
the sample complexity of
toeplitz covariance estimation

Cameron Musco (Microsoft Research→ UMass Amherst)
Joint with Yonina Eldar, Jerry Li, and Christopher Musco.

0

toeplitz covariance estimation

Covariance Estimation Problem. Consider positive
semidefinite matrix T ∈ Rd×d and distribution D over
d-dimensional vectors with covariance Ex∼D[xxT] = T
(i.e., Tj,k is the covariance between xj and xk).

Given independent samples x(1), . . . , x(n) ∼ D, return T̃ with:

∥T− T̃∥2 ≤ ε∥T∥2.

T =

a b c d e
b a b c d
c b a b c
d c b a b
e d c b a

1

toeplitz covariance estimation

Covariance Estimation Problem. Consider positive
semidefinite matrix T ∈ Rd×d and distribution D over
d-dimensional vectors with covariance Ex∼D[xxT] = T
(i.e., Tj,k is the covariance between xj and xk).

Given independent samples x(1), . . . , x(n) ∼ D, return T̃ with:

∥T− T̃∥2 ≤ ε∥T∥2.

T =

a b c d e
b a b c d
c b a b c
d c b a b
e d c b a

1

toeplitz covariance estimation

Covariance Estimation Problem. Consider positive
semidefinite Toeplitz matrix T ∈ Rd×d and distribution D over
d-dimensional vectors with covariance Ex∼D[xxT] = T
(i.e., Tj,k is the covariance between xj and xk).

Given independent samples x(1), . . . , x(n) ∼ D, return T̃ with:

∥T− T̃∥2 ≤ ε∥T∥2.

T =

a b c d e
b a b c d
c b a b c
d c b a b
e d c b a

1

toeplitz covariance estimation

Covariance Estimation Problem. Consider positive
semidefinite Toeplitz matrix T ∈ Rd×d and distribution D over
d-dimensional vectors with covariance Ex∼D[xxT] = T
(i.e., Tj,k is the covariance between xj and xk).

Given independent samples x(1), . . . , x(n) ∼ D, return T̃ with:

∥T− T̃∥2 ≤ ε∥T∥2.

T =

a b c d e
b a b c d
c b a b c
d c b a b
e d c b a

1

toeplitz covariance estimation

Arises often in signal processing, when measurements are taken on a
spatial or temporal grid and covariance depends only on the
distance between them – i.e., E[xj · xk] = f(|j− k|).

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

0

2

4

6

8

highly correlated

mostly uncorrelated

• Applications: spectrum sensing, Doppler radar, direction of arrival
estimation, prediction via Gaussian process regression, etc.

• Kernel matrices in machine learning are Toeplitz covariance
matrices when data points are on a grid.

2

toeplitz covariance estimation

Arises often in signal processing, when measurements are taken on a
spatial or temporal grid and covariance depends only on the
distance between them – i.e., E[xj · xk] = f(|j− k|).

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

0

2

4

6

8

highly correlated

mostly uncorrelated

• Applications: spectrum sensing, Doppler radar, direction of arrival
estimation, prediction via Gaussian process regression, etc.

• Kernel matrices in machine learning are Toeplitz covariance
matrices when data points are on a grid.

2

toeplitz covariance estimation

Arises often in signal processing, when measurements are taken on a
spatial or temporal grid and covariance depends only on the
distance between them – i.e., E[xj · xk] = f(|j− k|).

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

0

2

4

6

8

highly correlated

mostly uncorrelated

• Applications: spectrum sensing, Doppler radar, direction of arrival
estimation, prediction via Gaussian process regression, etc.

• Kernel matrices in machine learning are Toeplitz covariance
matrices when data points are on a grid.

2

toeplitz covariance estimation

Arises often in signal processing, when measurements are taken on a
spatial or temporal grid and covariance depends only on the
distance between them – i.e., E[xj · xk] = f(|j− k|).

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

0

2

4

6

8

highly correlated

mostly uncorrelated

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

x
(3)

x
(2)

x
(1)

• Applications: spectrum sensing, Doppler radar, direction of arrival
estimation, prediction via Gaussian process regression, etc.

• Kernel matrices in machine learning are Toeplitz covariance
matrices when data points are on a grid.

2

toeplitz covariance estimation

Arises often in signal processing, when measurements are taken on a
spatial or temporal grid and covariance depends only on the
distance between them – i.e., E[xj · xk] = f(|j− k|).

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

0

2

4

6

8

highly correlated

mostly uncorrelated

• Applications: spectrum sensing, Doppler radar, direction of arrival
estimation, prediction via Gaussian process regression, etc.

• Kernel matrices in machine learning are Toeplitz covariance
matrices when data points are on a grid.

2

toeplitz covariance estimation

Arises often in signal processing, when measurements are taken on a
spatial or temporal grid and covariance depends only on the
distance between them – i.e., E[xj · xk] = f(|j− k|).

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

0

2

4

6

8

highly correlated

mostly uncorrelated

• Applications: spectrum sensing, Doppler radar, direction of arrival
estimation, prediction via Gaussian process regression, etc.

• Kernel matrices in machine learning are Toeplitz covariance
matrices when data points are on a grid.

2

sample complexity

Want to minimize two types of sample complexity:

• Vector sample complexity: How many samples
x(1), . . . , x(n) ∼ D are required to estimate T?

• Entry sample complexity: How many entries s must be read
from each sample x(1), . . . , x(n)?

In different applications, these complexities correspond to
different costs. Typically there is a tradeoff.

• Total sample complexity: Total number of entries read, n · s.

• Seems to be interesting even beyond Toeplitz covariance
matrices, but not well studied.

3

sample complexity

Want to minimize two types of sample complexity:

• Vector sample complexity: How many samples
x(1), . . . , x(n) ∼ D are required to estimate T?

• Entry sample complexity: How many entries s must be read
from each sample x(1), . . . , x(n)?

In different applications, these complexities correspond to
different costs. Typically there is a tradeoff.

• Total sample complexity: Total number of entries read, n · s.

• Seems to be interesting even beyond Toeplitz covariance
matrices, but not well studied.

3

sample complexity

Want to minimize two types of sample complexity:

• Vector sample complexity: How many samples
x(1), . . . , x(n) ∼ D are required to estimate T?

• Entry sample complexity: How many entries s must be read
from each sample x(1), . . . , x(n)?

In different applications, these complexities correspond to
different costs. Typically there is a tradeoff.

• Total sample complexity: Total number of entries read, n · s.

• Seems to be interesting even beyond Toeplitz covariance
matrices, but not well studied.

3

sample complexity

Want to minimize two types of sample complexity:

• Vector sample complexity: How many samples
x(1), . . . , x(n) ∼ D are required to estimate T?

• Entry sample complexity: How many entries s must be read
from each sample x(1), . . . , x(n)?

In different applications, these complexities correspond to
different costs. Typically there is a tradeoff.

• Total sample complexity: Total number of entries read, n · s.

• Seems to be interesting even beyond Toeplitz covariance
matrices, but not well studied.

3

sample complexity

Want to minimize two types of sample complexity:

• Vector sample complexity: How many samples
x(1), . . . , x(n) ∼ D are required to estimate T?

• Entry sample complexity: How many entries s must be read
from each sample x(1), . . . , x(n)?

In different applications, these complexities correspond to
different costs. Typically there is a tradeoff.

• Total sample complexity: Total number of entries read, n · s.

• Seems to be interesting even beyond Toeplitz covariance
matrices, but not well studied.

3

sample complexity

Want to minimize two types of sample complexity:

• Vector sample complexity: How many samples
x(1), . . . , x(n) ∼ D are required to estimate T?

• Entry sample complexity: How many entries s must be read
from each sample x(1), . . . , x(n)?

In different applications, these complexities correspond to
different costs. Typically there is a tradeoff.

• Total sample complexity: Total number of entries read, n · s.
• Seems to be interesting even beyond Toeplitz covariance
matrices, but not well studied.

3

example: direction of arrival estimation

0 1 2 3 4 5 6 7 8 9

-1

-0.5

0

0.5

1

• Vector sample complexity: Estimation time (# snapshots).
• Entry sample complexity: Number of active receivers.

4

example: direction of arrival estimation

0 1 2 3 4 5 6 7 8 9

-1

-0.5

0

0.5

1

• Vector sample complexity: Estimation time (# snapshots).
• Entry sample complexity: Number of active receivers.

4

example: direction of arrival estimation

0 1 2 3 4 5 6 7 8 9

-1

-0.5

0

0.5

1

• Vector sample complexity: Estimation time (# snapshots).
• Entry sample complexity: Number of active receivers.

4

example: direction of arrival estimation

0 1 2 3 4 5 6 7 8 9

-1

-0.5

0

0.5

1

• Vector sample complexity: Estimation time (# snapshots).
• Entry sample complexity: Number of active receivers.

4

example: direction of arrival estimation

0 1 2 3 4 5 6 7 8 9

-1

-0.5

0

0.5

1

• Vector sample complexity: Estimation time (# snapshots).
• Entry sample complexity: Number of active receivers.

4

example: direction of arrival estimation

0 1 2 3 4 5 6 7 8 9

-1

-0.5

0

0.5

1

• Vector sample complexity: Estimation time (# snapshots).
• Entry sample complexity: Number of active receivers.

4

example: direction of arrival estimation

0 1 2 3 4 5 6 7 8 9

-1

-0.5

0

0.5

1

• Vector sample complexity: Estimation time (# snapshots).
• Entry sample complexity: Number of active receivers.

4

our contributions

Current state: Many algorithms for Toeplitz covariance estimation,
but few formal results on sample complexities/tradeoffs.

Our contributions:

• Give non-asymptotic sample complexity bounds by analyzing
classic algorithms, including those with sublinear entry sample
complexity based on sparse ruler measurements.

• Show that sparse ruler methods give sublinear total sample
complexity when T is low-rank (e.g., DOA with k≪ d senders).

• Develop improved algorithms in the low-rank setting using
techniques from matrix sketching, leverage score-based sampling,
and sparse Fourier transforms. Resemble popular ‘subspace
methods’ such as MUSIC and ESPRIT.

5

our contributions

Current state: Many algorithms for Toeplitz covariance estimation,
but few formal results on sample complexities/tradeoffs.

Our contributions:

• Give non-asymptotic sample complexity bounds by analyzing
classic algorithms, including those with sublinear entry sample
complexity based on sparse ruler measurements.

• Show that sparse ruler methods give sublinear total sample
complexity when T is low-rank (e.g., DOA with k≪ d senders).

• Develop improved algorithms in the low-rank setting using
techniques from matrix sketching, leverage score-based sampling,
and sparse Fourier transforms. Resemble popular ‘subspace
methods’ such as MUSIC and ESPRIT.

5

our contributions

Current state: Many algorithms for Toeplitz covariance estimation,
but few formal results on sample complexities/tradeoffs.

Our contributions:

• Give non-asymptotic sample complexity bounds by analyzing
classic algorithms, including those with sublinear entry sample
complexity based on sparse ruler measurements.

• Show that sparse ruler methods give sublinear total sample
complexity when T is low-rank (e.g., DOA with k≪ d senders).

• Develop improved algorithms in the low-rank setting using
techniques from matrix sketching, leverage score-based sampling,
and sparse Fourier transforms. Resemble popular ‘subspace
methods’ such as MUSIC and ESPRIT.

5

our contributions

Current state: Many algorithms for Toeplitz covariance estimation,
but few formal results on sample complexities/tradeoffs.

Our contributions:

• Give non-asymptotic sample complexity bounds by analyzing
classic algorithms, including those with sublinear entry sample
complexity based on sparse ruler measurements.

• Show that sparse ruler methods give sublinear total sample
complexity when T is low-rank (e.g., DOA with k≪ d senders).

• Develop improved algorithms in the low-rank setting using
techniques from matrix sketching, leverage score-based sampling,
and sparse Fourier transforms. Resemble popular ‘subspace
methods’ such as MUSIC and ESPRIT.

5

our contributions

Current state: Many algorithms for Toeplitz covariance estimation,
but few formal results on sample complexities/tradeoffs.

Our contributions:

• Give non-asymptotic sample complexity bounds by analyzing
classic algorithms, including those with sublinear entry sample
complexity based on sparse ruler measurements.

• Show that sparse ruler methods give sublinear total sample
complexity when T is low-rank (e.g., DOA with k≪ d senders).

• Develop improved algorithms in the low-rank setting using
techniques from matrix sketching, leverage score-based sampling,
and sparse Fourier transforms. Resemble popular ‘subspace
methods’ such as MUSIC and ESPRIT.

5

broader agenda

Build connections between theoretical computer science and
signal processing.

• Leverage score/effective resistance sampling, sparse Fourier
transforms ⇐⇒ sub-Nyquist sampling, Chebyshev interpolation,
active sampling for Gaussian process regression

• Column-based matrix approximation, combinatorial sparsification
⇐⇒ nonlinear function approximation, Fourier-sparse
approximations

Apply tools from TCS to tackle fundamental signal processing
problems. A Universal Sampling Method for Reconstructing Signals
with Simple Fourier Transforms [AKMMVZ STOC ‘19]

6

broader agenda

Build connections between theoretical computer science and
signal processing.

• Leverage score/effective resistance sampling, sparse Fourier
transforms ⇐⇒ sub-Nyquist sampling, Chebyshev interpolation,
active sampling for Gaussian process regression

• Column-based matrix approximation, combinatorial sparsification
⇐⇒ nonlinear function approximation, Fourier-sparse
approximations

Apply tools from TCS to tackle fundamental signal processing
problems. A Universal Sampling Method for Reconstructing Signals
with Simple Fourier Transforms [AKMMVZ STOC ‘19]

6

broader agenda

Build connections between theoretical computer science and
signal processing.

• Leverage score/effective resistance sampling, sparse Fourier
transforms ⇐⇒ sub-Nyquist sampling, Chebyshev interpolation,
active sampling for Gaussian process regression

• Column-based matrix approximation, combinatorial sparsification
⇐⇒ nonlinear function approximation, Fourier-sparse
approximations

Apply tools from TCS to tackle fundamental signal processing
problems. A Universal Sampling Method for Reconstructing Signals
with Simple Fourier Transforms [AKMMVZ STOC ‘19]

6

subset based estimation

For today, consider algorithms that sample x(1), . . . , x(n) ∼ D
with covariance T, read a fixed subset of entries R ⊆ [d] from
each x(j), and approximate T using x(1)R , . . . , x(n)R ∈ R|R|.

Entry sample complexity: |R|. Total sample complexity: |R| · n.

How small can R be? I.e., what is the minimal entry sample
complexity of such an algorithm?

For general (non-Toeplitz) T, require |R| = d.

T1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 vs. T2 =

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

To notice correlation between xj and xk must read both.

7

subset based estimation

For today, consider algorithms that sample x(1), . . . , x(n) ∼ D
with covariance T, read a fixed subset of entries R ⊆ [d] from
each x(j), and approximate T using x(1)R , . . . , x(n)R ∈ R|R|.

Entry sample complexity: |R|. Total sample complexity: |R| · n.

How small can R be? I.e., what is the minimal entry sample
complexity of such an algorithm?

For general (non-Toeplitz) T, require |R| = d.

T1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 vs. T2 =

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

To notice correlation between xj and xk must read both.

7

subset based estimation

For today, consider algorithms that sample x(1), . . . , x(n) ∼ D
with covariance T, read a fixed subset of entries R ⊆ [d] from
each x(j), and approximate T using x(1)R , . . . , x(n)R ∈ R|R|.

How small can R be? I.e., what is the minimal entry sample
complexity of such an algorithm?

For general (non-Toeplitz) T, require |R| = d.

T1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 vs. T2 =

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

To notice correlation between xj and xk must read both.

7

subset based estimation

For today, consider algorithms that sample x(1), . . . , x(n) ∼ D
with covariance T, read a fixed subset of entries R ⊆ [d] from
each x(j), and approximate T using x(1)R , . . . , x(n)R ∈ R|R|.

How small can R be? I.e., what is the minimal entry sample
complexity of such an algorithm?

For general (non-Toeplitz) T, require |R| = d.

T1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 vs. T2 =

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

To notice correlation between xj and xk must read both.

7

subset based estimation

For today, consider algorithms that sample x(1), . . . , x(n) ∼ D
with covariance T, read a fixed subset of entries R ⊆ [d] from
each x(j), and approximate T using x(1)R , . . . , x(n)R ∈ R|R|.

How small can R be? I.e., what is the minimal entry sample
complexity of such an algorithm?

For general (non-Toeplitz) T, require |R| = d.

T1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 vs. T2 =

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

To notice correlation between xj and xk must read both.

7

subset based estimation

How small can R be if T is Toeplitz?

Can take advantage of
redundancy.

T =

a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0

• a1 = E[x2 · x3] = E[xd · xd−1].

Will see that we can achieve |R| = O(
√
d).

8

subset based estimation

How small can R be if T is Toeplitz? Can take advantage of
redundancy.

T =

a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0

• a1 = E[x2 · x3] = E[xd · xd−1].

Will see that we can achieve |R| = O(
√
d).

8

subset based estimation

How small can R be if T is Toeplitz? Can take advantage of
redundancy.

T =

a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0

• a1 = E[x2 · x3] = E[xd · xd−1].

Will see that we can achieve |R| = O(
√
d).

8

subset based estimation

How small can R be if T is Toeplitz? Can take advantage of
redundancy.

T =

a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0

• a1 = E[x2 · x3] = E[xd · xd−1].

Will see that we can achieve |R| = O(
√
d).

8

sparse ruler based estimation

Definition (Ruler) A subset R ⊆ [d] is a ruler if for every distance
s ∈ {0, . . . ,d− 1}, there exist j, k ∈ R with j− k = s.

E.g., for d = 10, R = {1, 2, 5, 8, 10} is a ruler.

Claim For any d there exists a sparse ruler R with |R| = 2
√
d

• Suffices to take R = [1, 2, . . . ,
√
d] ∪ [2

√
d, 3

√
d, . . . ,d].

0 10 20 30 40 50 60 70 80 90

• The best possible leading constant lies between
√
2+ 4

3π and√
8/3 (Erdös, Gal, Leech, ‘48, ‘56)

9

sparse ruler based estimation

Definition (Ruler) A subset R ⊆ [d] is a ruler if for every distance
s ∈ {0, . . . ,d− 1}, there exist j, k ∈ R with j− k = s.

E.g., for d = 10, R = {1, 2, 5, 8, 10} is a ruler.

Claim For any d there exists a sparse ruler R with |R| = 2
√
d

• Suffices to take R = [1, 2, . . . ,
√
d] ∪ [2

√
d, 3

√
d, . . . ,d].

0 10 20 30 40 50 60 70 80 90

• The best possible leading constant lies between
√
2+ 4

3π and√
8/3 (Erdös, Gal, Leech, ‘48, ‘56)

9

sparse ruler based estimation

Definition (Ruler) A subset R ⊆ [d] is a ruler if for every distance
s ∈ {0, . . . ,d− 1}, there exist j, k ∈ R with j− k = s.

Claim For any d there exists a sparse ruler R with |R| = 2
√
d

• Suffices to take R = [1, 2, . . . ,
√
d] ∪ [2

√
d, 3

√
d, . . . ,d].

0 10 20 30 40 50 60 70 80 90

• The best possible leading constant lies between
√
2+ 4

3π and√
8/3 (Erdös, Gal, Leech, ‘48, ‘56)

9

sparse ruler based estimation

Definition (Ruler) A subset R ⊆ [d] is a ruler if for every distance
s ∈ {0, . . . ,d− 1}, there exist j, k ∈ R with j− k = s.

Claim For any d there exists a sparse ruler R with |R| = 2
√
d

• Suffices to take R = [1, 2, . . . ,
√
d] ∪ [2

√
d, 3

√
d, . . . ,d].

0 10 20 30 40 50 60 70 80 90

• The best possible leading constant lies between
√
2+ 4

3π and√
8/3 (Erdös, Gal, Leech, ‘48, ‘56)

9

sparse ruler based estimation

Definition (Ruler) A subset R ⊆ [d] is a ruler if for every distance
s ∈ {0, . . . ,d− 1}, there exist j, k ∈ R with j− k = s.

Claim For any d there exists a sparse ruler R with |R| = 2
√
d

• Suffices to take R = [1, 2, . . . ,
√
d] ∪ [2

√
d, 3

√
d, . . . ,d].

0 10 20 30 40 50 60 70 80 90

• The best possible leading constant lies between
√
2+ 4

3π and√
8/3 (Erdös, Gal, Leech, ‘48, ‘56)

9

sparse ruler based estimation

T =

a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0

• If R is a ruler, for each s ∈ {0, . . . ,d− 1}, there is at least one
k, ℓ ∈ R with |k− ℓ| = s and thus with covariance

E[x(j)k · x(j)ℓ] = as.

• Get at least one independent sample of as from every x(j)R .
• With enough samples n from D, will converge on an estimate
of each as and so of the full matrix T.

10

sparse ruler based estimation

T =

a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0

• If R is a ruler, for each s ∈ {0, . . . ,d− 1}, there is at least one
k, ℓ ∈ R with |k− ℓ| = s and thus with covariance

E[x(j)k · x(j)ℓ] = as.

• Get at least one independent sample of as from every x(j)R .

• With enough samples n from D, will converge on an estimate
of each as and so of the full matrix T.

10

sparse ruler based estimation

T =

a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0

• If R is a ruler, for each s ∈ {0, . . . ,d− 1}, there is at least one
k, ℓ ∈ R with |k− ℓ| = s and thus with covariance

E[x(j)k · x(j)ℓ] = as.

• Get at least one independent sample of as from every x(j)R .
• With enough samples n from D, will converge on an estimate
of each as and so of the full matrix T.

10

sparse ruler sample complexity

How many vector samples do we need? What do we pay for
the optimal entry sample complexity of sparse rulers?

• How does the total sample complexity compare to methods
that read every entry of each x(j), e.g., estimating T with the
empricial covariance T̂ = 1

n
∑

j x(j)x(j)
T.

11

sparse ruler sample complexity

How many vector samples do we need? What do we pay for
the optimal entry sample complexity of sparse rulers?

• How does the total sample complexity compare to methods
that read every entry of each x(j), e.g., estimating T with the
empricial covariance T̂ = 1

n
∑

j x(j)x(j)
T.

11

some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃ =

a0 + ε0 a1 + ε1 a2 + ε2 · · · ad−2 + εd−2 ad−1 + εd−1
a1 + ε1 a0 + ε0 a1 + ε1 · · · · · · ad−2 + εd−2
a2 + ε2 a1 + ε1 a0 + ε0 · · · · · · · · ·

...
...

...
...

...
...

ad−2 + εd−2 · · · · · · · · · · · · a1 + ε1
ad−1 + εd−1 ad−2 + εd−2 · · · · · · a1 + ε1 a0 + ε0

• In the worst case, ∥T̃− T∥2 = εd but if εs were independent,
∥T̃− T∥2 ≤ ε

√
d [Meckes ‘07].

• Setting ε′ = ε/
√
d, n = Õ

(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ε∥T∥2.

12

some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃ =

a0 + ε0 a1 + ε1 a2 + ε2 · · · ad−2 + εd−2 ad−1 + εd−1
a1 + ε1 a0 + ε0 a1 + ε1 · · · · · · ad−2 + εd−2
a2 + ε2 a1 + ε1 a0 + ε0 · · · · · · · · ·

...
...

...
...

...
...

ad−2 + εd−2 · · · · · · · · · · · · a1 + ε1
ad−1 + εd−1 ad−2 + εd−2 · · · · · · a1 + ε1 a0 + ε0

• In the worst case, ∥T̃− T∥2 = εd but if εs were independent,
∥T̃− T∥2 ≤ ε

√
d [Meckes ‘07].

• Setting ε′ = ε/
√
d, n = Õ

(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ε∥T∥2.

12

some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃ =

a0 + ε0 a1 + ε1 a2 + ε2 · · · ad−2 + εd−2 ad−1 + εd−1
a1 + ε1 a0 + ε0 a1 + ε1 · · · · · · ad−2 + εd−2
a2 + ε2 a1 + ε1 a0 + ε0 · · · · · · · · ·

...
...

...
...

...
...

ad−2 + εd−2 · · · · · · · · · · · · a1 + ε1
ad−1 + εd−1 ad−2 + εd−2 · · · · · · a1 + ε1 a0 + ε0

• In the worst case, ∥T̃− T∥2 = εd but if εs were independent,
∥T̃− T∥2 ≤ ε

√
d [Meckes ‘07].

• Setting ε′ = ε/
√
d, n = Õ

(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ε∥T∥2.

12

some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃− T =

ε0 ε1 ε2 · · · εd−2 εd−1
ε1 ε0 ε1 · · · · · · εd−2
ε2 ε1 ε0 · · · · · · · · ·
...

...
...

...
...

...
εd−2 · · · · · · · · · · · · ε1
εd−1 εd−2 · · · · · · ε1 ε0

• In the worst case, ∥T̃− T∥2 = εd but if εs were independent,
∥T̃− T∥2 ≤ ε

√
d [Meckes ‘07].

• Setting ε′ = ε/
√
d, n = Õ

(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ε∥T∥2.

12

some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃− T =

ε0 ε1 ε2 · · · εd−2 εd−1
ε1 ε0 ε1 · · · · · · εd−2
ε2 ε1 ε0 · · · · · · · · ·
...

...
...

...
...

...
εd−2 · · · · · · · · · · · · ε1
εd−1 εd−2 · · · · · · ε1 ε0

• In the worst case, ∥T̃− T∥2 = εd but if εs were independent,
∥T̃− T∥2 ≤ ε

√
d [Meckes ‘07].

• Setting ε′ = ε/
√
d, n = Õ

(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ε∥T∥2.

12

some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃− T =

ε0 ε1 ε2 · · · εd−2 εd−1
ε1 ε0 ε1 · · · · · · εd−2
ε2 ε1 ε0 · · · · · · · · ·
...

...
...

...
...

...
εd−2 · · · · · · · · · · · · ε1
εd−1 εd−2 · · · · · · ε1 ε0

• In the worst case, ∥T̃− T∥2 = εd but if εs were independent,
∥T̃− T∥2 ≤ ε

√
d [Meckes ‘07].

• Setting ε′ = ε/
√
d, n = Õ

(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ε∥T∥2. 12

some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃− T =

ε0 ε1 ε2 · · · εd−2 εd−1
ε1 ε0 ε1 · · · · · · εd−2
ε2 ε1 ε0 · · · · · · · · ·
...

...
...

...
...

...
εd−2 · · · · · · · · · · · · ε1
εd−1 εd−2 · · · · · · ε1 ε0

• In the worst case, ∥T̃− T∥2 = εd but if εs were independent,
∥T̃− T∥2 ≤ ε

√
d [Meckes ‘07].

• Setting ε′ = ε/
√
d, n = Õ

(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ε∥T∥2. 12

sparse ruler sample complexity

Theorem. For any ruler R ⊂ [d], covariance estimation with R
gives ∥T̃− T∥2 ≤ ε∥T∥2 with entry sample complexity |R| and
vector sample complexity n = Õ

(
d
ε2

)
.

• Vector sample complexity matches the complexity of
estimating an unstructured covariance with the empirical
covariance but entry sample complexity can be O(

√
d)

instead of d.
• Proof uses the Fourier structure of Toeplitz matrices.

13

sparse ruler sample complexity

Theorem. For any ruler R ⊂ [d], covariance estimation with R
gives ∥T̃− T∥2 ≤ ε∥T∥2 with entry sample complexity |R| and
vector sample complexity n = Õ

(
d
ε2

)
.

• Vector sample complexity matches the complexity of
estimating an unstructured covariance with the empirical
covariance but entry sample complexity can be O(

√
d)

instead of d.

• Proof uses the Fourier structure of Toeplitz matrices.

13

sparse ruler sample complexity

Theorem. For any ruler R ⊂ [d], covariance estimation with R
gives ∥T̃− T∥2 ≤ ε∥T∥2 with entry sample complexity |R| and
vector sample complexity n = Õ

(
d
ε2

)
.

• Vector sample complexity matches the complexity of
estimating an unstructured covariance with the empirical
covariance but entry sample complexity can be O(

√
d)

instead of d.
• Proof uses the Fourier structure of Toeplitz matrices.

13

sparse ruler proof sketch

Algorithm: For each s ∈ {0, 1} approximate as by average over
the ruler R:

ãs =
1

n|Rs|

n∑
j=1

∑
(k,ℓ)∈Rs

x(j)k · x(j)ℓ where Rs = {k, ℓ ∈ R : |k− ℓ| = s}.

Let T̃ be the Toeplitz matrix with ãs on its sth diagonal.

• Let E = T− T̃ and e = a− ã. We want to bound ∥E∥2.

14

sparse ruler proof sketch

Algorithm: For each s ∈ {0, 1} approximate as by average over
the ruler R:

ãs =
1

n|Rs|

n∑
j=1

∑
(k,ℓ)∈Rs

x(j)k · x(j)ℓ where Rs = {k, ℓ ∈ R : |k− ℓ| = s}.

Let T̃ be the Toeplitz matrix with ãs on its sth diagonal.

• Let E = T− T̃ and e = a− ã. We want to bound ∥E∥2.

14

sparse ruler proof sketch

Algorithm: For each s ∈ {0, 1} approximate as by average over
the ruler R:

ãs =
1

n|Rs|

n∑
j=1

∑
(k,ℓ)∈Rs

x(j)k · x(j)ℓ where Rs = {k, ℓ ∈ R : |k− ℓ| = s}.

Let T̃ be the Toeplitz matrix with ãs on its sth diagonal.

• Let E = T− T̃ and e = a− ã. We want to bound ∥E∥2.

14

sparse ruler proof sketch

Entry approximation to matrix approximation: Can bound
∥T̃− T∥2 = ∥E∥2 in terms of the Fourier transform of e.

∥E∥2 ≤ ∥E∞∥2 = max
f∈[0,1]

ê = max
f∈[0,1]

d∑
s=0

e · sin(2πsf).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.6

-0.4

-0.2

0

0.2

0.4

15

sparse ruler proof sketch

Entry approximation to matrix approximation: Can bound
∥T̃− T∥2 = ∥E∥2 in terms of the Fourier transform of e.

∥E∥2 ≤ ∥E∞∥2 = max
f∈[0,1]

ê = max
f∈[0,1]

d∑
s=0

e · sin(2πsf).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.6

-0.4

-0.2

0

0.2

0.4

15

sparse ruler proof sketch

Entry approximation to matrix approximation: Can bound
∥T̃− T∥2 = ∥E∥2 in terms of the Fourier transform of e.

∥E∥2 ≤ ∥E∞∥2 = max
f∈[0,1]

ê = max
f∈[0,1]

d∑
s=0

e · sin(2πsf).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.6

-0.4

-0.2

0

0.2

0.4

15

sparse ruler proof sketch

Entry approximation to matrix approximation: Can bound
∥T̃− T∥2 = ∥E∥2 in terms of the Fourier transform of e.

∥E∥2 ≤ ∥E∞∥2 = max
f∈[0,1]

ê = max
f∈[0,1]

d∑
s=0

e · sin(2πsf).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.6

-0.4

-0.2

0

0.2

0.4

15

sparse ruler proof sketch

Formulation as Trace Bound: For fixed f let Mf be the Toeplitz
matrix with (Mf)j,k = sin(2πsf)

|Rs| when |j− k| = s.

Can rewrite the Fourier transform as:

∥T̃− T∥2 ≤ max
f∈[0,1]

d∑
s=0

[as − ãs] · sin(2πsf) = max
f∈[0,1]

tr
(
TR − T̃R,Mf

)
where TR, T̃R are the principal submatrices of T and T̃ restricted
to the indices in the ruler R.

16

sparse ruler proof sketch

Formulation as Trace Bound: For fixed f let Mf be the Toeplitz
matrix with (Mf)j,k = sin(2πsf)

|Rs| when |j− k| = s.

Can rewrite the Fourier transform as:

∥T̃− T∥2 ≤ max
f∈[0,1]

d∑
s=0

[as − ãs] · sin(2πsf) = max
f∈[0,1]

tr
(
TR − T̃R,Mf

)
where TR, T̃R are the principal submatrices of T and T̃ restricted
to the indices in the ruler R.

16

sparse ruler proof sketch

Formulation as Trace Bound: For fixed f let Mf be the Toeplitz
matrix with (Mf)j,k = sin(2πsf)

|Rs| when |j− k| = s.

Can rewrite the Fourier transform as:

∥T̃− T∥2 ≤ max
f∈[0,1]

d∑
s=0

[as − ãs] · sin(2πsf) = max
f∈[0,1]

tr
(
TR − T̃R,Mf

)
where TR, T̃R are the principal submatrices of T and T̃ restricted
to the indices in the ruler R.

16

sparse ruler proof sketch

Formulation as Trace Bound: For fixed f let Mf be the Toeplitz
matrix with (Mf)j,k = sin(2πsf)

|Rs| when |j− k| = s.

Can rewrite the Fourier transform as:

∥T̃− T∥2 ≤ max
f∈[0,1]

d∑
s=0

[as − ãs] · sin(2πsf) = max
f∈[0,1]

tr
(
TR − T̂R,Mf

)
where TR, T̃R are the principal submatrices of T and T̃ restricted
to the indices in the ruler R.

16

sparse ruler proof sketch

∥T̃R − TR∥2 ≤ max
f∈[0,1]

tr
(
TR − T̂R,Mf

)

Concentration Bound: (Hanson-Wright) For fixed f, if
n = Õ(1/ε2) can bound the righthand side with high prob. by:

ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2 ·
√
d ≤ ε∥T∥2 ·

√
d

since each entry of Mf = sin(2πsf)
|Rs| for some s so ∥Mf∥F ≤

√
d.

• Setting ε′ = ε/
√
d and union bounding over a net of f values

gives our n = Õ(d/ε2) bound.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.6

-0.4

-0.2

0

0.2

0.4

• The more coverage R has (the larger the |Rs| is on average),
the smaller ∥Mf∥F will be. Let’s us interpolate between
minimal entry sample complexity and minimal vector
sample complexity.

17

sparse ruler proof sketch

∥T̃R − TR∥2 ≤ max
f∈[0,1]

tr
(
TR − T̂R,Mf

)
Concentration Bound: (Hanson-Wright) For fixed f, if
n = Õ(1/ε2) can bound the righthand side with high prob. by:

ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2 ·
√
d ≤ ε∥T∥2 ·

√
d

since each entry of Mf = sin(2πsf)
|Rs| for some s so ∥Mf∥F ≤

√
d.

• Setting ε′ = ε/
√
d and union bounding over a net of f values

gives our n = Õ(d/ε2) bound.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.6

-0.4

-0.2

0

0.2

0.4

• The more coverage R has (the larger the |Rs| is on average),
the smaller ∥Mf∥F will be. Let’s us interpolate between
minimal entry sample complexity and minimal vector
sample complexity.

17

sparse ruler proof sketch

∥T̃R − TR∥2 ≤ max
f∈[0,1]

tr
(
TR − T̂R,Mf

)
Concentration Bound: (Hanson-Wright) For fixed f, if
n = Õ(1/ε2) can bound the righthand side with high prob. by:

ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2 ·
√
d ≤ ε∥T∥2 ·

√
d

since each entry of Mf = sin(2πsf)
|Rs| for some s so ∥Mf∥F ≤

√
d.

• Setting ε′ = ε/
√
d and union bounding over a net of f values

gives our n = Õ(d/ε2) bound.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.6

-0.4

-0.2

0

0.2

0.4

• The more coverage R has (the larger the |Rs| is on average),
the smaller ∥Mf∥F will be. Let’s us interpolate between
minimal entry sample complexity and minimal vector
sample complexity.

17

sparse ruler proof sketch

∥T̃R − TR∥2 ≤ max
f∈[0,1]

tr
(
TR − T̂R,Mf

)
Concentration Bound: (Hanson-Wright) For fixed f, if
n = Õ(1/ε2) can bound the righthand side with high prob. by:

ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2 ·
√
d ≤ ε∥T∥2 ·

√
d

since each entry of Mf = sin(2πsf)
|Rs| for some s so ∥Mf∥F ≤

√
d.

• Setting ε′ = ε/
√
d and union bounding over a net of f values

gives our n = Õ(d/ε2) bound.
• The more coverage R has (the larger the |Rs| is on average),
the smaller ∥Mf∥F will be. Let’s us interpolate between
minimal entry sample complexity and minimal vector
sample complexity.

17

full ruler sample complexity

For R = [d], coverage is maximal and ∥Mf∥F = O(
√
logd), letting

us achieve vector sample complexity n = Õ
(1
ε2

)
.

• Algorithm is equivalent to setting T = avg
(
1
n
∑
x(j)x(j)T

)
.

• Improves on sample complexity of just using the empirical
covariance by a Õ(d) factor.

18

full ruler sample complexity

For R = [d], coverage is maximal and ∥Mf∥F = O(
√
logd), letting

us achieve vector sample complexity n = Õ
(1
ε2

)
.

• Algorithm is equivalent to setting T = avg
(
1
n
∑
x(j)x(j)T

)
.

• Improves on sample complexity of just using the empirical
covariance by a Õ(d) factor.

18

full ruler sample complexity

For R = [d], coverage is maximal and ∥Mf∥F = O(
√
logd), letting

us achieve vector sample complexity n = Õ
(1
ε2

)
.

• Algorithm is equivalent to setting T = avg
(
1
n
∑
x(j)x(j)T

)
.

• Improves on sample complexity of just using the empirical
covariance by a Õ(d) factor.

18

sparse ruler vs. full ruler

Total sample complexity is O(
√
d) · Õ(d) = Õ(d3/2) for sparse

ruler vs. d · Õ(1) = Õ(d) for full sample estimation.

• Prove bounds are tight when T is the identity.

19

sparse ruler vs. full ruler

Total sample complexity is O(
√
d) · Õ(d) = Õ(d3/2) for sparse

ruler vs. d · Õ(1) = Õ(d) for full sample estimation.

• Prove bounds are tight when T is the identity.

19

sparse ruler vs. full ruler

Total sample complexity is O(
√
d) · Õ(d) = Õ(d3/2) for sparse

ruler vs. d · Õ(1) = Õ(d) for full sample estimation.

• Prove bounds are tight when T is the identity.
19

is there always a tradeoff?

• Total sample complexity is Õ(
√
d) for sparse ruler estimation

vs. Õ(d) for full sample estimation.
• Sparse rulers give much better total sample complexity
when T is (approximately) low-rank.

Can we explain this?

20

is there always a tradeoff?

• Total sample complexity is Õ(
√
d) for sparse ruler estimation

vs. Õ(d) for full sample estimation.

• Sparse rulers give much better total sample complexity
when T is (approximately) low-rank.

Can we explain this?

20

is there always a tradeoff?

• Total sample complexity is Õ(
√
d) for sparse ruler estimation

vs. Õ(d) for full sample estimation.
• Sparse rulers give much better total sample complexity
when T is (approximately) low-rank.

Can we explain this?

20

is there always a tradeoff?

• Total sample complexity is Õ(
√
d) for sparse ruler estimation

vs. Õ(d) for full sample estimation.
• Sparse rulers give much better total sample complexity
when T is (approximately) low-rank.

Can we explain this?

20

is there always a tradeoff?

• Total sample complexity is Õ(
√
d) for sparse ruler estimation

vs. Õ(d) for full sample estimation.
• Sparse rulers give much better total sample complexity
when T is (approximately) low-rank. Can we explain this?

20

sparse rulers for low-rank matrices

Recall that we have with n = Õ(1/ε2) samples:

∥T− T̃∥2 ≤ ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2
√
d ≤ ε∥T∥2

√
d.

• If T is the identity, ∥T∥2 = ∥TR∥2 = 1. But this is ‘very’ full-rank.
• Low-rank matrices cannot look like the identity – have significant
off diagonal mass [MMW ‘19].

• Upshot: Show ∥TR∥2 ≤ k√
d∥T∥2. Setting ε

′ = ε/k obtain total

sample complexity Õ
(√

dk2
ε2

)

.
21

sparse rulers for low-rank matrices

Recall that we have with n = Õ(1/ε2) samples:

∥T− T̃∥2 ≤ ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2
√
d ≤ ε∥T∥2

√
d.

• If T is the identity, ∥T∥2 = ∥TR∥2 = 1. But this is ‘very’ full-rank.
• Low-rank matrices cannot look like the identity – have significant
off diagonal mass [MMW ‘19].

• Upshot: Show ∥TR∥2 ≤ k√
d∥T∥2. Setting ε

′ = ε/k obtain total

sample complexity Õ
(√

dk2
ε2

)

.
21

sparse rulers for low-rank matrices

Recall that we have with n = Õ(1/ε2) samples:

∥T− T̃∥2 ≤ ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2
√
d ≤ ε∥T∥2

√
d.

• If T is the identity, ∥T∥2 = ∥TR∥2 = 1. But this is ‘very’ full-rank.
• Low-rank matrices cannot look like the identity – have significant
off diagonal mass [MMW ‘19].

• Upshot: Show ∥TR∥2 ≤ k√
d∥T∥2. Setting ε

′ = ε/k obtain total

sample complexity Õ
(√

dk2
ε2

)

.
21

sparse rulers for low-rank matrices

Recall that we have with n = Õ(1/ε2) samples:

∥T− T̃∥2 ≤ ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2
√
d ≤ ε∥T∥2

√
d.

• If T is the identity, ∥T∥2 = ∥TR∥2 = 1. But this is ‘very’ full-rank.

• Low-rank matrices cannot look like the identity – have significant
off diagonal mass [MMW ‘19].

• Upshot: Show ∥TR∥2 ≤ k√
d∥T∥2. Setting ε

′ = ε/k obtain total

sample complexity Õ
(√

dk2
ε2

)

.
21

sparse rulers for low-rank matrices

Recall that we have with n = Õ(1/ε2) samples:

∥T− T̃∥2 ≤ ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2
√
d ≤ ε∥T∥2

√
d.

• If T is the identity, ∥T∥2 = ∥TR∥2 = 1. But this is ‘very’ full-rank.
• Low-rank matrices cannot look like the identity – have significant
off diagonal mass [MMW ‘19].

• Upshot: Show ∥TR∥2 ≤ k√
d∥T∥2. Setting ε

′ = ε/k obtain total

sample complexity Õ
(√

dk2
ε2

)

.
21

sparse rulers for low-rank matrices

Recall that we have with n = Õ(1/ε2) samples:

∥T− T̃∥2 ≤ ε∥TR∥2 · ∥Mf∥F ≤ ε∥TR∥2
√
d ≤ ε∥T∥2

√
d.

• If T is the identity, ∥T∥2 = ∥TR∥2 = 1. But this is ‘very’ full-rank.
• Low-rank matrices cannot look like the identity – have significant
off diagonal mass [MMW ‘19].

• Upshot: Show ∥TR∥2 ≤ k√
d∥T∥2. Setting ε

′ = ε/k obtain total

sample complexity Õ
(√

dk2
ε2

)
.

21

an approach via fourier methods

Remainder of the talk: Will sketch a different approach to
low-rank Toeplitz covariance estimation using sparse Fourier
transform methods.

• Connections between these two approaches.

22

an approach via fourier methods

Remainder of the talk: Will sketch a different approach to
low-rank Toeplitz covariance estimation using sparse Fourier
transform methods.

• Connections between these two approaches.

22

the fourier perspective

Vandermonde Decomposition: Any rank-k Toeplitz T ∈ Rd×d
can be written as FSDFS where FS ∈ Rd×k is an ‘off-grid’ Fourier
transform matrix with frequencies f1, . . . , fk and D is a positive
diagonal matrix.

• Any sample x ∼ N (0, T) can be written as FSD1/2g for
g ∼ N (0, I). E[xxT] = FSD1/2E[ggT]D1/2F∗S = T.

23

the fourier perspective

Vandermonde Decomposition: Any rank-k Toeplitz T ∈ Rd×d
can be written as FSDFS where FS ∈ Rd×k is an ‘off-grid’ Fourier
transform matrix with frequencies f1, . . . , fk and D is a positive
diagonal matrix.

• Any sample x ∼ N (0, T) can be written as FSD1/2g for
g ∼ N (0, I). E[xxT] = FSD1/2E[ggT]D1/2F∗S = T. 23

sample recovery via sparse fourier transform

x ∼ N (0, T) = FsD1/2g is a Fourier sparse function.

• Can recover exactly e.g. via Prony’s sparse Fourier transform
method by reading any 2k entries.

• Take n = Õ(1/ε2) samples, recover each in full by reading 2k
entries, and then apply our earlier resut for full ruler R = [d].
Total sample complexity: Õ(k/ε2).

24

sample recovery via sparse fourier transform

x ∼ N (0, T) = FsD1/2g is a Fourier sparse function.

• Can recover exactly e.g. via Prony’s sparse Fourier transform
method by reading any 2k entries.

• Take n = Õ(1/ε2) samples, recover each in full by reading 2k
entries, and then apply our earlier resut for full ruler R = [d].
Total sample complexity: Õ(k/ε2).

24

sample recovery via sparse fourier transform

x ∼ N (0, T) = FsD1/2g is a Fourier sparse function.

• Can recover exactly e.g. via Prony’s sparse Fourier transform
method by reading any 2k entries.

• Take n = Õ(1/ε2) samples, recover each in full by reading 2k
entries, and then apply our earlier resut for full ruler R = [d].
Total sample complexity: Õ(k/ε2).

24

sample recovery via sparse fourier transform

x ∼ N (0, T) = FsD1/2g is a Fourier sparse function.

• Can recover exactly e.g. via Prony’s sparse Fourier transform
method by reading any 2k entries.

• Take n = Õ(1/ε2) samples, recover each in full by reading 2k
entries, and then apply our earlier resut for full ruler R = [d].
Total sample complexity: Õ(k/ε2).

24

robustness to approximate low-rank

What about when T is close to, but not exactly rank-k?

• Prony’s method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some
set of k frequencies that approximately spans each
x(j) ∼ N (0, T).

• Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to
approximately recover x(1), . . . , x(n) and then estimate T from
these samples.

• Well studied in TCS, especially in the case when f1, . . . , fk are
‘on grid’ integer frequencies.

25

robustness to approximate low-rank

What about when T is close to, but not exactly rank-k?

• Prony’s method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some
set of k frequencies that approximately spans each
x(j) ∼ N (0, T).

• Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to
approximately recover x(1), . . . , x(n) and then estimate T from
these samples.

• Well studied in TCS, especially in the case when f1, . . . , fk are
‘on grid’ integer frequencies.

25

robustness to approximate low-rank

What about when T is close to, but not exactly rank-k?

• Prony’s method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some
set of k frequencies that approximately spans each
x(j) ∼ N (0, T).

• Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to
approximately recover x(1), . . . , x(n) and then estimate T from
these samples.

• Well studied in TCS, especially in the case when f1, . . . , fk are
‘on grid’ integer frequencies.

25

robustness to approximate low-rank

What about when T is close to, but not exactly rank-k?

• Prony’s method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some
set of k frequencies that approximately spans each
x(j) ∼ N (0, T).

• Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to
approximately recover x(1), . . . , x(n) and then estimate T from
these samples.

• Well studied in TCS, especially in the case when f1, . . . , fk are
‘on grid’ integer frequencies.

25

robustness to approximate low-rank

What about when T is close to, but not exactly rank-k?

• Prony’s method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some
set of k frequencies that approximately spans each
x(j) ∼ N (0, T).

• Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to
approximately recover x(1), . . . , x(n) and then estimate T from
these samples.

• Well studied in TCS, especially in the case when f1, . . . , fk are
‘on grid’ integer frequencies.

25

robustness to approximate low-rank

What about when T is close to, but not exactly rank-k?

• Prony’s method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some
set of k frequencies that approximately spans each
x(j) ∼ N (0, T).

• Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to
approximately recover x(1), . . . , x(n) and then estimate T from
these samples.

• Well studied in TCS, especially in the case when f1, . . . , fk are
‘on grid’ integer frequencies.

25

frequency-based low-rank approximation

Step 1: Prove that when T is close to low-rank, there is some set
of k frequencies that approximately spans each x(j) ∼ N (0, T).

• We give a proof via a column subset selection result (see
e.g., Guruswami Sinop ‘12):

Theorem: Any A ∈ Rn×d, contains a subset of O(k/ε)
columns, C such that:

∥A− PC · A∥2F ≤ (1+ ε) min
rank−k M

∥A−M∥2F.

26

frequency-based low-rank approximation

Step 1: Prove that when T is close to low-rank, there is some set
of k frequencies that approximately spans each x(j) ∼ N (0, T).

• We give a proof via a column subset selection result (see
e.g., Guruswami Sinop ‘12):

Theorem: Any A ∈ Rn×d, contains a subset of O(k/ε)
columns, C such that:

∥A− PC · A∥2F ≤ (1+ ε) min
rank−k M

∥A−M∥2F.

26

frequency-based low-rank approximation

Step 1: Prove that when T is close to low-rank, there is some set
of k frequencies that approximately spans each x(j) ∼ N (0, T).

• We give a proof via a column subset selection result (see
e.g., Guruswami Sinop ‘12):

Theorem: Any A ∈ Rn×d, contains a subset of O(k/ε)
columns, C such that:

∥A− PC · A∥2F ≤ (1+ ε) min
rank−k M

∥A−M∥2F.

26

frequency-based low-rank approximation

x(1), . . . , x(n) ∼ N (0, T) can be written as X = FSD1/2G where
columns of G are distributed as N (0, I).

• Think of G as a linear sketch that ensures FSD1/2G ≈ FSD1/2

(formally a projection-cost preserving sketch [CEMMP ‘15]).
• Apply column subset selection result to FSD1/2.

27

frequency-based low-rank approximation

x(1), . . . , x(n) ∼ N (0, T) can be written as X = FSD1/2G where
columns of G are distributed as N (0, I).

• Think of G as a linear sketch that ensures FSD1/2G ≈ FSD1/2

(formally a projection-cost preserving sketch [CEMMP ‘15]).
• Apply column subset selection result to FSD1/2.

27

frequency-based low-rank approximation

x(1), . . . , x(n) ∼ N (0, T) can be written as X = FSD1/2G where
columns of G are distributed as N (0, I).

• Think of G as a linear sketch that ensures FSD1/2G ≈ FSD1/2

(formally a projection-cost preserving sketch [CEMMP ‘15]).

• Apply column subset selection result to FSD1/2.

27

frequency-based low-rank approximation

x(1), . . . , x(n) ∼ N (0, T) can be written as X = FSD1/2G where
columns of G are distributed as N (0, I).

• Think of G as a linear sketch that ensures FSD1/2G ≈ FSD1/2

(formally a projection-cost preserving sketch [CEMMP ‘15]).
• Apply column subset selection result to FSD1/2.

27

frequency-based low-rank approximation

x(1), . . . , x(n) ∼ N (0, T) can be written as X = FSD1/2G where
columns of G are distributed as N (0, I).

• Think of G as a linear sketch that ensures FSD1/2G ≈ FSD1/2

(formally a projection-cost preserving sketch [CEMMP ‘15]).
• Apply column subset selection result to FSD1/2.

27

frequency-based low-rank approximation

x(1), . . . , x(n) ∼ N (0, T) can be written as X = FSD1/2G where
columns of G are distributed as N (0, I).

• Think of G as a linear sketch that ensures FSD1/2G ≈ FSD1/2

(formally a projection-cost preserving sketch [CEMMP ‘15]).
• Apply column subset selection result to FSD1/2.

27

recovering a sparse representation

Step 2: Recover frequencies f1, . . . , fm and Z ∈ Cm×n with
X ≈ FM · Z. Then estimate T using this approximation.

• Find frequencies via brute force search over a net.
• At each step of the search, for a given FM, we must find Z
that reconstructs X as well as possible using these
frequencies. How do we do this without reading all of X?

28

recovering a sparse representation

Step 2: Recover frequencies f1, . . . , fm and Z ∈ Cm×n with
X ≈ FM · Z. Then estimate T using this approximation.

• Find frequencies via brute force search over a net.

• At each step of the search, for a given FM, we must find Z
that reconstructs X as well as possible using these
frequencies. How do we do this without reading all of X?

28

recovering a sparse representation

Step 2: Recover frequencies f1, . . . , fm and Z ∈ Cm×n with
X ≈ FM · Z. Then estimate T using this approximation.

• Find frequencies via brute force search over a net.
• At each step of the search, for a given FM, we must find Z
that reconstructs X as well as possible using these
frequencies. How do we do this without reading all of X?

28

approximate frequency regression

Want to find Z satisfying the approximate regression guarantee:

∥X− FMZ∥2F = O(1) ·minY∥X− FMY∥2F.

• Suffices to sample Õ(k) rows by the leverage scores of FM and
solve the regression problem just considering these rows.

• Remark: If f1, . . . , fm are ‘on-grid’ integers, the columns of FM are
orthonormal and the leverage scores are all k/n

→ RIP for
subsampled Fourier matrices.

29

approximate frequency regression

Want to find Z satisfying the approximate regression guarantee:

∥X− FMZ∥2F = O(1) ·minY∥X− FMY∥2F.

• Suffices to sample Õ(k) rows by the leverage scores of FM and
solve the regression problem just considering these rows.

• Remark: If f1, . . . , fm are ‘on-grid’ integers, the columns of FM are
orthonormal and the leverage scores are all k/n

→ RIP for
subsampled Fourier matrices.

29

approximate frequency regression

Want to find Z satisfying the approximate regression guarantee:

∥X− FMZ∥2F = O(1) ·minY∥X− FMY∥2F.

• Suffices to sample Õ(k) rows by the leverage scores of FM and
solve the regression problem just considering these rows.

• Remark: If f1, . . . , fm are ‘on-grid’ integers, the columns of FM are
orthonormal and the leverage scores are all k/n

→ RIP for
subsampled Fourier matrices.

29

approximate frequency regression

Want to find Z satisfying the approximate regression guarantee:

∥X− FMZ∥2F = O(1) ·minY∥X− FMY∥2F.

• Suffices to sample Õ(k) rows by the leverage scores of FM and
solve the regression problem just considering these rows.

• Remark: If f1, . . . , fm are ‘on-grid’ integers, the columns of FM are
orthonormal and the leverage scores are all k/n

→ RIP for
subsampled Fourier matrices.

29

approximate frequency regression

Want to find Z satisfying the approximate regression guarantee:

∥X− FMZ∥2F = O(1) ·minY∥X− FMY∥2F.

• Suffices to sample Õ(k) rows by the leverage scores of FM and
solve the regression problem just considering these rows.

• Remark: If f1, . . . , fm are ‘on-grid’ integers, the columns of FM are
orthonormal and the leverage scores are all k/n→ RIP for
subsampled Fourier matrices.

29

fourier leverage scores

Leverage scores measure much large a function in the column
span of FM can be at index i (i.e., how important that index may
be in the regression.)

τi(FM) = max
y

(FMy)2i
∥FMy∥22

.

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20

-4

-2

0

2

4

6

8

• Using that FMy is a Fourier sparse function we can bound
this quantity a priori, without any dependence on FM.

30

fourier leverage scores

Leverage scores measure much large a function in the column
span of FM can be at index i (i.e., how important that index may
be in the regression.)

τi(FM) = max
y

(FMy)2i
∥FMy∥22

.

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20

-4

-2

0

2

4

6

8

• Using that FMy is a Fourier sparse function we can bound
this quantity a priori, without any dependence on FM.

30

fourier leverage scores

Leverage scores measure much large a function in the column
span of FM can be at index i (i.e., how important that index may
be in the regression.)

τi(FM) = max
y

(FMy)2i
∥FMy∥22

.

0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20

-4

-2

0

2

4

6

8

• Using that FMy is a Fourier sparse function we can bound
this quantity a priori, without any dependence on FM. 30

fourier leverage scores

Extend bounds of [Chen Kane Price Song ‘16] to give explicit
function upper bounding the leverage scores of any FM:

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

L
e

v
e

ra
g

e
 S

c
o

re
 U

p
p

e
r

B
o

u
n

d

Since this distribution is universal, can sample one set of
entries by these leverages scores, and find X ≈ FM · Z with high
probability for any set of frequencies f1, . . . , fm in net.

31

fourier leverage scores

Extend bounds of [Chen Kane Price Song ‘16] to give explicit
function upper bounding the leverage scores of any FM:

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

L
e

v
e

ra
g

e
 S

c
o

re
 U

p
p

e
r

B
o

u
n

d

Since this distribution is universal, can sample one set of
entries by these leverages scores, and find X ≈ FM · Z with high
probability for any set of frequencies f1, . . . , fm in net.

31

final algorithm

1. Sample poly(k/ε) indices R ⊂ [d] according to the sparse
Fourier leverage distribution (a random ‘ultra-sparse’ ruler)

2. For all f1, . . . , fm in net N : Compute approximate projection:

Z = argmin
Z∈Cm×n

∥XR − (FM)RZ∥2F.

3. Set X̃ = F⋆M · Z⋆ to the best frequency-based approximation.
4. Return T̃ = avg(X̃X̃T).

Sample Complexity: Gives ∥T− T̃∥2 ≤ ε∥T∥2 + f(T− Tk) when X
contains n = Õ(poly(k/ϵ)) samples. Entry sample complexity
poly(k/ε), total sample complexity Õ(poly(k/ε)).

32

final algorithm

1. Sample poly(k/ε) indices R ⊂ [d] according to the sparse
Fourier leverage distribution (a random ‘ultra-sparse’ ruler)

2. For all f1, . . . , fm in net N : Compute approximate projection:

Z = argmin
Z∈Cm×n

∥XR − (FM)RZ∥2F.

3. Set X̃ = F⋆M · Z⋆ to the best frequency-based approximation.
4. Return T̃ = avg(X̃X̃T).

Sample Complexity: Gives ∥T− T̃∥2 ≤ ε∥T∥2 + f(T− Tk) when X
contains n = Õ(poly(k/ϵ)) samples. Entry sample complexity
poly(k/ε), total sample complexity Õ(poly(k/ε)).

32

final algorithm

1. Sample poly(k/ε) indices R ⊂ [d] according to the sparse
Fourier leverage distribution (a random ‘ultra-sparse’ ruler)

2. For all f1, . . . , fm in net N : Compute approximate projection:

Z = argmin
Z∈Cm×n

∥XR − (FM)RZ∥2F.

3. Set X̃ = F⋆M · Z⋆ to the best frequency-based approximation.
4. Return T̃ = avg(X̃X̃T).

Sample Complexity: Gives ∥T− T̃∥2 ≤ ε∥T∥2 + f(T− Tk) when X
contains n = Õ(poly(k/ϵ)) samples. Entry sample complexity
poly(k/ε), total sample complexity Õ(poly(k/ε)).

32

final algorithm

1. Sample poly(k/ε) indices R ⊂ [d] according to the sparse
Fourier leverage distribution (a random ‘ultra-sparse’ ruler)

2. For all f1, . . . , fm in net N : Compute approximate projection:

Z = argmin
Z∈Cm×n

∥XR − (FM)RZ∥2F.

3. Set X̃ = F⋆M · Z⋆ to the best frequency-based approximation.

4. Return T̃ = avg(X̃X̃T).

Sample Complexity: Gives ∥T− T̃∥2 ≤ ε∥T∥2 + f(T− Tk) when X
contains n = Õ(poly(k/ϵ)) samples. Entry sample complexity
poly(k/ε), total sample complexity Õ(poly(k/ε)).

32

final algorithm

1. Sample poly(k/ε) indices R ⊂ [d] according to the sparse
Fourier leverage distribution (a random ‘ultra-sparse’ ruler)

2. For all f1, . . . , fm in net N : Compute approximate projection:

Z = argmin
Z∈Cm×n

∥XR − (FM)RZ∥2F.

3. Set X̃ = F⋆M · Z⋆ to the best frequency-based approximation.
4. Return T̃ = avg(X̃X̃T).

Sample Complexity: Gives ∥T− T̃∥2 ≤ ε∥T∥2 + f(T− Tk) when X
contains n = Õ(poly(k/ϵ)) samples. Entry sample complexity
poly(k/ε), total sample complexity Õ(poly(k/ε)).

32

final algorithm

1. Sample poly(k/ε) indices R ⊂ [d] according to the sparse
Fourier leverage distribution (a random ‘ultra-sparse’ ruler)

2. For all f1, . . . , fm in net N : Compute approximate projection:

Z = argmin
Z∈Cm×n

∥XR − (FM)RZ∥2F.

3. Set X̃ = F⋆M · Z⋆ to the best frequency-based approximation.
4. Return T̃ = avg(X̃X̃T).

Sample Complexity: Gives ∥T− T̃∥2 ≤ ε∥T∥2 + f(T− Tk) when X
contains n = Õ(poly(k/ϵ)) samples. Entry sample complexity
poly(k/ε), total sample complexity Õ(poly(k/ε)).

32

open questions and next directions

Concrete.

• Runtime efficiency?

• Can likely avoid exponential time net approach using off-grid
sparse Fourier transform of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• In process, maybe improve our sample complexity.

• ‘Continuous’ setting with sample access to a arbitrary
positions of a signal with stationary covariance. (E.g.,
x(1), . . . , x(n) may be snapshots of this signal.)

• Sample complexity bounds and tradeoffs for applications like
direction-of-arrival estimation, Doppler imaging.

33

open questions and next directions

Concrete.

• Runtime efficiency?

• Can likely avoid exponential time net approach using off-grid
sparse Fourier transform of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• In process, maybe improve our sample complexity.

• ‘Continuous’ setting with sample access to a arbitrary
positions of a signal with stationary covariance. (E.g.,
x(1), . . . , x(n) may be snapshots of this signal.)

• Sample complexity bounds and tradeoffs for applications like
direction-of-arrival estimation, Doppler imaging.

33

open questions and next directions

Concrete.

• Runtime efficiency?

• Can likely avoid exponential time net approach using off-grid
sparse Fourier transform of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• In process, maybe improve our sample complexity.
• ‘Continuous’ setting with sample access to a arbitrary
positions of a signal with stationary covariance. (E.g.,
x(1), . . . , x(n) may be snapshots of this signal.)

• Sample complexity bounds and tradeoffs for applications like
direction-of-arrival estimation, Doppler imaging.

33

open questions and next directions

Concrete.

• Runtime efficiency?
• Can likely avoid exponential time net approach using off-grid
sparse Fourier transform of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• In process, maybe improve our sample complexity.

• ‘Continuous’ setting with sample access to a arbitrary
positions of a signal with stationary covariance. (E.g.,
x(1), . . . , x(n) may be snapshots of this signal.)

• Sample complexity bounds and tradeoffs for applications like
direction-of-arrival estimation, Doppler imaging.

33

open questions and next directions

Concrete.

• Runtime efficiency?
• Can likely avoid exponential time net approach using off-grid
sparse Fourier transform of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• In process, maybe improve our sample complexity.
• ‘Continuous’ setting with sample access to a arbitrary
positions of a signal with stationary covariance. (E.g.,
x(1), . . . , x(n) may be snapshots of this signal.)

• Sample complexity bounds and tradeoffs for applications like
direction-of-arrival estimation, Doppler imaging.

33

open questions and next directions

Concrete.

• Runtime efficiency?
• Can likely avoid exponential time net approach using off-grid
sparse Fourier transform of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• In process, maybe improve our sample complexity.
• ‘Continuous’ setting with sample access to a arbitrary
positions of a signal with stationary covariance. (E.g.,
x(1), . . . , x(n) may be snapshots of this signal.)
• Sample complexity bounds and tradeoffs for applications like
direction-of-arrival estimation, Doppler imaging.

33

connections between sampling schemes

0 10 20 30 40 50 60 70 80 90

Fourier Sparse Leverage Scores

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Optimal Sparse Ruler for d=91

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Degree 40 Chebyshev Nodes

34

connections between sampling schemes

0 10 20 30 40 50 60 70 80 90

Fourier Sparse Leverage Scores

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Optimal Sparse Ruler for d=91

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Degree 40 Chebyshev Nodes

34

connections between sampling schemes

0 10 20 30 40 50 60 70 80 90

Fourier Sparse Leverage Scores

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Optimal Sparse Ruler for d=91

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Degree 40 Chebyshev Nodes

• Some Formal Connections:

• Limiting density of Chebyshev nodes is the leverage score
distribution for k degree polynomials.

• Sampling O(
√
d) indices via Fourier sparse leverage scores gives

a sparse ruler with good probability.

• Also connected to multi-coset and non-uniform sampling
schemes used in signal processing.

• Seem to have a lot more to understand.

35

connections between sampling schemes

0 10 20 30 40 50 60 70 80 90

Fourier Sparse Leverage Scores

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Optimal Sparse Ruler for d=91

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Degree 40 Chebyshev Nodes

• Some Formal Connections:
• Limiting density of Chebyshev nodes is the leverage score
distribution for k degree polynomials.

• Sampling O(
√
d) indices via Fourier sparse leverage scores gives

a sparse ruler with good probability.

• Also connected to multi-coset and non-uniform sampling
schemes used in signal processing.

• Seem to have a lot more to understand.

35

connections between sampling schemes

0 10 20 30 40 50 60 70 80 90

Fourier Sparse Leverage Scores

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Optimal Sparse Ruler for d=91

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Degree 40 Chebyshev Nodes

• Some Formal Connections:
• Limiting density of Chebyshev nodes is the leverage score
distribution for k degree polynomials.

• Sampling O(
√
d) indices via Fourier sparse leverage scores gives

a sparse ruler with good probability.

• Also connected to multi-coset and non-uniform sampling
schemes used in signal processing.

• Seem to have a lot more to understand.

35

connections between sampling schemes

0 10 20 30 40 50 60 70 80 90

Fourier Sparse Leverage Scores

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Optimal Sparse Ruler for d=91

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Degree 40 Chebyshev Nodes

• Some Formal Connections:
• Limiting density of Chebyshev nodes is the leverage score
distribution for k degree polynomials.

• Sampling O(
√
d) indices via Fourier sparse leverage scores gives

a sparse ruler with good probability.

• Also connected to multi-coset and non-uniform sampling
schemes used in signal processing.

• Seem to have a lot more to understand.

35

connections between sampling schemes

0 10 20 30 40 50 60 70 80 90

Fourier Sparse Leverage Scores

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Optimal Sparse Ruler for d=91

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Degree 40 Chebyshev Nodes

• Some Formal Connections:
• Limiting density of Chebyshev nodes is the leverage score
distribution for k degree polynomials.

• Sampling O(
√
d) indices via Fourier sparse leverage scores gives

a sparse ruler with good probability.

• Also connected to multi-coset and non-uniform sampling
schemes used in signal processing.

• Seem to have a lot more to understand.

35

Thanks! Questions?

Paper draft and slides available at cameronmusco.com

36

cameronmusco.com

