function of the sampling interval. In
this experiment, no object is detected, i.e., iMote2 does not



need to be woken up. As seen from the figure, both op-
eration modes of our system consume less energy than the
single-tier version, clearly demonstrating the benefits of us-
ing a tiered system for object detection. The experiment
also reveals that the critical point for choosing between
the two modes of the CyclopsCam is around 6 seconds.
Thus, when the sampling interval is less than 6 seconds, the
always-on mode of the CyclopsCam is more efficient since
the energy consumption for transitioning the camera from
sleep to wake state dominates the total power consumption.

Figure 5 (b) evaluates the effect of object detection in-
terval (i.e. the average time between two consecutive ob-
ject detection events) on the power consumption of the three
schemes. In this experiment, the sampling interval is fixed
to 10 seconds. As shown in the figure, if the still object is
detected very frequently, the power consumption of our sys-
tem may be a little larger than that of the single-tier version,
because of the frequent wake-up overhead of the iMote2
node. For most reasonable inter-object intervals, the power
consumption of the two versions of our system is consider-
ably less than that of the single-tier version.

(a)

(b)

Figure 5. Power consumption analysis. (a) Ef-
fect of the sampling interval. (b) Effect of ob-
ject detection interval.

7.2. Accuracy of object mapping

Obtaining an accurate mapping between the Cyclop-
sCam’s ROO and the EnalabCam’s ROO is essential to the

performance of our system. We compare the error in ROO
estimation for two schemes: (a) an always-on single-tier
system that uses the iMote2 and EnalabCam, and (b) our
system using inter-tier wakeup and ROO mapping. The er-
rors are calculated by comparing the object region produced
by the algorithms to those labeled manually. The exper-
imental results in Table 2 show that our system has only
marginal higher error (less than two pixels along each axis)
than a single-tier system that uses a high resolution camera.
In addition, the absolute error is less than three pixels on
each axis.

Table 2. Error analysis on object detection.
Errors are measured in pixel.

Center Error Width error Height Error
Test Avg (Var) Avg (Var) Avg (Var)
EnalabCam 1.04 (0.88) 1.70 (4.90) 1.30 (4.46)
DualCam 2.47 (2.08) 2.84 (4.13) 2.91 (6.07)

7.3. Comparison between color and SIFT

In this section, we demonstrate the accuracy and en-
ergy benefits of using the Color and SIFT features in a cas-
cading manner for object recognition (described in Section
4.2.1). Table 3 compares the performance of three differ-
ent recognition methods, only Color features; only SIFT
features, and the cascading combination of the two. We
use two metrics to evaluate the schemes - rate and latency.
The ”rate” metric shows the percentage of correctly recog-
nized objects, and the ”latency” metric shows the amount of
time taken by the iMote2 node for object recognition, which
in turn corresponds to the energy consumption for recogni-
tion. Five common objects are used in this test: book, cup,
keyring, PDA, and TV remote control. These are all com-
mon objects that are easy to lose.

We tested the three methods with a training set and a
test set. The training set contains 50 samples. The test
set, FIXED-ILLUM, contains 100 samples under the same
lighting conditions as in the training set. The set VARY-
ILLUM contains 100 samples where we introduced illumi-
nation changes by switching off one of the three ceiling
lights in the room. Samples are collected by placing the
objects in different locations and with different poses on a
table. We first train the clusters by using the training dataset,
and then classify the two test sets respectively.

Table 3 shows that the recognition rate by using a combi-
nation of Color and SIFT features has higher accuracy than
using the features individually. When illumination changes
are present, the improvement in accuracy over color alone is
17%. The computation time for processing is significantly



greater than for a method that just uses color features, but
is only a third of the time required for processing the higher
accuracy SIFT descriptors. This is because our algorithm
needs to run the SIFT algorithm only on roughly 20-40% of
the samples. Note that cluster updates were not performed
in this experiment.

Table 3. Comparison on recognition meth-
ods (The power consumption during object
recognition is 681mW)

FIXED-ILLUM VARY-ILLUM
Methods Rate Latency Rate Latency
1. Color 84% 0.0034s 63% 0.0032s
2. SIFT 83% 6.49s 75% 6.17s
3. Color + SIFT 91% 2.07s 80% 2.96s

7.4. Benefits of using constraints

We now evaluate the benefits of using pair-link con-
straints to improve clustering results. In this experiment,
we collect another test dataset, VARY-ILLUM-1, that con-
tains 100 samples under the same illumination conditions
as in VARY-ILLUM. We then evaluate whether the recogni-
tion rate on VARY-ILLUM-1 improves as a result of refine-
ment of the clusters with constraints that are obtained from
VARY-ILLUM in the previous experiment. Table 4 shows
the results of this experiment. The ”No constraint” column
shows the results using only standard k-means without con-
straints, and the ”Using constraint” column shows the re-
sults of our constrained k-means algorithm with refinement
using constraints derived from VARY-ILLUM (described in
Section 4.2.2). As seen from Table 4, the use of constraints
improves the recognition results by 10% when only color
features are used, and by 6% when both color and SIFT
features are used. The refinement of clusters also improves
the latency required to perform the object recognition by
about 20%, since the clusters are more accurate and hence
the SIFT recognition algorithm is invoked fewer times.

Table 4. Improvements on using constraints
(The power consumption during object
recognition is 681mW)

VARY-ILLUM-1
Recognition methods No constraint Using constraint
Color Rate 68% 78%
Color + SIFT Rate 77% 83%

Latency 2.89s 2.24s

The recognition results above are all produced by a sin-
gle camera node. We also evaluate the benefits of placing
multiple sensor nodes with overlapping coverage for object
recognition. In our experiment we evaluated the recognition
rate using two camera views and found that the recognition
rate improves from 82% (single view) to 86% (two views).

7.5. System performance on object retrieval

We now evaluate the overall performance of our object
retrieval system using an experiment in a real room envi-
ronment with multiple sensor nodes. In this experiment, we
placed 5 dual-camera nodes in a room so that the FOVs of
these nodes cover most of the area in which human activity
may happen. The cameras are placed in an ad-hoc manner,
so some cameras have overlaps in their field of view. Fig-
ure 6 shows the deployment of the camera network. We use
the same object set as previous experiments: book, cup, key
ring, PDA, and TV remote control. In this experiment, ob-
jects are randomly placed and removed from the monitored
area. Queries for each object are generated after roughly
every 20-25 object placements events.

(a)

Figure 6. Camera network deployment, a top
view map.

Table 5 gives the results from this experiment. The first
column labeled ”Correct/Total” stands for the ratio of num-
ber of correctly retrieved images to the number of queries.
A correct retrieval is the case where the system returns the
latest scene image containing the queried object. ”Average
ROO Transmitted” denotes the average number of candi-
date regions that need to be transmitted to get the retrieval
result. As seen from the table, in the absence of user feed-
back, our system achieves 90% accuracy in ROO retrieval,
with less than four candidate regions retrieved per correct
retrieval. If users provide additional feedback by labeling
returned candidate ROOs, the accuracy increases by 5% to
95%, and the average number of ROOs need to be transmit-
ted for each query is reduced from 3.6 to 2.5 (a reduction of
7KB in bytes transmitted).

Impact of Tagging Threshold: The correct rate and the



Table 5. Object retrieval performance (The
tagging threshold THtag is fixed to 0.3)

Correct/Total Average ROO (data
bytes) Transmitted

No user feedback 18/20 3.6 (22.5KB)
With user feedback 19/20 2.5 (15.6KB)

(a) (b)

Figure 7. Effect of the tagging threshold
THtag. (a) Retrieval rate. (b) ROO transmitted.

number of ROOs that are transmitted are sensitive to the
value of threshold THtag . As described in Section 4.2.2,
THtag influences the number of false positives and number
of false negatives in object recognition, and also determines
the number of category tags saved for each ROO. Figure 7
illustrates the effect of changing THtag and shows that the
threshold provides a tradeoff between the number of ROOs
transmitted against the accuracy of retrieval. If available en-
ergy in the system is limited, a higher value can be used for
THtag , which will reduce the number of ROO images trans-
mitted, but will also decrease the correct rate of retrieval.
The experiment result shows that our system functions well
in real world setting with multiple camera nodes, and can be
tuned to tradeoff recognition accuracy for amount of energy
expended for communication.

8. Related work

In this section, we review related work that we have not
discussed earlier in this paper.

Memory assistant tool for object finding: The design
of a memory assistant tool for object locating and finding
has received considerable attention in recent years. The
work in [26] investigates the real-world nature of what los-
ing an object means and general strategies that can be used
to find those objects. Other work utilizes visual information
to track and locate objects, for instance [24, 34] use PTZ
cameras to detect and recognize the indoor objects. Our
work differs from all these in that we explore how to use

low-power camera sensors distributed in a home environ-
ment to facilitate retrieval of misplaced objects.

Multi-tier sensor network: The multi-tier structure for
wireless sensor network has also been considered in prior
work. Tenet [13] argues for a multi-tier design and Sens-
Eye [16] proposes a three-tier camera sensor network for
surveillance. Our work uses two tiers, but they are tightly
coupled as part of a single platform. In addition, we propose
novel techniques for splitting an object recognition task be-
tween a low-power and high-power camera.

Object recognition: Many different approaches to ob-
ject recognition have been proposed in computer vision,
including model-based and appearance-based approaches
[30]. In recent years, methods using local appearance fea-
tures [18, 22] have come more popular. In [32] the SIFT
descriptor is combined with color histograms. The work in
[27] discusses fusion methods for SIFT and LUV color mo-
ments descriptors. In our work we exploit the combination
method of SIFT and color features for energy-efficiency as
opposed to recognition accuracy.

Semi-supervised clustering: Clustering is traditionally
viewed as an unsupervised method for data analysis. Based
on the widely used k-means algorithm, some constrained
versions have been developed [33, 8, 12] to incorporate the
information about the problem domain that is available in
addition to the data instances themselves. As an extension
of the model proposed in [8], our work incorporates hard
and soft constraints together.

9. Discussion and future work

As a prototype system, our system performs well with
single user in the room moving the objects around slowly.
While our study demonstrates that the system is efficient
and useful, there are still some limitations need to discuss.

First, our system is tolerable to slight-to-moderate light
changes. With more severe light changes, our system needs
to perform the expensive SIFT algorithm frequently or even
can not achieve reasonable object retrieval result. In our ap-
plication, the light condition can be satisfied at most time
since the system is in-door use only. Second, the perfor-
mance of our system is affected by the visual appearance
of objects. The system may fail to recognize if two objects
have both similar color and undistinguishable SIFT descrip-
tors. The performance may also degrade with very small
object, since our camera sensors can not zoom. In addition,
our system can not discover the object if it is severely oc-
cluded, or goes out of the FOV of the cameras.

Some future works can be done to alleviate these limita-
tions. We plan to explore statistical models such as EM [10]
to estimate the distribution of target objects. We also plan to
add one more tier that comprises PTZ cameras to enhance
the capability of object recognition. Finally, we will com-



bine other sensors such as RFID tags and acoustic sensors to
improve the performance of the object finding system. Our
system will be deployed in the senior center at Amherst MA
as a part of ASSIST project [34].

10. Conclusion

This paper presents the design and implementation of
an indoor object retrieval system using a network of dual-
camera wireless nodes, each of which combine multiple
cameras with complementary capabilities. Our system pro-
poses a number of novel techniques including: (a) the use
of the low-power camera both for still object detection and
region-of-object estimation, (b) the use of two different vi-
sual features - color histogram and SIFT descriptors - for
energy-efficient yet accurate object recognition, and (c) re-
finement of clusters for more accurate classification using
pairwise constraints from SIFT matching and user feed-
back. Our experimental results demonstrate that the system
is energy efficient, computationally efficient, and accurate.
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