
Minimum Risk Annealing for Training Log-Linear Models∗

David A. Smith and Jason Eisner
Department of Computer Science

Center for Language and Speech Processing
Johns Hopkins University

Baltimore, MD 21218, USA
{dasmith,eisner}@jhu.edu

Abstract
When training the parameters for a natural language system,
one would prefer to minimize 1-best loss (error) on an eval-
uation set. Since the error surface for many natural language
problems is piecewise constant and riddled with local min-
ima, many systems instead optimize log-likelihood, which is
conveniently differentiable and convex. We propose training
instead to minimize the expected loss, or risk. We define this
expectation using a probability distribution over hypotheses
that we gradually sharpen (anneal) to focus on the 1-best hy-
pothesis. Besides the linear loss functions used in previous
work, we also describe techniques for optimizing nonlinear
functions such as precision or the BLEU metric. We present
experiments training log-linear combinations of models for
dependency parsing and for machine translation. In machine
translation, annealed minimum risk training achieves signif-
icant improvements in BLEU over standard minimum error
training. We also show improvements in labeled dependency
parsing.

1 Direct Minimization of Error

Researchers in empirical natural language pro-
cessing have expended substantial ink and effort in
developing metrics to evaluate systems automati-
cally against gold-standard corpora. The ongoing
evaluation literature is perhaps most obvious in the
machine translation community’s efforts to better
BLEU (Papineni et al., 2002).

Despite this research, parsing or machine trans-
lation systems are often trained using the much
simpler and harsher metric of maximum likeli-
hood. One reason is that in supervised training,
the log-likelihood objective function is generally
convex, meaning that it has a single global max-
imum that can be easily found (indeed, for su-
pervised generative models, the parameters at this
maximum may even have a closed-form solution).
In contrast to the likelihood surface, the error sur-
face for discrete structured prediction is not only
riddled with local minima, but piecewise constant

∗This work was supported by an NSF graduate research
fellowship for the first author and by NSF ITR grant IIS-
0313193 and ONR grant N00014-01-1-0685. The views ex-
pressed are not necessarily endorsed by the sponsors. We
thank Sanjeev Khudanpur, Noah Smith, Markus Dreyer, and
the reviewers for helpful discussions and comments.

and not everywhere differentiable with respect to
the model parameters (Figure 1). Despite these
difficulties, some work has shown it worthwhile
to minimize error directly (Och, 2003; Bahl et al.,
1988).

We show improvements over previous work on
error minimization by minimizing the risk or ex-
pected error—a continuous function that can be
derived by combining the likelihood with any eval-
uation metric (§2). Seeking to avoid local min-
ima, deterministic annealing (Rose, 1998) gradu-
ally changes the objective function from a convex
entropy surface to the more complex risk surface
(§3). We also discuss regularizing the objective
function to prevent overfitting (§4). We explain
how to compute expected loss under some evalu-
ation metrics common in natural language tasks
(§5). We then apply this machinery to training
log-linear combinations of models for dependency
parsing and for machine translation (§6). Finally,
we note the connections of minimum risk training
to max-margin training and minimum Bayes risk
decoding (§7), and recapitulate our results (§8).

2 Training Log-Linear Models

In this work, we focus on rescoring with log-
linear models. In particular, our experiments con-
sider log-linear combinations of a relatively small
number of features over entire complex structures,
such as trees or translations, known in some pre-
vious work as products of experts (Hinton, 1999)
or logarithmic opinion pools (Smith et al., 2005).
A feature in the combined model might thus be
a log probability from an entire submodel. Giv-
ing this feature a small or negative weight can
discount a submodel that is foolishly structured,
badly trained, or redundant with the other features.

For each sentence xi in our training corpus S,
we are given Ki possible analyses yi,1, . . . yi,Ki .
(These may be all of the possible translations or
parse trees; or only the Ki most probable under

Figure 1: The loss surface for a machine translation sys-
tem: while other parameters are held constant, we vary the
weights on the distortion and word penalty features. Note the
piecewise constant regions with several local maxima.

some other model; or only a random sample of
size Ki.) Each analysis has a vector of real-valued
features (i.e., factors, or experts) denoted fi,k. The
score of the analysis yi,k is θ · fi,k, the dot prod-
uct of its features with a parameter vector θ. For
each sentence, we obtain a normalized probability
distribution over the Ki analyses as

pθ(yi,k | xi) =
exp θ · fi,k∑Ki

k′=1 exp θ · fi,k′
(1)

We wish to adjust this model’s parameters θ
to minimize the severity of the errors we make
when using it to choose among analyses. A loss
function Ly∗(y) assesses a penalty for choosing
y when y∗ is correct. We will usually write this
simply as L(y) since y∗ is fixed and clear from
context. For clearer exposition, we assume below
that the total loss over some test corpus is the sum
of the losses on individual sentences, although we
will revisit that assumption in §5.

2.1 Minimizing Loss or Expected Loss
One training criterion directly mimics test condi-
tions. It looks at the loss incurred if we choose the
best analysis of each xi according to the model:

min
θ

∑
i

L(argmax
yi

pθ(yi | xi)) (2)

Since small changes in θ either do not change
the best analysis or else push a different analy-
sis to the top, this objective function is piecewise

constant, hence not amenable to gradient descent.
Och (2003) observed, however, that the piecewise-
constant property could be exploited to character-
ize the function exhaustively along any line in pa-
rameter space, and hence to minimize it globally
along that line. By calling this global line mini-
mization as a subroutine of multidimensional opti-
mization, he was able to minimize (2) well enough
to improve over likelihood maximization for train-
ing factored machine translation systems.

Instead of considering only the best hypothesis
for any θ, we can minimize risk, i.e., the expected
loss under pθ across all analyses yi:

min
θ

Epθ
L(yi,k)

def= min
θ

∑
i

∑
k

L(yi,k)pθ(yi,k | xi)

(3)
This “smoothed” objective is now continuous and
differentiable. However, it no longer exactly mim-
ics test conditions, and it typically remains non-
convex, so that gradient descent is still not guaran-
teed to find a global minimum. Och (2003) found
that such smoothing during training “gives almost
identical results” on translation metrics.

The simplest possible loss function is 0/1 loss,
where L(y) is 0 if y is the true analysis y∗

i and
1 otherwise. This loss function does not at-
tempt to give partial credit. Even in this sim-
ple case, assuming P 6= NP, there exists no gen-
eral polynomial-time algorithm for even approx-
imating (2) to within any constant factor, even
for Ki = 2 (Hoffgen et al., 1995, from Theo-
rem 4.10.4).1 The same is true for for (3), since
for Ki = 2 it can be easily shown that the min 0/1
risk is between 50% and 100% of the min 0/1 loss.

2.2 Maximizing Likelihood
Rather than minimizing a loss function suited to
the task, many systems (especially for language
modeling) choose simply to maximize the prob-
ability of the gold standard. The log of this likeli-
hood is a convex function of the parameters θ:

max
θ

∑
i

log pθ(y∗
i | xi) (4)

where y∗
i is the true analysis of sentence xi. The

only wrinkle is that pθ(y∗
i | xi) may be left unde-

fined by equation (1) if y∗
i is not in our set of Ki

hypotheses. When maximizing likelihood, there-
fore, we will replace y∗

i with the min-loss analy-
sis in the hypothesis set; if multiple analyses tie

1Known algorithms are exponential but only in the dimen-
sionality of the feature space (Johnson and Preparata, 1978).

−10 −5 0 5 10

17
.5

18
.0

18
.5

19
.0

Translation model 1

B
le

u
%

γ = ∞
γ = 0.1
γ = 1
γ = 10

Figure 2: Loss and expected loss as one translation model’s
weight varies: the gray line (γ =∞) shows true BLEU (to be
optimized in equation (2)). The black lines show the expected
BLEU as γ in equation (5) increases from 0.1 toward∞.

for this honor, we follow Charniak and Johnson
(2005) in summing their probabilities.2

Maximizing (4) is equivalent to minimizing an
upper bound on the expected 0/1 loss

∑
i(1 −

pθ(y∗
i | xi)). Though the log makes it tractable,

this remains a 0/1 objective that does not give par-
tial credit to wrong answers, such as imperfect but
useful translations. Most systems should be eval-
uated and preferably trained on less harsh metrics.

3 Deterministic Annealing

To balance the advantages of direct loss minimiza-
tion, continuous risk minimization, and convex
optimization, deterministic annealing attempts
the solution of increasingly difficult optimization
problems (Rose, 1998). Adding a scale hyperpa-
rameter γ to equation (1), we have the following
family of distributions:

pγ,θ(yi,k | xi) =
(exp θ · fi,k)

γ∑Ki
k′=1

(
exp θ · fi,k′

)γ (5)

When γ = 0, all yi,k are equally likely, giving
the uniform distribution; when γ = 1, we recover
the model in equation (1); and as γ → ∞, we
approach the winner-take-all Viterbi function that
assigns probability 1 to the top-scoring analysis.

For a fixed γ, deterministic annealing solves

min
θ

Epγ,θ
[L(yi,k)] (6)

2An alternative would be to artificially add y∗i (e.g., the
reference translation(s)) to the hypothesis set during training.

We then increase γ according to some schedule
and optimize θ again. When γ is low, the smooth
objective might allow us to pass over local min-
ima that could open up at higher γ. Figure 3 shows
how the smoothing is gradually weakened to reach
the risk objective (3) as γ → 1 and approach the
true error objective (2) as γ →∞.

Our risk minimization most resembles the work
of Rao and Rose (2001), who trained an isolated-
word speech recognition system for expected
word-error rate. Deterministic annealing has also
been used to tackle non-convex likelihood sur-
faces in unsupervised learning with EM (Ueda and
Nakano, 1998; Smith and Eisner, 2004). Other
work on “generalized probabilistic descent” mini-
mizes a similar objective function but with γ held
constant (Katagiri et al., 1998).

Although the entropy is generally higher at
lower values of γ, it varies as the optimization
changes θ. In particular, a pure unregularized log-
linear model such as (5) is really a function of γ ·θ,
so the optimizer could exactly compensate for in-
creased γ by decreasing the θ vector proportion-
ately!3 Most deterministic annealing procedures,
therefore, express a direct preference on the en-
tropy H , and choose γ and θ accordingly:

min
γ,θ

Epγ,θ
[L(yi,k)]− T ·H(pγ,θ) (7)

In place of a schedule for raising γ, we now use
a cooling schedule to lower T from ∞ to −∞,
thereby weakening the preference for high en-
tropy. The Lagrange multiplier T on entropy is
called “temperature” due to a satisfying connec-
tion to statistical mechanics. Once T is quite cool,
it is common in practice to switch to raising γ di-
rectly and rapidly (quenching) until some conver-
gence criterion is met (Rao and Rose, 2001).

4 Regularization

Informally, high temperature or γ < 1 smooths
our model during training toward higher-entropy
conditional distributions that are not so peaked at
the desired analyses y∗

i . Another reason for such
smoothing is simply to prevent overfitting to these
training examples.

A typical way to control overfitting is to use a
quadratic regularizing term, ||θ||2 or more gener-
ally

∑
d θ2

d/2σ2
d. Keeping this small keeps weights

3For such models, γ merely aids the nonlinear optimizer
in its search, by making it easier to scale all of θ at once.

low and entropy high. We may add this regularizer
to equation (6) or (7). In the maximum likelihood
framework, we may subtract it from equation (4),
which is equivalent to maximum a posteriori esti-
mation with a diagonal Gaussian prior (Chen and
Rosenfeld, 1999). The variance σ2

d may reflect a
prior belief about the potential usefulness of fea-
ture d, or may be tuned on heldout data.

Another simple regularization method is to stop
cooling before T reaches 0 (cf. Elidan and Fried-
man (2005)). If loss on heldout data begins to
increase, we may be starting to overfit. This
technique can be used along with annealing or
quadratic regularization and can achieve addi-
tional accuracy gains, which we report elsewhere
(Dreyer et al., 2006).

5 Computing Expected Loss

At each temperature setting of deterministic an-
nealing, we need to minimize the expected loss on
the training corpus. We now discuss how this ex-
pectation is computed. When rescoring, we as-
sume that we simply wish to combine, in some
way, statistics of whole sentences4 to arrive at the
overall loss for the corpus. We consider evalua-
tion metrics for natural language tasks from two
broadly applicable classes: linear and nonlinear.

A linear metric is a sum (or other linear combi-
nation) of the loss or gain on individual sentences.
Accuracy—in dependency parsing, part-of-speech
tagging, and other labeling tasks—falls into this
class, as do recall, word error rate in ASR, and
the crossing-brackets metric in parsing. Thanks to
the linearity of expectation, we can easily compute
our expected loss in equation (6) by adding up the
expected loss on each sentence.

Some other metrics involve nonlinear combi-
nations over the sentences of the corpus. One
common example is precision, P

def=
∑

i ci/
∑

i ai,
where ci is the number of correctly posited ele-
ments, and ai is the total number of posited ele-
ments, in the decoding of sentence i. (Depend-
ing on the task, the elements may be words, bi-
grams, labeled constituents, etc.) Our goal is to
maximize P , so during a step of deterministic an-
nealing, we need to maximize the expectation of
P when the sentences are decoded randomly ac-
cording to equation (5). Although this expectation
is continuous and differentiable as a function of

4Computing sentence xi’s statistics usually involves iter-
ating over hypotheses yi,1, . . . yi,Ki . If these share substruc-
ture in a hypothesis lattice, dynamic programming may help.

θ, unfortunately it seems hard to compute for any
given θ. We observe however that an equivalent
goal is to minimize − log P . Taking that as our
loss function instead, equation (6) now needs to
minimize the expectation of − log P ,5 which de-
composes somewhat more nicely:

E[− log P] = E[log
∑

i

ai − log
∑

i

ci]

= E[log A]− E[log C] (8)

where the integer random variables A =
∑

i ai

and C =
∑

i ci count the number of posited and
correctly posited elements over the whole corpus.

To approximate E[g(A)], where g is any twice-
differentiable function (here g = log), we can ap-
proximate g locally by a quadratic, given by the
Taylor expansion of g about A’s mean µA = E[A]:

E[g(A)] ≈ E[g(µA) + (A− µA)g′(µA)

+
1
2
(A− µA)2g′′(µA)]

= g(µA) + E[A− µA]g′(µA)

+
1
2

E[(A− µA)2]g′′(µA)

= g(µA) +
1
2
σ2

Ag′′(µA).

Here µA =
∑

i µai and σ2
A =

∑
i σ

2
ai

, since A
is a sum of independent random variables ai (i.e.,
given the current model parameters θ, our ran-
domized decoder decodes each sentence indepen-
dently). In other words, given our quadratic ap-
proximation to g, E[g(A)] depends on the (true)
distribution of A only through the single-sentence
means µai and variances σ2

ai
, which can be found

by enumerating the Ki decodings of sentence i.
The approximation becomes arbitrarily good as
we anneal γ → ∞, since then σ2

A → 0 and
E[g(A)] focuses on g near µA. For equation (8),

E[g(A)] = E[log A] ≈ log(µA)−
σ2

A

2µ2
A

and E[log C] is found similarly.
Similar techniques can be used to compute the

expected logarithms of some other non-linear met-
rics, such as F-measure (the harmonic mean of
precision and recall)6 and Papineni et al. (2002)’s

5This changes the trajectory that DA takes through pa-
rameter space, but ultimately the objective is the same: as
γ → ∞ over the course of DA, minimizing E[− log P] be-
comes indistinguishable from maximizing E[P].

6R
def
= C/B; the count B of correct elements is known.

So log F
def
= log 2PR/(P + R) = log 2R/(1 + R/P) =

log 2C/B − log(1 + A/B). Consider g(x) = log 1 + x/B.

BLEU translation metric (the geometric mean of
several precisions). In particular, the expectation
of log BLEU distributes over its N +1 summands:

log BLEU = min(1− r

A1
, 0) +

N∑
n=1

wn log Pn

where Pn is the precision of the n-gram elements
in the decoding.7 As is standard in MT research,
we take wn = 1/N and N = 4. The first term in
the BLEU score is the log brevity penalty, a con-
tinuous function of A1 (the total number of uni-
gram tokens in the decoded corpus) that fires only
if A1 < r (the average word count of the reference
corpus). We again use a Taylor series to approxi-
mate the expected log brevity penalty.

We mention an alternative way to compute (say)
the expected precision C/A: integrate numerically
over the joint density of C and A. How can we
obtain this density? As (C,A) =

∑
i(ci, ai) is a

sum of independent random length-2 vectors, its
mean vector and 2 × 2 covariance matrix can be
respectively found by summing the means and co-
variance matrices of the (ci, ai), each exactly com-
puted from the distribution (5) over Ki hypothe-
ses. We can easily approximate (C,A) by the
(continuous) bivariate normal with that mean and
covariance matrix8—or else accumulate an exact
representation of its (discrete) probability mass
function by a sequence of numerical convolutions.

6 Experiments

We tested the above training methods on two
different tasks: dependency parsing and phrase-
based machine translation. Since the basic setup
was the same for both, we outline it here before
describing the tasks in detail.

In both cases, we start with 8 to 10 models
(the “experts”) already trained on separate training
data. To find the optimal coefficients θ for a log-
linear combination of these experts, we use sepa-
rate development data, using the following proce-
dure due to Och (2003):

1. Initialization: Initialize θ to the 0 vector. For
each development sentence xi, set its Ki-best
list to ∅ (thus Ki = 0).

7BLEU is careful when measuring ci on a particular de-
coding yi,k. It only counts the first two copies of the (e.g.) as
correct if the occurs at most twice in any reference translation
of xi. This “clipping” does not affect the rest of our method.

8Reasonable for a large corpus, by Lyapunov’s central
limit theorem (allows non-identically distributed summands).

2. Decoding: For each development sentence
xi, use the current θ to extract the 200 anal-
yses yi,k with the greatest scores exp θ · fi,k.
Calcuate each analysis’s loss statistics (e.g.,
ci and ai), and add it to the Ki-best list if it is
not already there.

3. Convergence: If Ki has not increased for
any development sentence, or if we have
reached our limit of 20 iterations, stop: the
search has converged.

4. Optimization: Adjust θ to improve our ob-
jective function over the whole development
corpus. Return to step 2.

Our experiments simply compare three proce-
dures at step 4. We may either

• maximize log-likelihood (4), a convex func-
tion, at a given level of quadratic regulariza-
tion, by BFGS gradient descent;

• minimize error (2) by Och’s line search
method, which globally optimizes each com-
ponent of θ while holding the others con-
stant;9 or

• minimize the same error (2) more effectively,
by raising γ →∞ while minimizing the an-
nealed risk (6), that is, cooling T → −∞ (or
γ → ∞) and at each value, locally minimiz-
ing equation (7) using BFGS.

Since these different optimization procedures
will usually find different θ at step 4, their K-best
lists will diverge after the first iteration.

For final testing, we selected among several
variants of each procedure using a separate small
heldout set. Final results are reported for a larger,
disjoint test set.

6.1 Machine Translation
For our machine translation experiments, we
trained phrase-based alignment template models
of Finnish-English, French-English, and German-
English, as follows. For each language pair, we
aligned 100,000 sentence pairs from European
Parliament transcripts using GIZA++. We then
used Philip Koehn’s phrase extraction software
to merge the GIZA++ alignments and to extract

9The component whose optimization achieved the lowest
loss is then updated. The process iterates until no lower loss
can be found. In contrast, Papineni (1999) proposed a linear
programming method that may search along diagonal lines.

and score the alignment template model’s phrases
(Koehn et al., 2003).

The Pharaoh phrase-based decoder uses pre-
cisely the setup of this paper. It scores a candidate
translation (including its phrasal alignment to the
original text) as θ · f , where f is a vector of the
following 8 features:

1. the probability of the source phrase given the
target phrase

2. the probability of the target phrase given the
source phrase

3. the weighted lexical probability of the source
words given the target words

4. the weighted lexical probability of the target
words given the source words

5. a phrase penalty that fires for each template
in the translation

6. a distortion penalty that fires when phrases
translate out of order

7. a word penalty that fires for each English
word in the output

8. a trigram language model estimated on the
English side of the bitext

Our goal was to train the weights θ of these 8
features. We used the method described above,
employing the Pharaoh decoder at step 2 to gener-
ate the 200-best translations according to the cur-
rent θ. As explained above, we compared three
procedures at step 4: maximum log-likelihood by
gradient ascent; minimum error using Och’s line-
search method; and annealed minimum risk. As
our development data for training θ, we used 200
sentence pairs for each language pair.

Since our methods can be tuned with hyperpa-
rameters, we used performance on a separate 200-
sentence held-out set to choose the best hyper-
parameter values. The hyperparameter levels for
each method were

• maximum likelihood: a Gaussian prior with
all σ2

d at 0.25, 0.5, 1, or ∞

• minimum error: 1, 5, or 10 different ran-
dom starting points, drawn from a uniform

Optimization Finnish- French- German-
Procedure English English English
Max. like. 5.02 5.31 7.43
Min. error 10.27 26.16 20.94
Ann. min. risk 16.43 27.31 21.30

Table 1: BLEU 4n1 percentage on translating 2000-
sentence test corpora, after training the 8 experts on 100,000
sentence pairs and fitting their weights θ on 200 more, using
settings tuned on a further 200. The current minimum risk an-
nealing method achieved significant improvements over min-
imum error and maximum likelihood at or below the 0.001
level, using a permutation test with 1000 replications.

distribution on [−1, 1]× [−1, 1]× · · · , when
optimizing θ at an iteration of step 4.10

• annealed minimum risk: with explicit en-
tropy constraints, starting temperature T ∈
{100, 200, 1000}; stopping temperature T ∈
{0.01, 0.001}. The temperature was cooled
by half at each step; then we quenched by
doubling γ at each step. (We also ran exper-
iments with quadratic regularization with all
σ2

d at 0.5, 1, or 2 (§4) in addition to the en-
tropy constraint. Also, instead of the entropy
constraint, we simply annealed on γ while
adding a quadratic regularization term. None
of these regularized models beat the best set-
ting of standard deterministic annealing on
heldout or test data.)

Final results on a separate 2000-sentence test set
are shown in table 1. We evaluated translation us-
ing BLEU with one reference translation and n-
grams up to 4. The minimum risk annealing pro-
cedure significantly outperformed maximum like-
lihood and minimum error training in all three lan-
guage pairs (p < 0.001, paired-sample permuta-
tion test with 1000 replications).

Minimum risk annealing generally outper-
formed minimum error training on the held-out
set, regardless of the starting temperature T . How-
ever, higher starting temperatures do give better
performance and a more monotonic learning curve
(Figure 3), a pattern that held up on test data.
(In the same way, for minimum error training,

10That is, we run step 4 from several starting points, finish-
ing at several different points; we pick the finishing point with
lowest development error (2). This reduces the sensitivity of
this method to the starting value of θ. Maximum likelihood
is not sensitive to the starting value of θ because it has only a
global optimum; annealed minimum risk is not sensitive to it
either, because initially γ ≈ 0, making equation (6) flat.

5 10 15 20

16
18

20
22

Iteration

B
le

u

T=1000
T=200
T=100
Min. error

Figure 3: Iterative change in BLEU on German-English de-
velopment (upper) and held-out (lower), under annealed min-
imum risk training with different starting temperatures, ver-
sus minimum error training with 10 random restarts.

5 10 15 20

5
10

15
20

Iteration

B
le

u

10 restarts
1 restart

Figure 4: Iterative change in BLEU on German-English
development (upper) and held-out (lower), using 10 random
restarts vs. only 1.

more random restarts give better performance and
a more monotonic learning curve—see Figure 4.)

Minimum risk annealing did not always win on
the training set, suggesting that its advantage is
not superior minimization but rather superior gen-
eralization: under the risk criterion, multiple low-
loss hypotheses per sentence can help guide the
learner to the right part of parameter space.

Although the components of the translation and
language models interact in complex ways, the im-
provement on Finnish-English may be due in part
to the higher weight that minimum risk annealing
found for the word penalty. That system is there-
fore more likely to produce shorter output like i
have taken note of your remarks and i also agree
with that . than like this longer output from the
minimum-error-trained system: i have taken note
of your remarks and i shall also agree with all that
the union .

We annealed using our novel expected-BLEU

approximation from §5. We found this to perform
significantly better on BLEU evaluation than if we
trained with a “linearized” BLEU that summed
per-sentence BLEU scores (as used in minimum
Bayes risk decoding by Kumar and Byrne (2004)).

6.2 Dependency Parsing

We trained dependency parsers for three different
languages: Bulgarian, Dutch, and Slovenian.11 In-
put sentences to the parser were already tagged for
parts of speech. Each parser employed 10 experts,
each parameterized as a globally normalized log-
linear model (Lafferty et al., 2001). For example,
the 9th component of the feature vector fi,k (which
described the kth parse of the ith sentence) was the
log of that parse’s normalized probability accord-
ing to the 9th expert.

Each expert was trained separately to maximize
the conditional probability of the correct parse
given the sentence. We used 10 iterations of gradi-
ent ascent. To speed training, for each of the first
9 iterations, the gradient was estimated on a (dif-
ferent) sample of only 1000 training sentences.

We then trained the vector θ, used to combine
the experts, to minimize the number of labeled de-
pendency attachment errors on a 200-sentence de-
velopment set. Optimization proceeded over lists
of the 200-best parses of each sentence produced
by a joint decoder using the 10 experts.

Evaluating on labeled dependency accuracy on
200 test sentences for each language, we see that
minimum error and annealed minimum risk train-
ing are much closer than for MT. For Bulgarian
and Dutch, they are statistically indistinguishable
using a paired-sample permutations test with 1000
replications. Indeed, on Dutch, all three opti-
mization procedures produce indistinguishable re-
sults. On Slovenian, annealed minimum risk train-
ing does show a significant improvement over the
other two methods. Overall, however, the results
for this task are mediocre. We are still working on
improving the underlying experts.

7 Related Work

We have seen that annealed minimum risk train-
ing provides a useful alternative to maximum like-
lihood and minimum error training. In our ex-
periments, it never performed significantly worse

11For information on these corpora, see the CoNLL-X
shared task on multilingual dependency parsing: http:
//nextens.uvt.nl/∼conll/.

Optimization labeled dependency acc. [%]
Procedure Slovenian Bulgarian Dutch
Max. like. 27.78 47.23 36.78
Min. error 22.52 54.72 36.78
Ann. min. risk 31.16 54.66 36.71

Table 2: Labeled dependency accuracy on parsing 200-
sentence test corpora, after training 10 experts on 1000 sen-
tences and fitting their weights θ on 200 more. For Slove-
nian, minimum risk annealing is significantly better than the
other training methods, while minimum error is significantly
worse. For Bulgarian, both minimum error and annealed min-
imum risk training achieve significant gains over maximum
likelihood, but are indistinguishable from each other. For
Dutch, the three methods are indistinguishable.

than either and in some cases significantly helped.
Note, however, that annealed minimum risk train-
ing results in a deterministic classifier just as these
other training procedures do. The orthogonal
technique of minimum Bayes risk decoding has
achieved gains on parsing (Goodman, 1996) and
machine translation (Kumar and Byrne, 2004). In
speech recognition, researchers have improved de-
coding by smoothing probability estimates numer-
ically on heldout data in a manner reminiscent of
annealing (Goel and Byrne, 2000). We are inter-
ested in applying our techniques for approximat-
ing nonlinear loss functions to MBR by perform-
ing the risk minimization inside the dynamic pro-
gramming or other decoder.

Another training approach that incorporates ar-
bitrary loss functions is found in the structured
prediction literature in the margin-based-learning
community (Taskar et al., 2004; Crammer et al.,
2004). Like other max-margin techniques, these
attempt to make the best hypothesis far away from
the inferior ones. The distinction is in using a loss
function to calculate the required margins.

8 Conclusions

Despite the challenging shape of the error sur-
face, we have seen that it is practical to opti-
mize task-specific error measures rather than op-
timizing likelihood—it produces lower-error sys-
tems. Different methods can be used to attempt
this global, non-convex optimization. We showed
that for MT, and sometimes for dependency pars-
ing, an annealed minimum risk approach to opti-
mization performs significantly better than a pre-
vious line-search method that does not smooth the
error surface. It never does significantly worse.
With such improved methods for minimizing er-
ror, we can hope to make better use of task-specific

training criteria in NLP.

References
L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mer-

cer. 1988. A new algorithm for the estimation of hidden
Markov model parameters. In ICASSP, pages 493–496.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best
parsing and maxent discriminative reranking. In ACL,
pages 173–180.

S. F. Chen and R. Rosenfeld. 1999. A gaussian prior for
smoothing maximum entropy models. Technical report,
CS Dept., Carnegie Mellon University.

K. Crammer, R. McDonald, and F. Pereira. 2004. New large
margin algorithms for structured prediction. In Learning
with Structured Outputs (NIPS).

M. Dreyer, D. A. Smith, and N. A. Smith. 2006. Vine parsing
and minimum risk reranking for speed and precision. In
CoNLL.

G. Elidan and N. Friedman. 2005. Learning hidden variable
networks: The information bottleneck approach. JMLR,
6:81–127.

V. Goel and W. J. Byrne. 2000. Minimum Bayes-Risk au-
tomatic speech recognition. Computer Speech and Lan-
guage, 14(2):115–135.

J. T. Goodman. 1996. Parsing algorithms and metrics. In
ACL, pages 177–183.

G. Hinton. 1999. Products of experts. In Proc. of ICANN,
volume 1, pages 1–6.

K.-U. Hoffgen, H.-U. Simon, and K. S. Van Horn. 1995.
Robust trainability of single neurons. J. of Computer and
System Sciences, 50(1):114–125.

D. S. Johnson and F. P. Preparata. 1978. The densest hemi-
sphere problem. Theoretical Comp. Sci., 6(93–107).

S. Katagiri, B.-H. Juang, and C.-H. Lee. 1998. Pattern recog-
nition using a family of design algorithms based upon the
generalized probabilistic descent method. Proc. IEEE,
86(11):2345–2373, November.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical phrase-
based translation. In HLT-NAACL, pages 48–54.

S. Kumar and W. Byrne. 2004. Minimum bayes-risk decod-
ing for statistical machine translation. In HLT-NAACL.

J. Lafferty, A. McCallum, and F. C. N. Pereira. 2001. Condi-
tional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML.

F. J. Och. 2003. Minimum error rate training in statistical
machine translation. In ACL, pages 160–167.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.
BLEU: A method for automatic evaluation of machine
translation. In ACL, pages 311–318.

K. A. Papineni. 1999. Discriminative training via linear
programming. In ICASSP.

A. Rao and K. Rose. 2001. Deterministically annealed de-
sign of Hidden Markov Model speech recognizers. IEEE
Trans. on Speech and Audio Processing, 9(2):111–126.

K. Rose. 1998. Deterministic annealing for clustering, com-
pression, classification, regression, and related optimiza-
tion problems. Proc. IEEE, 86(11):2210–2239.

N. A. Smith and J. Eisner. 2004. Annealing techniques for
unsupervised statistical language learning. In ACL, pages
486–493.

A. Smith, T. Cohn, and M. Osborne. 2005. Logarithmic
opinion pools for conditional random fields. In ACL, pages
18–25.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning.
2004. Max-margin parsing. In EMNLP, pages 1–8.

N. Ueda and R. Nakano. 1998. Deterministic annealing EM
algorithm. Neural Networks, 11(2):271–282.

