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ABSTRACT

This paper presents the design, implementation and evalua-
tion of a distributed network of smart cameras whose func-
tion is to detect and localize falls, an important application
in elderly living environments. A network of overlapping
smart cameras uses a decentralized procedure for comput-
ing inter-image homographies that allows the location of a
fall to be reported in 2D world coordinates by calibrating
only one camera. Also, we propose a joint routing and ho-
mography transformation scheme for multi-hop localization
that yields localization errors of less than 2 feet using very
low resolution images. Our goal is to demonstrate that such
a distributed low-power system can perform adequately in
this and related applications. A prototype implementation
is given for low-power Agilent/UCLA Cyclops cameras run-
ning on the Crossbow MICAz platform. We demonstrate
the effectiveness of the fall detection as well as the precision
of the localization using a simulation of our sample imple-
mentation.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed

Systems; C.3 [Special-Purpose and Application-Based
Systems]: Real-time and embedded systems

General Terms

Algorithms, Design, Performance

Keywords

Camera sensors, Distributed sensor networks, Activity recog-
nition, Technology and aging

1. INTRODUCTION

The growing numbers of elderly individuals in need of sup-
port to live in the community will severely test the current
services infrastructure. Part of the solution is to develop
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| Device | Power | Features |
Cyclops Camera | 33mW 128x128, 10fps
PTZ Camera 1W 1024x767, 30fps
MICAz Mote 84mW 7MHz CPU, 4KB RAM
Desktop PC 100W | 2GHz CPU, 512MB RAM

Table 1: Power consumption and features of several
cameras and platforms. One PC with a PTZ camera
requires as much power as several hundred MICAz-
Cyclops pairs.

technology to increase the length of time elders can remain
at home. The ultimate goal is to “consumerize” these tech-
nologies and make it practical and affordable to incorporate
them into existing homes and lifestyles.

The deployment of such “aging in place” systems poses a
number of application challenges. One of the primary con-
cerns of families and caregivers of elderly individuals is quick
detection and notification of fall events, i.e. when an elderly
person has fallen [15]. This is the case not only due to the
obvious, immediate medical attention that a fall may re-
quire, but also because frequent falling and instability can
be a sign of more serious ailments. Several commercial fall
alert products exist such as Life Alert [10] and Health Watch
[19]. However, these are on-body wearable units and the user
must remember to wear them, which makes them less reli-
able since elderly individuals often suffer from memory loss.
A second challenge in such systems is to be able to local-
ize where the fall occurred, for example, in order to guide
a mobile robot to the fall for further diagnoses, to provide
information to family members, or to direct the activation of
higher-powered cameras if available. Commercial wearable
fall detection systems do not enable such a capability.

One possible approach for designing such a system is using
distributed smart camera networks. Sensors can be placed
throughout an elderly person’s living space to monitor their
safety and provide a variety of other services, in a manner
similar to modern security systems. While such a solution is
attractive, traditional high-resolution camera-based systems
are often hard to deploy since they require a hard-wired
power source, a high-bandwidth network connection, and
one or more PCs (with significant power and bandwidth
requirements of their own) to do the processing. Even when
it is possible to deploy such a network, it is hard to cover
every nook and corner of a house using such large cameras
due to occlusions, making such an approach insufficient.



Recent advances in low-power camera sensor networks
have opened up the possibility of an alternate approach to
designing smart camera networks for elderly homes. The use
of low-power cameras with mote-class sensor devices has the
potential to provide an ad-hoc deployable, cheap, and reli-
able infrastructure for such homes. In addition, since these
nodes are small and battery powered, they can be placed
in hard to reach places like attics and basements, or other
occluded places that cannot be covered by larger cameras.

While low-power smart cameras are an attractive possibil-
ity for aging in place applications, the design of such systems
poses a number of sensor systems research challenges.

Reliable detection: The first challenge is that falls need
to be detected reliably since there may be serious conse-
quences of undetected falls. Thus, it is critical that falls are
not missed. However, the system can tolerate false positives
since these would, at most, result in a phone call from a
health care professional or relative to the home of the el-
derly, in order to check if there is cause for alarm.

Resource constraints: The second challenge is that tradi-
tional vision algorithms used for camera-based fall detection
use computationally complex techniques[12][18]. Low-power
cameras such as the Cyclops camera (Table 1) do not have
the computation capabilities to execute these complex math-
ematical tasks. Further, images from low-power cameras are
often low fidelity (e.g.: the Cyclops camera has only 128x128
resolution), and the cameras are not well-calibrated, hence
traditional vision techniques for fall detection may not be
appropriate for them.

Energy Efficiency: Energy consumption is a critical de-
sign issue in battery-powered sensor networks. The energy
consumption of camera sensor networks depends primarily
on two factors: (a) sampling rate of the camera, which needs
to be kept low, (b) number of messages transmitted by each
camera, which needs to be minimized.

Multi-hop Localization: The final challenge is multi-hop
localization using a network of cameras. More accurate lo-
calization can enable different kinds of assistance such as
mobile robots that can move to the appropriate location in
response to the fall detection, and provide a health care pro-
fessional with diagnostic information such as a pulse or heart
rate.

1.1 Research Contributions

In this paper, we propose an architecture that uses a net-
work of extremely low-power smart cameras to automati-
cally detect and localize falls. Our work has three key con-
tributions:

Our first contribution is a lightweight person detection and
fall detection algorithm that executes on a simple 8-bit mi-
crocontroller. This detection is performed using simple fea-
tures that can be inexpensively extracted from each image,
and uses the aspect ratio of the foreground pixels to deter-
mine the pose of the person. Our results show that we can
provide comparable accuracy to an SVM-based fall detec-
tion algorithm run on a PC, under relatively stable lighting
conditions.

Our second contribution is a lightweight algorithm for main-
taining image homographies between pairs of overlapping
cameras. These homographies are automatically constructed
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in the background using ground point correspondences ex-
tracted from images synchronously sampled from each cam-
era in the network every few seconds. Our implementation
on Cyclops cameras and Motes shows that these pairwise
homographies can be estimated with a mapping error of less
than 20 pixels.

Finally we describe a novel joint routing and homogra-
phy transformation scheme for multi-hop localization of the
fallen person. Localization is performed by routing the loca-
tion of a detected fall through the network of homographies
to a leader node that has been calibrated to world coor-
dinates. This allows the use of many overlapping cameras
without the need to manually calibrate each one. The ex-
act route to the leader is calculated based on the quality of
transformations between cameras rather than simply using
the shortest path. We show that we can localize falls to
roughly 45-55 cms for a 3-hop transformation using Cyclops
cameras.

2. SYSTEM MODEL

In this section, we describe the system model and how the
various components of our systems interact to provide a fall
detection and localization framework.

2.1 System Model

Our system is comprised of a single tier of homogenous,
battery-powered camera sensor nodes. Each node consists
of a camera sensor, an on-board processor with RAM and
flash memory, and a radio for wireless communication. We
assume the existence of at least one leader node whose cam-
era has been calibrated to the world in the sense that there is
a known homography between its image coordinates and the
world coordinates of the 2D ground plane. We also assume
that rest of the nodes in the network have cameras that
overlap each other to a degree sufficient to ensure a path
from any given node to the leader. In practice the cameras
should have at least a few square feet overlap in area likely
to see movement. This is a reasonable assumption for any
reasonably dense network of cameras. The leader knows its
status prior to the network being turned on, but the other
nodes do not need prior knowledge of the leader’s identity.
In order to conserve the limited battery power, we assume
that cameras will sample relatively infrequently, at a rate of
no more than 1/5 Hz, and that all image processing must
be done locally on the node that captures a given image. In
addition, all cameras must sample synchronously due to the
requirements of the homography estimation approach used
by the system. This synchronization can be achieved by
having the leader node broadcast a “snap picture” message
at the desired interval. While this does not provide pre-
cise synchronization, it is sufficient for this system. Clock
synchronization across nodes is not necessary. Nodes are
able to communicate with each other using their radio links.
There is no centralized communication or processing hub in
the system. Note that from this point forward, “node” and
“camera” may be used synonymously.

2.2 System Operation

There are three key components to the operation of the
system, (a) continuous person detection to detect when a
human is present in the field of view of the camera, (b) im-
age homography estimation between neighbors, i.e., neigh-
bor transformations that will enable each camera to trans-



form a point from its frame of reference to a neighboring
camera’s frame of reference, and (b) fall detection and multi-
hop localization when a fall event actually occurs.

We first describe the person detection process that oc-
curs at each camera. The system uses a simple form of
background subtraction to detect the presence of a moving
object, which we assume is a human, each time the camera
takes a sample. Once a person is detected, features of the
foreground pixels can be used both for fall detection as well
as for homography construction. The key idea to examine
the size and shape of a “blob” of foreground pixels in order
to determine a person’s posture. If the aspect ratio i.e. the
width of the person divided by height, is below a particular
threshold, then it is assumed that the person is upright, else
the person is assumed to have fallen.

If an upright person is detected, then the event is fed into
a homography component that uses this information to form
correspondences with neighboring cameras. Image homog-
raphy estimation between pairs of overlapping cameras is
the tool that allows a fall to be localized without the need
to calibrate most of the cameras. The general technique is
to determine a set of point or line correspondences between
cameras and use them to estimate the transformation [6].
Image homographies are planar projective mappings, and
therefore these correspondence must be restricted to a pla-
nar section of the image; in this case the ground plane is
used. In order to collect pairs of corresponding points, each
camera attempts to determine the location of the contact
point between the person’s feet and the ground in the fore-
ground pixels (if any exist), and will broadcast this informa-
tion to neighboring cameras. If other cameras also saw this
contact point at the same time, they can store the point and
the corresponding point received from the other camera. Us-
ing this information, each camera updates its homography
estimate using the normalized Direct Linear Transformation
method [5].

If a fall event is detected, then the system needs to lo-
calize the event and notify the leader of the event. When
a fall is initially detected, its location is known only in the
image coordinates of the camera that detected it. However,
there is a need to provide location in world coordinates to
enable other services that will respond to the fall, such as
a mobile robot or more powerful cameras. Since cameras
have overlapping fields of view, they can use their homo-
graphies to transform the location from their field of view
to another camera’s field of view. In other words, there
is a sequence of image homographies that can be applied
to the original location in order to map it to a neighbor’s
image coordinates. This joint routing and transformation
procedure is performed in a hop-by-hop manner from the
detection camera to the leader. The node that detects a fall
will map the location into a neighbor’s coordinate system
and then transmit the location to the neighbor via the radio
link. This neighbor will do the same and the process will
repeat until the fall’s location reaches the leader, who can
map it into world coordinates and send it to some external
alert system.

One important question to consider in such a joint routing
and transformation scenario is: what routing path should
be selected to the leader? While shortest path routing may
be a good choice from a network performance perspective,
this may not provide the minimum error for homography
transformations, and therefore for fall localization. Thus,
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there is a need to consider routing metrics that capture the
accuracy of transformations in addition to the cost of routing
a message. We consider several routing methods based on
the estimated error of each transformation in this paper.

3. SYSTEM DESIGN

The system is designed under an assumption of very tight
processing and RAM constraints. As a result, simple algo-
rithms are preferred over possibly more robust and expensive
ones. Our goal is to show that even simple techniques on
very low-power devices can be reasonably effective at these
tasks. To this end, the design assumes that there will be at
most one person moving about the environment at a given
time and that lighting conditions will remain fairly stable.
Clearly, as processing and energy constraints are loosened,
more sophisticated procedures can be implemented that will
allow more robust tracking and person detection. Results
are provided in the evaluation section that compare these
simple algorithms to more sophisticated versions.

3.1 Person Detection

Person detection is the process of determining the parts
of an image that are likely to contain a human. This task
is particularly challenging when using low resolution devices
that must sample at a slower rate than a normal video cam-
era. Changes in the scene that occur gradually in real time
can cause sudden drastic changes in successive frames when
sampling infrequently. In addition, significant changes in
lighting conditions or static objects being moved around can
create foreground noise that persists until the background
model is updated. Our approach sacrifices robustness for
inexpensive computation, and assumes that the background
changes infrequently and abruptly. Thus, if the scene has
a large amount of foreground noise for a large number of
frames, the background model will be thrown out and built
from scratch.

Given these assumptions, we use a simple form of back-
ground subtraction to detect the presence of a moving ob-
ject, which we assume is a human, each time the camera
takes a sample. A mean background image is computed
from an initial set of images captured by each camera. This
background image is subtracted from each new frame, and
pixels are classified as foreground or background based on a
single difference threshold. If there is a large enough blob of
foreground pixels, it is assumed to be a person. Once a per-
son is detected, the system would like to know the contact
point of their feet with the ground to facilitate homography
estimation. The contact point is estimated by finding the
largest column of foreground pixels and selecting the fore-
ground pixel in that column that is closest to the bottom
of the image. A contact point estimate will be thrown out
if the foreground pixels cover more than half the image, or
if the point is within a few pixels of the image’s borders.
Shadows and other lighting phenomena that can subtly in-
terfere with the background model are the most likely causes
of bad estimates that frequently go undetected. Fortunately,
the homography estimation is robust enough to deal with a
few errant points.

3.2 Homography Estimation

Planar homography estimation is a very well studied prob-
lem, and many estimation techniques exist using points,
lines, curves, texture, etc. along with a least-squares or



RANSAC-based fitting procedure[2]. This is the one pro-
cedure where robustness is favored over speed or simplicity,
given its importance to the system and the relative infre-
quency with which it needs to run. One of the most popu-
lar methods is the normalized Direct Linear Transform sug-
gested by Hartley[5]. This method requires 4 or more point
correspondences between the two images of interest. These
points are gathered by detecting contact points as described
in the previous section. Whenever a node detects such a
point, it broadcasts it to the rest of the network, along with
a time stamp of when the point was seen. Since the image
capture is synchronized throughout the network, any node
with an overlapping view at that point will also have seen
it at the same time. Any such nodes will store the pair of
points for use during homography estimation.

Assuming that a node has a set of points f = {f1,..., fu}
from its own images and another set f' = {fi, ..., fn} from
another node, the goal is to estimate

hii hiz his
H=| ha1 h22 ho2s
h31  hsz hss

such that H maps f to f’ as well as possible. hs3 is a scal-
ing parameter that can be selected a priori, so there are a
total of 8 unknown parameters of H that must be solved for.
Specifically, the goal is to find H such that f; x Hf; = 0.
The full mathematical detail is covered in [2]. The important
points are that each point correspondence ends up yielding
two equations and therefore only four are needed to solve
for H (as long as no three are colinear). However, our noisy
correspondence estimates will not produce a very good H
unless more points are used. The use of more than four
points creates an overdetermined system that can be solved
in the least squares sense using singular value decomposi-
tion. In addition, a drastic improvement in the estimate
can be achieved by normalizing the components of the cor-
respondence points to have zero mean and variance of v/2[5].

3.3 Fall Detection

For the purposes of this work, a fall is defined as an event
that results in a person lying on floor in a position they are
unable to quickly recover from. This does not necessarily
mean that they are perfectly “flat” on the floor. This defi-
nition is consistent with prior work on the topic [12][18][8].
In practice the low sampling rate of the cameras means that
they are unlikely to see the fall itself, and the goal becomes to
detect the result of the fall, i.e. a person in a prone position
on the floor. This is a two-class instance of activity recog-
nition, and has been approached with many of the standard
tools such as Hidden Markov Models (HMMs)and support
vector machines (SVMs) [13] [12][18] [21] While these are
effective approaches, they have a major drawback: they re-
quire computationally intensive training, and data to train
on. The low-power target hardware does not have the re-
sources for this, nor is it convenient to collect training data
of people falling down. Even some of the more sophisticated
fall detection techniques tend to key on one particular fea-
ture of a person being monitored. This feature is their aspect
ratio, or the width of the person divided by height. It can
easily be extracted from a foreground segmentation, and is
a very good way of determining whether a person is upright
or in a more horizontal position with a simple threshold. If
the aspect ratio is greater than a threshold o < 1, the per-
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3 (Leader)

Figure 1: In this scenario, camera 2 detects a fall
and needs to route the location to camera 3, the
leader. Since cameras 2 and 3 overlap slightly, it is
likely that they have a corresponding homography
and thus camera 2 could send the location directly to
camera 3, effectively using a shortest path approach.
However, camera 1 overlaps significantly with both
cameras 2 and 3, and therefore could have a much
higher quality homography estimate with both cam-
eras. So in this case it may be preferable from an
error minimization standpoint for camera 2 to send
the fall to camera 1, who will then send it to camera
3.

son is probably lying down and may have fallen. Precisely
how horizontal a person must be before a fall is detected can
be controlled by adjusting a. Decreasing « forces a person
to be in more of a horizontal position before it is consid-
ered a fall. A value of @ = 0.8 is used in our experiments.
Obviously there are many situations where a person would
purposely be lying down, but it is not unreasonable to as-
sume that something may be wrong if an elderly person is
lying down close to the floor in a living room or kitchen.
At worst, this method is prone to false positives, but as we
will show it can perform comparably to a more sophisticated
SVM-based procedure.

3.4 Localization

Localization in the system is based on the pairwise cam-
era homographies that are automatically estimated by the
system. When a fall is detected by a node ny, its local im-
age coordinate is extracted and must be routed to the leader
node, which we assume has a manually tuned homography
that maps its image coordinates to real world ground plane
coordinates. In order to transform the fall’s local coordi-
nates to the leader’s image coordinates, it must be passed
from ny to other nodes that exist along a path of overlap-
ping cameras that eventually overlaps with the leader. The
fall point is transformed into the destination node’s image



coordinates before every hop, until it reaches the leader and
is transformed into world coordinates. An important ques-
tion is how to select the best route for a point to travel. It
could just choose the shortest path to the leader, but that
might not be the best path from an error minimization point
of view. Every node can compute a goodness-of-fit measure
for any of its homographies, and a point could be routed
through a path of least cumulative error. An simple exam-
ple scenario where this might be beneficial is illustrated in
Figure 1. We compare three different routing metrics in this

paper:

e Shortest Path: Points are routed through the net-
work along the path consisting of the least number of
hops.

e Least Median Error: Distances between nodes are
set to be the median squared error of the homography
between the nodes. Note that this error is a goodness-
of-fit measure calculated from sample points and is not
based on any ground truth knowledge. Points are then
routed to the leader on the path of least cumulative
median error.

e Least Mean Error: This metric is the similar to least
median error, but uses mean squared error instead of
median squared error.

Up to this point we have assumed that only one camera
at a time will detect a fall, but in a dense camera network,
this will rarely be the case. Ideally the system would know
which cameras provides the best localization estimate for ev-
ery point in the scene, but this will never be the case. When
multiple fall positions with the same time stamp are received
by the leader, it must decide which one to use. A naive pro-
cedure would be to simply select one at random. Alterna-
tively, estimates from multiple cameras can be combined into
a single estimate using some intelligent weighting procedure.
We propose that having the leader weigh each estimate by
the inverse of the cumulative mean squared transformation
error (the same quantity used for the least mean error rout-
ing metric) is a simple and effective method for combining
estimates from multiple cameras. Localization error of this
method is compared to that of selecting a random node’s
estimate in Section 5.5.

4. SYSTEM IMPLEMENTATION

This section describes our system implementation using
Agilent/UCLA Cyclops [14] cameras, and Crossbow MICAz
motes [3] equipped and NAND flash memory boards.

4.1 Camera and Mote Architecture

Our implementation requires two pieces of hardware per
node: a Crossbow MICAz mote [3] and a Cyclops smart
camera [14]. The Cyclops consists of a Xilinx FPGA, an
Agilent ADCM-1700 CMOS sensor, and an ATMegal28 mi-
crocontroller. The Cyclops camera sensor supports image
resolutions of 32x32, 64x64 and 128x128. Image resolution
of 128x128 is used in the experimental evaluation. The
Cyclops node also has an on-board ATMEL ATmegal28L
micro-controller, 512 KB external SRAM and 512 KB Flash
memory. The Cyclops attaches to the mote via a 32-pin
connection and can communicate over the I?C' bus. The
main feature of the MICAz mote is its 2.4GHz wireless net-
working capability and its onboard 512K of flash memory.

896

MICAz Mote Flash

Send/Recv Points
Initiate H Update
Update Routing Table
Update Point Storage

Point
Storage

Cyclops Camera

Image Capture
People Detection
Fall Detection

Homography Estimation

»

Figure 2: Software architecture overview.

Optionally, each node can also utilize a NAND flash board
for additional storage of correspondence points.

4.2 Software Architecture

An overview of the software architecture is shown in Fig-
ure 2. The software can be broken down into Cyclops-side
and mote-side procedures.

The mote is in charge of sending, receiving and storing
points, and commanding the Cyclops to snap an image or
perform a homography update. Every 5 seconds, the leader
node broadcasts a packet containing a time stamp. Upon
receipt, the mote will store the time stamp and send a mes-
sage over I2C to the Cyclops, instructing it to snap an im-
age. Once the Cyclops has processed the image, it will send
a reply back containing the image coordinates of any con-
tact point it detected and if a fall occurred, or a null point
if there were none. If a valid point is sent from the Cy-
clops, the mote will store it in a small memory cache that is
dumped to flash every minute. The mote will also broadcast
this point and its time stamp to its neighboring nodes. If a
fall is detected, the mote checks its routing table for the best
path to the leader and sends the fall’s transformed location
to the first node on the path. The mote may also receive
points from other nodes. When this happens, the mote will
temporarily store it in a memory cache. Once per minute,
the mote compares the time stamps of all of the points it has
received from other nodes to those it collected itself. Any
matches will be stored to flash. If enough new matches have
been gathered for any pair of cameras, the homography will
be updated. To do this, the mote reads each point from flash
and sends it to the Cyclops over I°C. When the Cyclops
completes the update, it will return the new H to the mote.
The mote can continue to receive points while the Cyclops
is performing an update, but no new images can be taken
locally.



The Cyclops is used for image capture and processing
and, due to its faster processor (TMHz) and larger mem-
ory (64KB), the resource intensive SVD procedure[l] nec-
essary for homography estimation. The Cyclops is set to
use grayscale 128x128 images. Color is preferable for back-
ground modeling, but there is insufficient memory on the
Cyclops for color image use. When initially powered on, the
Cyclops will autonomously snap a sequence of 10 images
to use for background modeling. Images require 16KB each
and are overwritten by the following image. The background
model also requires 16KB of memory, as does the foreground
pixel estimate for each image. Once the background model
is built, the Cyclops waits for the mote to tell it to snap
a new image. When it does, it subtracts the image from
the background model and thresholds the result to form the
foreground estimate. A median filter is run over the fore-
ground to remove spurious pixels and the height and width
of the resulting blob are measured to test for a fall. The
Cyclops also attempts to detect the person’s contact point
with the ground. Any contact point or fall detected is sent
back to the mote for storage or processing. If an updated H
is requested, the Cyclops will receive pairs of points from the
mote, which it will transform into the required matrix form
and solve using a standard SVD procedure. The resulting H
and a goodness-of-fit measure will then be sent back to the
mote for use.

5. EVALUATION

In this section, each of the three primary components of
our system are evaluated based on a small experimental in-
stallation. The primary areas of interest are the accuracy of
the fall detection and the precision of the localization. We
are also interested in comparing different route quality mea-
sures and their effects on total localization error. In addi-
tion, a method for reducing error by combining localization
estimates from multiple cameras is suggested and evaluated.

Note that we frequently use median error over mean in
our experiments. This is due to the fact that when a ho-
mography incorrectly maps a point, it has a tendency to do
so to the extreme, depending on the exact properties of the
mapping and the location of the point. This causes mean er-
ror to be skewed upwards in a manner that is not indicative
of the true performance of the system.

5.1 Experimental Setup

In order to evaluate the system, 6 nodes were placed in
an ad hoc manner around the edges of a small room, facing
inwards. An effort was made to ensure that each camera had
several square feet of overlap with at least one other. Each
of the cameras sampled synchronously at % Hz for roughly
10 minutes as a single individual walked about the room
(see Figure 3) under stable lighting conditions, resulting in
approximately 150 samples per camera. These images were
stored on a flash board connected to each mote and down-
loaded to a PC in order to run our algorithms offline. See
Figures 3 and 8 for an illustration of camera placement and
sample images. Roughly 20-30 points in each image were
hand paired with their corresponding real-world ground lo-
cations to provide ground truth for evaluating homography
and localization errors. In addition, a total of 40 images were
collected from two different rooms, each containing one of
four individuals in normal positions (sitting, standing, etc.)
or pretending to have fallen. These will be used to evaluate
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Camera 1 Camera 2

10'

Camera 3

13'
Camera 5

' Camera 4
Camera 6

Figure 3: Floor plan and camera layout in the ex-
perimental room. The cameras’ fields-of-view are
mostly centered on the 10°x13’ area in the center of
the room.

the fall detection procedure. A sample of these images is
presented in Figure 9.

5.2 Fall Detection

Accuracy is the primary concern of the fall detection com-
ponent. Minimizing the number of false negatives is partic-
ularly important, as the consequences of not responding to
a fall can be much more serious than responding to a false
alarm. To evaluate our fall detection procedure, each image
in the 40 image set is classified as “fall” or “no fall” by both
the Cyclops’ algorithm as described in Section 3.3 and by a
more sophisticated support vector machine (SVM) classifier.
The SVM classifier uses a 3¢ degree polynomial kernel along
with three features: the (x,y) image coordinates of the per-
son’s centroid and the aspect ratio, which are extracted from
the Cyclops’ images using its background subtraction proce-
dure. Since SVM classifiers require training data, leave-one-
out testing was employed in order to maximize the useful
number of training examples per test. This is not an issue
with the Cyclops’ procedure. Table 2 summarizes the re-
sults. The Cyclops’ procedure fairs well compared to the
SVM-based classifier. Most importantly, no false negatives
are produced by the Cyclops’ algorithm. One image that
produces a false positive on the Cyclops is shown in the bot-
tom left column of Figure 9. Clearly it is caused by a person
who is purposely lying down on a couch, which is the type of
scenario likely to cause false positives with this procedure.
The SVM classifier is able to correctly handle this image
due to the fact that it has learned via its training examples
that falls do not occur on the couch. A similar affect could
be achieved with our system by adding a front end with the
ability to specify areas of a room where detected falls should
be ignored, although this would have to be done carefully to
avoid increasing the likelihood of a false negative.



[ Method | Accuracy | False Pos. | False Neg. |

SVM 97.5% 1 0
Cyclops 95% 2 0

Table 2: Comparison of an SVM-based fall detection
procedure with the Cyclops’ method. Each method
was tested using a total of 40 images of a person in
either a normal position (standing, sitting, etc.) or
on the floor as if they had fallen down. The SVM
was evaluated using leave-one-out cross-validation.

5.3 Homography Estimation

Pairwise image homographies are the basis for localiza-
tion in this system, so it is essential to maximize the quality
of these mappings. Of course the foundation of this is the
detection of corresponding contact points used to construct
the estimates, which is a simple but not necessarily very ro-
bust procedure. However, the effects of small errors in the
correspondences can be mitigated by gathering many such
points, which our system does over time in the background.
We evaluate the quality of the pairwise homography esti-
mates in our system by quantifying the median mapping
error in pixels across all pairs of overlapping cameras in the
system. For a given number of correspondence points, a
random sample of this size is taken from the full set of cor-
respondences for a given pair of cameras. The homography
between the pair of cameras is estimated using the normal-
ized Direct Linear Transform. A collection of points in the
image coordinates of the first camera whose image coordi-
nates in the second camera are known are transformed using
the estimated homography, and the pixel differences between
the estimated and ground truth values are computed. This
was repeated several hundred times for all pairs of cameras
and for each number of correspondence points. The me-
dian pixel error across all trials and pairs of cameras for
an increasing number of samples is shown in Figure 4. As
expected, the error decreases monotonically as the number
of samples increases. Overall the median error is roughly
20 pixels when 25 or more correspondences are used, which
corresponds to a real world error of roughly 2-3 feet, depend-
ing on the camera. As we will see in the next section, this
pairwise error is consistent with the total localization error
that the system produces.

The best way of improving the homography estimates
would be to use a more robust and reliable interest point
for correspondences. While the ground contact points are
easy to compute, they seldom produce the exact same point
on the ground across cameras, and are sensitive to light-
ing issues. However, for this system they provide a suitable
tradeoff between ease of computation and robustness.

5.4 Multi-hop Localization

Multi-hop localization provides 2D world coordinates of
a fall that is visible to the system. While it is desirable to
minimize the localization error, it is important to keep in
mind that even errors of several feet still provide sufficient
information to aid in robot navigation or dispatching other
emergency services.

In order to evaluate the quality of the localization in our
system, a collection of 20-30 points per camera are mapped
through the system into world coordinates and compared
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Figure 4: Median mapping error in pixels across all
pairs of cameras as a function of the number of sam-
ples in the system used to construct the mappings.

to their ground truth locations. All of the cameras in the
experimental setup overlap and all are therefore at most
one hop away from the leader. However, we would like to
evaluate the accuracy of multi-hop transformations in our
system so the camera network topology is restricted in order
to create 2 and 3-hop paths to the leader in the network.
Cameras are randomly assigned positions in this topology for
each of 700 experimental trials. In each trial, the collection
of points for each camera is sent through the network using
the three different routing metrics presented in Section 3.4
and compared to ground truth. The median error across all
trials is computed for each number of hops (in the shortest
path sense). The different routing procedures are as follows:
Figure 5 shows the results for 1-3 hops. The mean and me-
dian metrics noticeably outperform the shortest path met-
ric as the number of hops from the node to the leader in-
creases. Note that although a node may be only 3 hops from
the leader, the mean or median metric might route a point
down a longer path to the leader, but the error is still re-
duced. Overall the localization error using the mean metric
is between 40-55 cm or about 15-22 inches for a 3 hop route,
certainly within the limits of a useful localization. While
we would expect the error to continue to increase with the
number of hops, a suitably dense network of cameras can
ensure that the number of hops is kept to a minimum.

5.5 Effects of Camera Density

We would like to know how increasing the number of cam-
eras in a scene affects both the total amount of area that is
covered as well as the error in areas that are visible from mul-
tiple cameras. Figure 6 shows the percent of the total area
in the room that is covered by at least one camera as more
cameras are added to the scene. Not surprisingly, adding
more cameras increases coverage. although the graph indi-
cates that adding any more than 6 to the experimental area
might be overkill.

As discussed in Section 3.4, there will be cases where mul-
tiple cameras simultaneously detect a fall, resulting in mul-
tiple location estimates being received by the leader. Given
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Figure 5: Median localization error as the number
of hops from the camera that sees a fall to the leader
increases. The mean routing metric noticeably out-
performs the shortest path metric as the number of
hops increases.

that it is very difficult to determine which of these is the
best, it is preferable to somehow exploit all of these esti-
mates rather than simply selecting the first or a random
estimate. Figure 7 illustrates the effect that adding more
cameras has on the error in the area that is in common
view of all of the cameras. Note that the x-axis indicates
how many cameras are actually viewing a particular com-
mon area; there is always a leader node that provides the
world mapping but, for the purpose of this experiment, is
not viewing the same area and is not included in the camera
count. This is done to avoid deflating the error to a gen-
erally unrealistic degree, since the leader can map perfectly
from its image to the world. The 3 curves are explained as
follows:

Median: Each camera independently localizes a set of
points from an area common to all cameras. For each point
in this area, the median error across all cameras is used as
the error for that point. The median error across the entire
common area is plotted in the figure. This curve demon-
strates the expected performance of the localization when
the cameras localize without knowledge of other camera’s
estimates for the same point, and a random point is selected
as the true localization.

Minimum: Again, each camera independently localizes a
set of points from an area common to all cameras. For each
point in this area, the minimum error across all cameras is
used as the error for that point. The median error across
the entire common area is plotted in the figure. This line
demonstrates the best possible performance of the localiza-
tion using these cameras in this area, as if there is an oracle
that can tell which camera produces the best estimate for a
given point.

Weighted: Each camera independently localizes a set of
points from an area common to all cameras. Each camera’s
estimate is weighted by the inverse of the total mean squared
error of the path it travels to the leader, and summed to form
one localization estimate across all cameras for each point.
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Figure 6: Effective coverage, the percentage of total
area that is visible in at least one camera, increases
with the number of cameras.

This scheme demonstrates a possible method for combining
localization estimates when multiple cameras simultaneously
see a fall, which is likely in a dense camera network.

Figure 7 demonstrates that in the best case, adding more
cameras has the potential to significantly decrease the local-
ization error in the area visible to all cameras. However, in
practice it can be difficult to select the camera that provides
the best estimate for a given location. The weighted mean
technique we present demonstrates one relatively effective
technique for combining estimates from several cameras to
improve the localization error over randomly choosing one
of the estimates.

6. RELATED WORK

In this section, we cover related work in the wireless sen-
sor network, as well as vision communities on the design of
efficient camera sensor networks.

Camera sensors: There exist several types of camera
sensor nodes, each with different resources and capabilities.
The Cyclops [14] and CMUCam [16] are examples of low-
power nodes capturing low-resolution images with limited
computation capabilities. XYZ [11] is a power-aware sen-
sor platform which can be equipped with image sensors.
Panoptes [4] is a camera sensor node comprising of a webcam
capturing high-resolution images and a Intel StrongARM
PDA processor for reasonably high computation resources.
In this work, we have developed techniques for low-power
resource constrained camera nodes, and our solutions can
be applied to more powerful nodes as well.

Camera-based Localization: There has been consider-
able work on multi-hop localization in wireless sensor net-
works. Less work has focused on multi-hop localization us-
ing low-power cameras. In particular, the idea of minimizing
error in multi-hop localization (e.g.: [17]) and information-
driven routing (e.g. [22]), have been proposed. The novelty
of our work lies in understanding the problem of joint er-
ror minimization and routing for camera-based localization,
which to our knowledge has not been addressed before.

Miscellaneous: Also related to this paper is work on
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Figure 7: Localization error in an area commonly
visible to multiple cameras. Note that the x-axis
indicates how many cameras are actually viewing
a particular common area; there is always a leader
node that provides the world mapping but, for the
purpose of this experiment, is not viewing the same
area. See the text for a full description.

positioning and calibrating camera-based sensor nodes. For
example, [7] and [9] study the problem of localizing and cal-
ibrating the camera sensors using reference beacons such as
LED emissions. In contrast, we are concerned with localiz-
ing persons moving in the camera field of view. Another in-
teresting problem that has been considered is explicit place-
ment of cameras for coverage. [20] solves the problem of
efficient placement of cameras given an area to be covered
to meet task—specific constraints. While this relates to our
work, we are more concerned with ad-hoc and unplanned
deployments of cameras.

Fall Detection: A variety of approaches and systems
have been developed for fall detection and alerts, including
wearable commercial devices [10][19]. [12] uses an overhead
camera to learn the locations in a room where a person com-
monly remains still for short lengths of time, and assumes a
fall has occurred if someone is still in an unusual area. Audio
cues are combined with video in a Hidden Markov Model-
based approach proposed by [18], which can reduce the false
alarm rate when compared to a video-only approach. These
approaches are effective, however they utilize full-sized cam-
eras and computationally expensive machine learning algo-
rithms running on PCs. Another interesting approach to
fall detection is proposed in [8]. In that work, the subject
wears a small accelerometer which is able to detect falls but
is prone to false alarms if a person sits down with too much
force. To reduce these errors, smart cameras also monitor
the scene and determine a person’s posture by detecting the
location of their head relative to the body. The general ap-
proach to fall detection in this work is similar to ours, but
they also use more powerful hardware and the extra wear-
able devices, which we try to avoid.
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Figure 8: Sample images from the six cameras. Note
that the checkered carpet does not aid the system
in any way.

7. CONCLUSIONS

The system presented here demonstrates that even very
low-power, low-resolution cameras and motes can be used to
detect and localize falls with a localization error of less than
50cm. Furthermore, the system only requires the manual
calibration of one camera per group of overlapping cameras.
We argue that this type of setup, with a small energy and
physical footprint, is preferable for use in home settings over
traditional sized cameras and PCs. The sample implementa-
tion provides a design that can be used with slightly higher
end hardware and more robust algorithms in order to further
improve performance. Our results using simple, low-power
cameras running on Crossbow MICAz platform demonstrate
that we can achieve reliable fall detection, and localization
accuracy beween 40-60 cms in a 3-hop network of cameras.

We must be very sensitive to the privacy concerns that
will undoubtedly arise with the thought of placing cameras
in someone’s home. It is essential that anyone who is using
this or a similar system is fully aware of the details of its
operation: specifically that cameras will be processing im-



Figure 9: A sample of the images used to evaluate
fall detection. The left column contains normal sce-
narios, and the right contains fall scenarios. The
bottom left image causes a false positive on the Cy-
clops.

ages of them in potentially vulnerable situations. Feedback
on this and related applications has been sought from el-
derly focus groups and is currently being evaluated by our
research colleagues in the Smith College School for Social
Work.

In our future work, we will explore the possibility of intel-
ligently merging location estimates for points seen by mul-
tiple cameras in order to reduce the total mapping error.
A more robust point correspondence gathering scheme that
does not rely on the movement of people could also improve
the overall quality of the mappings. Finally, we may look at
methods of reducing the number of samples that each cam-
era takes by intelligently sampling only active areas of the
environment.
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