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toeplitz covariance estimation

Covariance Estimation Problem. Consider positive
semidefinite matrix T ∈ Rd×d and distribution D over
d-dimensional vectors with covariance Ex∼D[xxT] = T
(i.e., Tj,k is the covariance between xj and xk).

Given independent samples x(1), . . . , x(n) ∼ D, return T̃ with:

∥T− T̃∥2 ≤ ε∥T∥2.

T =


a b c d e
b a b c d
c b a b c
d c b a b
e d c b a
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toeplitz covariance estimation

Arises often in signal processing, when measurements are taken on a
spatial or temporal grid and covariance depends only on the
distance between them – i.e., E[xj · xk] = f(|j− k|).
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• Applications: spectrum sensing, Doppler radar, direction of arrival
estimation, prediction via Gaussian process regression, etc.

• Kernel matrices in machine learning are Toeplitz covariance
matrices when data points are on a grid.
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sample complexity

Want to minimize two types of sample complexity:

• Vector sample complexity: How many samples
x(1), . . . , x(n) ∼ D are required to estimate T?

• Entry sample complexity: How many entries s must be read
from each sample x(1), . . . , x(n)?

In different applications, these complexities correspond to
different costs. Typically there is a tradeoff.

• Total sample complexity: Total number of entries read, n · s.

• Seems to be interesting even beyond Toeplitz covariance
matrices, but not well studied.
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example: direction of arrival estimation
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• Vector sample complexity: Estimation time (# snapshots).
• Entry sample complexity: Number of active receivers.
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our contributions

Current state: Many algorithms for Toeplitz covariance estimation,
but few formal results on sample complexities/tradeoffs.

Our contributions:

• Give non-asymptotic sample complexity bounds by analyzing
classic algorithms, including those with sublinear entry sample
complexity based on sparse ruler measurements.

• Show that sparse ruler methods give sublinear total sample
complexity when T is low-rank (e.g., DOA with k≪ d senders).

• Develop improved algorithms in the low-rank setting using
techniques from matrix sketching, leverage score-based sampling,
and sparse Fourier transforms. Resemble popular ‘subspace
methods’ such as MUSIC and ESPRIT.
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broader agenda

Build connections between theoretical computer science and
signal processing.

• Leverage score/effective resistance sampling, sparse Fourier
transforms ⇐⇒ sub-Nyquist sampling, Chebyshev interpolation,
active sampling for Gaussian process regression

• Column-based matrix approximation, combinatorial sparsification
⇐⇒ nonlinear function approximation, Fourier-sparse
approximations

Apply tools from TCS to tackle fundamental signal processing
problems. A Universal Sampling Method for Reconstructing Signals
with Simple Fourier Transforms [AKMMVZ STOC ‘19]
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subset based estimation

For today, consider algorithms that sample x(1), . . . , x(n) ∼ D
with covariance T, read a fixed subset of entries R ⊆ [d] from
each x(j), and approximate T using x(1)R , . . . , x(n)R ∈ R|R|.

Entry sample complexity: |R|. Total sample complexity: |R| · n.

How small can R be? I.e., what is the minimal entry sample
complexity of such an algorithm?

For general (non-Toeplitz) T, require |R| = d.

T1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 vs. T2 =


1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1


To notice correlation between xj and xk must read both.
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subset based estimation

How small can R be if T is Toeplitz?

Can take advantage of
redundancy.

T =



a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0



• a1 = E[x2 · x3] = E[xd · xd−1].

Will see that we can achieve |R| = O(
√
d).
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sparse ruler based estimation

Definition (Ruler) A subset R ⊆ [d] is a ruler if for every distance
s ∈ {0, . . . ,d− 1}, there exist j, k ∈ R with j− k = s.

E.g., for d = 10, R = {1, 2, 5, 8, 10} is a ruler.

Claim For any d there exists a sparse ruler R with |R| = 2
√
d

• Suffices to take R = [1, 2, . . . ,
√
d] ∪ [2

√
d, 3

√
d, . . . ,d].

0 10 20 30 40 50 60 70 80 90

• The best possible leading constant lies between
√
2+ 4

3π and√
8/3 (Erdös, Gal, Leech, ‘48, ‘56)
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sparse ruler based estimation

T =



a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0


• If R is a ruler, for each s ∈ {0, . . . ,d− 1}, there is at least one
k, ℓ ∈ R with |k− ℓ| = s and thus with covariance

E[x(j)k · x(j)ℓ ] = as.

• Get at least one independent sample of as from every x(j)R .
• With enough samples n from D, will converge on an estimate
of each as and so of the full matrix T.
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sparse ruler sample complexity

How many vector samples do we need? What do we pay for
the optimal entry sample complexity of sparse rulers?

• How does the total sample complexity compare to methods
that read every entry of each x(j), e.g., estimating T with the
empricial covariance T̂ = 1

n
∑

j x(j)x(j)
T.
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∑

j x(j)x(j)
T.

11



some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃ =



a0 + ε0 a1 + ε1 a2 + ε2 · · · ad−2 + εd−2 ad−1 + εd−1
a1 + ε1 a0 + ε0 a1 + ε1 · · · · · · ad−2 + εd−2
a2 + ε2 a1 + ε1 a0 + ε0 · · · · · · · · ·

...
...

...
...

...
...

ad−2 + εd−2 · · · · · · · · · · · · a1 + ε1
ad−1 + εd−1 ad−2 + εd−2 · · · · · · a1 + ε1 a0 + ε0



• In the worst case, ∥T̃− T∥2 = εd but if εs were independent,
∥T̃− T∥2 ≤ ε

√
d [Meckes ‘07].

• Setting ε′ = ε/
√
d, n = Õ

(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ε∥T∥2.
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sparse ruler sample complexity

Theorem. For any ruler R ⊂ [d], covariance estimation with R
gives ∥T̃− T∥2 ≤ ε∥T∥2 with entry sample complexity |R| and
vector sample complexity n = Õ

(
d
ε2

)
.

• Vector sample complexity matches the complexity of
estimating an unstructured covariance with the empirical
covariance but entry sample complexity can be O(

√
d)

instead of d.
• Proof uses the Fourier structure of Toeplitz matrices.
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sparse ruler proof sketch

Algorithm: For each s ∈ {0, 1} approximate as by average over
the ruler R:

ãs =
1

n|Rs|

n∑
j=1

∑
(k,ℓ)∈Rs

x(j)k · x(j)ℓ where Rs = {k, ℓ ∈ R : |k− ℓ| = s}.

Let T̃ be the Toeplitz matrix with ãs on its sth diagonal.

• Let E = T− T̃ and e = a− ã. We want to bound ∥E∥2.
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sparse ruler proof sketch

Entry approximation to matrix approximation: Can bound
∥T̃− T∥2 = ∥E∥2 in terms of the Fourier transform of e.

∥E∥2 ≤ ∥E∞∥2 = max
f∈[0,1]

ê = max
f∈[0,1]

d∑
s=0

e · sin(2πsf).
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ê = max
f∈[0,1]

d∑
s=0

e · sin(2πsf).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.6

-0.4

-0.2

0

0.2

0.4

15



sparse ruler proof sketch

Entry approximation to matrix approximation: Can bound
∥T̃− T∥2 = ∥E∥2 in terms of the Fourier transform of e.

∥E∥2 ≤ ∥E∞∥2 = max
f∈[0,1]
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sparse ruler proof sketch

Formulation as Trace Bound: For fixed f let Mf be the Toeplitz
matrix with (Mf)j,k = sin(2πsf)

|Rs| when |j− k| = s.

Can rewrite the Fourier transform as:

∥T̃− T∥2 ≤ max
f∈[0,1]

d∑
s=0

[as − ãs] · sin(2πsf) = max
f∈[0,1]

tr
(
TR − T̃R,Mf

)
where TR, T̃R are the principal submatrices of T and T̃ restricted
to the indices in the ruler R.
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sparse ruler proof sketch

∥T̃R − TR∥2 ≤ max
f∈[0,1]

tr
(
TR − T̂R,Mf

)

Concentration Bound: (Hanson-Wright) For fixed f, if
n = Õ(1/ε2) can bound the righthand side with high prob. by:

ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2 ·
√
d ≤ ε∥T∥2 ·

√
d

since each entry of Mf = sin(2πsf)
|Rs| for some s so ∥Mf∥F ≤

√
d.

• Setting ε′ = ε/
√
d and union bounding over a net of f values

gives our n = Õ(d/ε2) bound.
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• The more coverage R has (the larger the |Rs| is on average),
the smaller ∥Mf∥F will be. Let’s us interpolate between
minimal entry sample complexity and minimal vector
sample complexity.
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n = Õ(1/ε2) can bound the righthand side with high prob. by:

ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2 ·
√
d ≤ ε∥T∥2 ·

√
d

since each entry of Mf = sin(2πsf)
|Rs| for some s so ∥Mf∥F ≤

√
d.

• Setting ε′ = ε/
√
d and union bounding over a net of f values

gives our n = Õ(d/ε2) bound.
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full ruler sample complexity

For R = [d], coverage is maximal and ∥Mf∥F = O(
√
logd), letting

us achieve vector sample complexity n = Õ
( 1
ε2

)
.

• Algorithm is equivalent to setting T = avg
(
1
n
∑
x(j)x(j)T

)
.

• Improves on sample complexity of just using the empirical
covariance by a Õ(d) factor.
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sparse ruler vs. full ruler

Total sample complexity is O(
√
d) · Õ(d) = Õ(d3/2) for sparse

ruler vs. d · Õ(1) = Õ(d) for full sample estimation.

• Prove bounds are tight when T is the identity.
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is there always a tradeoff?

• Total sample complexity is Õ(
√
d) for sparse ruler estimation

vs. Õ(d) for full sample estimation.
• Sparse rulers give much better total sample complexity
when T is (approximately) low-rank.

Can we explain this?
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sparse rulers for low-rank matrices

Recall that we have with n = Õ(1/ε2) samples:

∥T− T̃∥2 ≤ ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2
√
d ≤ ε∥T∥2

√
d.

• If T is the identity, ∥T∥2 = ∥TR∥2 = 1. But this is ‘very’ full-rank.
• Low-rank matrices cannot look like the identity – have significant
off diagonal mass [MMW ‘19].

• Upshot: Show ∥TR∥2 ≤ k√
d∥T∥2. Setting ε

′ = ε/k obtain total

sample complexity Õ
(√

dk2
ε2

)

.
21
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∥T− T̃∥2 ≤ ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2
√
d ≤ ε∥T∥2

√
d.

• If T is the identity, ∥T∥2 = ∥TR∥2 = 1. But this is ‘very’ full-rank.
• Low-rank matrices cannot look like the identity – have significant
off diagonal mass [MMW ‘19].

• Upshot: Show ∥TR∥2 ≤ k√
d∥T∥2. Setting ε

′ = ε/k obtain total

sample complexity Õ
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(√

dk2
ε2

)
.

21



an approach via fourier methods

Remainder of the talk: Will sketch a different approach to
low-rank Toeplitz covariance estimation using sparse Fourier
transform methods.

• Connections between these two approaches.
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the fourier perspective

Vandermonde Decomposition: Any rank-k Toeplitz T ∈ Rd×d
can be written as FSDFS where FS ∈ Rd×k is an ‘off-grid’ Fourier
transform matrix with frequencies f1, . . . , fk and D is a positive
diagonal matrix.

• Any sample x ∼ N (0, T) can be written as FSD1/2g for
g ∼ N (0, I). E[xxT] = FSD1/2E[ggT]D1/2F∗S = T.
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sample recovery via sparse fourier transform

x ∼ N (0, T) = FsD1/2g is a Fourier sparse function.

• Can recover exactly e.g. via Prony’s sparse Fourier transform
method by reading any 2k entries.

• Take n = Õ(1/ε2) samples, recover each in full by reading 2k
entries, and then apply our earlier resut for full ruler R = [d].
Total sample complexity: Õ(k/ε2).
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robustness to approximate low-rank

What about when T is close to, but not exactly rank-k?

• Prony’s method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some
set of k frequencies that approximately spans each
x(j) ∼ N (0, T).

• Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to
approximately recover x(1), . . . , x(n) and then estimate T from
these samples.

• Well studied in TCS, especially in the case when f1, . . . , fk are
‘on grid’ integer frequencies.
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frequency-based low-rank approximation

Step 1: Prove that when T is close to low-rank, there is some set
of k frequencies that approximately spans each x(j) ∼ N (0, T).

• We give a proof via a column subset selection result (see
e.g., Guruswami Sinop ‘12):

Theorem: Any A ∈ Rn×d, contains a subset of O(k/ε)
columns, C such that:

∥A− PC · A∥2F ≤ (1+ ε) min
rank−k M

∥A−M∥2F.
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frequency-based low-rank approximation

x(1), . . . , x(n) ∼ N (0, T) can be written as X = FSD1/2G where
columns of G are distributed as N (0, I).

• Think of G as a linear sketch that ensures FSD1/2G ≈ FSD1/2

(formally a projection-cost preserving sketch [CEMMP ‘15]).
• Apply column subset selection result to FSD1/2.
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recovering a sparse representation

Step 2: Recover frequencies f1, . . . , fm and Z ∈ Cm×n with
X ≈ FM · Z. Then estimate T using this approximation.

• Find frequencies via brute force search over a net.
• At each step of the search, for a given FM, we must find Z
that reconstructs X as well as possible using these
frequencies. How do we do this without reading all of X?
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approximate frequency regression

Want to find Z satisfying the approximate regression guarantee:

∥X− FMZ∥2F = O(1) ·minY∥X− FMY∥2F.

• Suffices to sample Õ(k) rows by the leverage scores of FM and
solve the regression problem just considering these rows.

• Remark: If f1, . . . , fm are ‘on-grid’ integers, the columns of FM are
orthonormal and the leverage scores are all k/n

→ RIP for
subsampled Fourier matrices.
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fourier leverage scores

Leverage scores measure much large a function in the column
span of FM can be at index i (i.e., how important that index may
be in the regression.)

τi(FM) = max
y

(FMy)2i
∥FMy∥22

.
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• Using that FMy is a Fourier sparse function we can bound
this quantity a priori, without any dependence on FM.
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fourier leverage scores

Extend bounds of [Chen Kane Price Song ‘16] to give explicit
function upper bounding the leverage scores of any FM:
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Since this distribution is universal, can sample one set of
entries by these leverages scores, and find X ≈ FM · Z with high
probability for any set of frequencies f1, . . . , fm in net.
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final algorithm

1. Sample poly(k/ε) indices R ⊂ [d] according to the sparse
Fourier leverage distribution (a random ‘ultra-sparse’ ruler)

2. For all f1, . . . , fm in net N : Compute approximate projection:

Z = argmin
Z∈Cm×n

∥XR − (FM)RZ∥2F.

3. Set X̃ = F⋆M · Z⋆ to the best frequency-based approximation.
4. Return T̃ = avg(X̃X̃T).

Sample Complexity: Gives ∥T− T̃∥2 ≤ ε∥T∥2 + f(T− Tk) when X
contains n = Õ(poly(k/ϵ)) samples. Entry sample complexity
poly(k/ε), total sample complexity Õ(poly(k/ε)).
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open questions and next directions

Concrete.

• Runtime efficiency?

• Can likely avoid exponential time net approach using off-grid
sparse Fourier transform of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• In process, maybe improve our sample complexity.

• ‘Continuous’ setting with sample access to a arbitrary
positions of a signal with stationary covariance. (E.g.,
x(1), . . . , x(n) may be snapshots of this signal.)

• Sample complexity bounds and tradeoffs for applications like
direction-of-arrival estimation, Doppler imaging.
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connections between sampling schemes
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• Some Formal Connections:

• Limiting density of Chebyshev nodes is the leverage score
distribution for k degree polynomials.

• Sampling O(
√
d) indices via Fourier sparse leverage scores gives

a sparse ruler with good probability.

• Also connected to multi-coset and non-uniform sampling
schemes used in signal processing.

• Seem to have a lot more to understand.
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d) indices via Fourier sparse leverage scores gives

a sparse ruler with good probability.

• Also connected to multi-coset and non-uniform sampling
schemes used in signal processing.

• Seem to have a lot more to understand.
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Thanks! Questions?

Paper draft and slides available at cameronmusco.com
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