THE SAMPLE COMPLEXITY OF TOEPLITZ COVARIANCE ESTIMATION

Cameron Musco (Microsoft Research \rightarrow UMass Amherst)
Joint with Yonina Eldar, Jerry Li, and Christopher Musco.

TOEPLITZ COVARIANCE ESTIMATION

Covariance Estimation Problem. Consider positive semidefinite matrix $T \in \mathbb{R}^{d \times d}$ and distribution \mathcal{D} over d-dimensional vectors with covariance $\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]=T$ (i.e., $T_{j, k}$ is the covariance between x_{j} and x_{k}).

TOEPLITZ COVARIANCE ESTIMATION

Covariance Estimation Problem. Consider positive semidefinite matrix $T \in \mathbb{R}^{d \times d}$ and distribution \mathcal{D} over d-dimensional vectors with covariance $\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]=T$ (i.e., $T_{j, k}$ is the covariance between x_{j} and x_{k}).

Given independent samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$, return \tilde{T} with:

$$
\|T-\tilde{T}\|_{2} \leq \varepsilon\|T\|_{2} .
$$

TOEPLITZ COVARIANCE ESTIMATION

Covariance Estimation Problem. Consider positive semidefinite Toeplitz matrix $T \in \mathbb{R}^{d \times d}$ and distribution \mathcal{D} over d-dimensional vectors with covariance $\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]=T$ (i.e., $T_{j, k}$ is the covariance between x_{j} and x_{k}).

Given independent samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$, return \tilde{T} with:

$$
\|T-\tilde{T}\|_{2} \leq \varepsilon\|T\|_{2} .
$$

TOEPLITZ COVARIANCE ESTIMATION

Covariance Estimation Problem. Consider positive semidefinite Toeplitz matrix $T \in \mathbb{R}^{d \times d}$ and distribution \mathcal{D} over d-dimensional vectors with covariance $\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]=T$ (i.e., $T_{j, k}$ is the covariance between x_{j} and x_{k}).

Given independent samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$, return \tilde{T} with:

$$
\begin{gathered}
\|T-\tilde{T}\|_{2} \leq \varepsilon\|T\|_{2} \\
T=\left[\begin{array}{lllll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} \\
\mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
\mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{c} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} \\
\mathrm{e} & \mathrm{~d} & \mathrm{c} & \mathrm{~b} & \mathrm{a}
\end{array}\right]
\end{gathered}
$$

TOEPLITZ COVARIANCE ESTIMATION

Arises often in signal processing, when measurements are taken on a spatial or temporal grid and covariance depends only on the distance between them - i.e., $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

TOEPLITZ COVARIANCE ESTIMATION

Arises often in signal processing, when measurements are taken on a spatial or temporal grid and covariance depends only on the distance between them - i.e., $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

TOEPLITZ COVARIANCE ESTIMATION

Arises often in signal processing, when measurements are taken on a spatial or temporal grid and covariance depends only on the distance between them - i.e., $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

TOEPLITZ COVARIANCE ESTIMATION

Arises often in signal processing, when measurements are taken on a spatial or temporal grid and covariance depends only on the distance between them - i.e., $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

nearby samples

TOEPLITZ COVARIANCE ESTIMATION

Arises often in signal processing, when measurements are taken on a spatial or temporal grid and covariance depends only on the distance between them - i.e., $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

- Applications: spectrum sensing, Doppler radar, direction of arrival estimation, prediction via Gaussian process regression, etc.

TOEPLITZ COVARIANCE ESTIMATION

Arises often in signal processing, when measurements are taken on a spatial or temporal grid and covariance depends only on the distance between them - i.e., $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

- Applications: spectrum sensing, Doppler radar, direction of arrival estimation, prediction via Gaussian process regression, etc.
- Kernel matrices in machine learning are Toeplitz covariance matrices when data points are on a grid.

SAMPLE COMPLEXITY

Want to minimize two types of sample complexity:

SAMPLE COMPLEXITY

Want to minimize two types of sample complexity:

- Vector sample complexity: How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to estimate T ?

SAMPLE COMPLEXITY

Want to minimize two types of sample complexity:

- Vector sample complexity: How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to estimate T ?
- Entry sample complexity: How many entries s must be read from each sample $x^{(1)}, \ldots, x^{(n)}$?

SAMPLE COMPLEXITY

Want to minimize two types of sample complexity:

- Vector sample complexity: How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to estimate T ?
- Entry sample complexity: How many entries s must be read from each sample $x^{(1)}, \ldots, x^{(n)}$?

In different applications, these complexities correspond to different costs. Typically there is a tradeoff.

SAMPLE COMPLEXITY

Want to minimize two types of sample complexity:

- Vector sample complexity: How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to estimate T ?
- Entry sample complexity: How many entries s must be read from each sample $x^{(1)}, \ldots, x^{(n)}$?

In different applications, these complexities correspond to different costs. Typically there is a tradeoff.

- Total sample complexity: Total number of entries read, n•s.

SAMPLE COMPLEXITY

Want to minimize two types of sample complexity:

- Vector sample complexity: How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to estimate T ?
- Entry sample complexity: How many entries s must be read from each sample $x^{(1)}, \ldots, x^{(n)}$?

In different applications, these complexities correspond to different costs. Typically there is a tradeoff.

- Total sample complexity: Total number of entries read, n•s.
- Seems to be interesting even beyond Toeplitz covariance matrices, but not well studied.

EXAMPLE: DIRECTION OF ARRIVAL ESTIMATION

narrowband signal:
$\mathrm{s}(\mathrm{t})=a(t) \cdot \cos (f t)$

EXAMPLE: DIRECTION OF ARRIVAL ESTIMATION

narrowband signal:
$\mathrm{s}(\mathrm{t})=a(t) \cdot \cos (f t)$

EXAMPLE: DIRECTION OF ARRIVAL ESTIMATION

EXAMPLE: DIRECTION OF ARRIVAL ESTIMATION

EXAMPLE: DIRECTION OF ARRIVAL ESTIMATION

narrowband signal:
$\mathrm{s}(\mathrm{t})=a(t) \cdot \cos (f t)$

With delay, $\mathbb{E}\left[x_{k}^{(j)} \cdot x_{\ell}^{(j)}\right] \approx \mathbb{E}\left[a(t)^{2}\right] \cdot \cos \left(f \Delta_{k, \ell}\right)$

EXAMPLE: DIRECTION OF ARRIVAL ESTIMATION

- Vector sample complexity: Estimation time (\# snapshots).
- Entry sample complexity: Number of active receivers.

EXAMPLE: DIRECTION OF ARRIVAL ESTIMATION

- Vector sample complexity: Estimation time (\# snapshots).
- Entry sample complexity: Number of active receivers.

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

Our contributions:

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

Our contributions:

- Give non-asymptotic sample complexity bounds by analyzing classic algorithms, including those with sublinear entry sample complexity based on sparse ruler measurements.

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

Our contributions:

- Give non-asymptotic sample complexity bounds by analyzing classic algorithms, including those with sublinear entry sample complexity based on sparse ruler measurements.
- Show that sparse ruler methods give sublinear total sample complexity when T is low-rank (e.g., DOA with $k \ll d$ senders).

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

Our contributions:

- Give non-asymptotic sample complexity bounds by analyzing classic algorithms, including those with sublinear entry sample complexity based on sparse ruler measurements.
- Show that sparse ruler methods give sublinear total sample complexity when T is low-rank (e.g., DOA with $k \ll d$ senders).
- Develop improved algorithms in the low-rank setting using techniques from matrix sketching, leverage score-based sampling, and sparse Fourier transforms. Resemble popular 'subspace methods' such as MUSIC and ESPRIT.

BROADER AGENDA

Build connections between theoretical computer science and signal processing.

Build connections between theoretical computer science and signal processing.

- Leverage score/effective resistance sampling, sparse Fourier transforms \Longleftrightarrow sub-Nyquist sampling, Chebyshev interpolation, active sampling for Gaussian process regression
- Column-based matrix approximation, combinatorial sparsification \Longleftrightarrow nonlinear function approximation, Fourier-sparse approximations

BROADER AGENDA

Build connections between theoretical computer science and signal processing.

- Leverage score/effective resistance sampling, sparse Fourier transforms \Longleftrightarrow sub-Nyquist sampling, Chebyshev interpolation, active sampling for Gaussian process regression
- Column-based matrix approximation, combinatorial sparsification \Longleftrightarrow nonlinear function approximation, Fourier-sparse approximations

Apply tools from TCS to tackle fundamental signal processing problems. A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms [AKMMVZ STOC '19]

SUBSET BASED ESTIMATION

For today, consider algorithms that sample $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ with covariance T, read a fixed subset of entries $R \subseteq[d]$ from each $x^{(j)}$, and approximate T using $x_{R}^{(1)}, \ldots, x_{R}^{(n)} \in \mathbb{R}^{|R|}$.

SUBSET BASED ESTIMATION

For today, consider algorithms that sample $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ with covariance T, read a fixed subset of entries $R \subseteq[d]$ from each $x^{(j)}$, and approximate T using $x_{R}^{(1)}, \ldots, x_{R}^{(n)} \in \mathbb{R}^{|R|}$.

Entry sample complexity: $|R|$. Total sample complexity: $|R| \cdot n$.

SUBSET BASED ESTIMATION

For today, consider algorithms that sample $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ with covariance T, read a fixed subset of entries $R \subseteq[d]$ from each $x^{(j)}$, and approximate T using $x_{R}^{(1)}, \ldots, x_{R}^{(n)} \in \mathbb{R}^{|R|}$.

How small can R be? I.e., what is the minimal entry sample complexity of such an algorithm?

SUBSET BASED ESTIMATION

For today, consider algorithms that sample $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ with covariance T, read a fixed subset of entries $R \subseteq[d]$ from each $x^{(j)}$, and approximate T using $x_{R}^{(1)}, \ldots, x_{R}^{(n)} \in \mathbb{R}^{|R|}$.

How small can R be? I.e., what is the minimal entry sample complexity of such an algorithm?

For general (non-Toeplitz) T, require $|R|=d$.

SUBSET BASED ESTIMATION

For today, consider algorithms that sample $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ with covariance T, read a fixed subset of entries $R \subseteq[d]$ from each $x^{(j)}$, and approximate T using $x_{R}^{(1)}, \ldots, x_{R}^{(n)} \in \mathbb{R}^{|R|}$.

How small can R be? I.e., what is the minimal entry sample complexity of such an algorithm?

For general (non-Toeplitz) T, require $|R|=d$.

$$
T_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { vs. } \quad T_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

To notice correlation between x_{j} and x_{k} must read both.

SUBSET BASED ESTIMATION

How small can R be if T is Toeplitz?

SUBSET BASED ESTIMATION

How small can R be if T is Toeplitz? Can take advantage of redundancy.

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

SUBSET BASED ESTIMATION

How small can R be if T is Toeplitz? Can take advantage of redundancy.

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- $a_{1}=\mathbb{E}\left[x_{2} \cdot x_{3}\right]=\mathbb{E}\left[x_{d} \cdot x_{d-1}\right]$.

SUBSET BASED ESTIMATION

How small can R be if T is Toeplitz? Can take advantage of redundancy.

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- $a_{1}=\mathbb{E}\left[x_{2} \cdot x_{3}\right]=\mathbb{E}\left[x_{d} \cdot x_{d-1}\right]$.

Will see that we can achieve $|R|=O(\sqrt{d})$.

SPARSE RULER BASED ESTIMATION

Definition (Ruler) A subset $R \subseteq[d]$ is a ruler if for every distance $s \in\{0, \ldots, d-1\}$, there exist $j, k \in R$ with $j-k=s$.

SPARSE RULER BASED ESTIMATION

Definition (Ruler) A subset $R \subseteq[d]$ is a ruler if for every distance $s \in\{0, \ldots, d-1\}$, there exist $j, k \in R$ with $j-k=s$.
E.g., for $d=10, R=\{1,2,5,8,10\}$ is a ruler.

SPARSE RULER BASED ESTIMATION

Definition (Ruler) A subset $R \subseteq[d]$ is a ruler if for every distance $s \in\{0, \ldots, d-1\}$, there exist $j, k \in R$ with $j-k=s$.
Claim For any d there exists a sparse ruler R with $|R|=2 \sqrt{d}$

- Suffices to take $R=[1,2, \ldots, \sqrt{d}] \cup[2 \sqrt{d}, 3 \sqrt{d}, \ldots, d]$.

SPARSE RULER BASED ESTIMATION

Definition (Ruler) A subset $R \subseteq[d]$ is a ruler if for every distance $s \in\{0, \ldots, d-1\}$, there exist $j, k \in R$ with $j-k=s$.

Claim For any d there exists a sparse ruler R with $|R|=2 \sqrt{d}$

- Suffices to take $R=[1,2, \ldots, \sqrt{d}] \cup[2 \sqrt{d}, 3 \sqrt{d}, \ldots, d]$.

- The best possible leading constant lies between $\sqrt{2+\frac{4}{3 \pi}}$ and $\sqrt{8 / 3}$ (Erdös, Gal, Leech, '48, '56)

SPARSE RULER BASED ESTIMATION

Definition (Ruler) A subset $R \subseteq[d]$ is a ruler if for every distance $s \in\{0, \ldots, d-1\}$, there exist $j, k \in R$ with $j-k=s$.

Claim For any d there exists a sparse ruler R with $|R|=2 \sqrt{d}$

- Suffices to take $R=[1,2, \ldots, \sqrt{d}] \cup[2 \sqrt{d}, 3 \sqrt{d}, \ldots, d]$.

- The best possible leading constant lies between $\sqrt{2+\frac{4}{3 \pi}}$ and $\sqrt{8 / 3}$ (Erdös, Gal, Leech, '48, '56)

SPARSE RULER BASED ESTIMATION

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- If R is a ruler, for each $s \in\{0, \ldots, d-1\}$, there is at least one $k, \ell \in R$ with $|k-\ell|=s$ and thus with covariance

$$
\mathbb{E}\left[x_{k}^{(j)} \cdot x_{\ell}^{(j)}\right]=a_{s}
$$

SPARSE RULER BASED ESTIMATION

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- If R is a ruler, for each $s \in\{0, \ldots, d-1\}$, there is at least one $k, \ell \in R$ with $|k-\ell|=s$ and thus with covariance

$$
\mathbb{E}\left[x_{k}^{(j)} \cdot x_{\ell}^{(j)}\right]=a_{s}
$$

- Get at least one independent sample of a_{s} from every $x_{R}^{(j)}$.

SPARSE RULER BASED ESTIMATION

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- If R is a ruler, for each $s \in\{0, \ldots, d-1\}$, there is at least one $k, \ell \in R$ with $|k-\ell|=s$ and thus with covariance

$$
\mathbb{E}\left[x_{k}^{(j)} \cdot x_{\ell}^{(j)}\right]=a_{s} .
$$

- Get at least one independent sample of a_{s} from every $x_{R}^{(j)}$.
- With enough samples n from \mathcal{D}, will converge on an estimate of each a_{s} and so of the full matrix T.

SPARSE RULER SAMPLE COMPLEXITY

How many vector samples do we need? What do we pay for the optimal entry sample complexity of sparse rulers?

SPARSE RULER SAMPLE COMPLEXITY

How many vector samples do we need? What do we pay for the optimal entry sample complexity of sparse rulers?

- How does the total sample complexity compare to methods that read every entry of each $x^{(j)}$, e.g., estimating T with the empricial covariance $\hat{T}=\frac{1}{n} \sum_{j} x^{(j)} X^{(j)^{T}}$.

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.
$\tilde{T}=\left[\begin{array}{cccccc}a_{0}+\varepsilon_{0} & a_{1}+\varepsilon_{1} & a_{2}+\varepsilon_{2} & \cdots & a_{d-2}+\varepsilon_{d-2} & a_{d-1}+\varepsilon_{d-1} \\ a_{1}+\varepsilon_{1} & a_{0}+\varepsilon_{0} & a_{1}+\varepsilon_{1} & \cdots & \cdots & a_{d-2}+\varepsilon_{d-2} \\ a_{2}+\varepsilon_{2} & a_{1}+\varepsilon_{1} & a_{0}+\varepsilon_{0} & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{d-2}+\varepsilon_{d-2} & \ldots & \cdots & \cdots & \cdots & a_{1}+\varepsilon_{1} \\ a_{d-1}+\varepsilon_{d-1} & a_{d-2}+\varepsilon_{d-2} & \cdots & \cdots & a_{1}+\varepsilon_{1} & a_{0}+\varepsilon_{0}\end{array}\right]$

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

- In the worst case, $\|\tilde{T}-T\|_{2}=\varepsilon d$ but if ε_{s} were independent, $\|\tilde{T}-T\|_{2} \leq \varepsilon \sqrt{d}$ [Meckes '07].

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

- In the worst case, $\|\tilde{T}-T\|_{2}=\varepsilon d$ but if ε_{s} were independent, $\|\tilde{T}-T\|_{2} \leq \varepsilon \sqrt{d}$ [Meckes '07].
- Setting $\varepsilon^{\prime}=\varepsilon / \sqrt{d}, n=\tilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$ would give

$$
\|\tilde{T}-T\|_{2} \leq \varepsilon \leq \varepsilon\|T\|_{2}
$$

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

- In the worst case, $\|\tilde{T}-T\|_{2}=\varepsilon d$ but if ε_{s} were independent, $\|\tilde{T}-T\|_{2} \leq \varepsilon \sqrt{d}$ [Meckes '07].
- Setting $\varepsilon^{\prime}=\varepsilon / \sqrt{d}, n=\tilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$ would give

$$
\|\tilde{T}-T\|_{2} \leq \varepsilon \leq \varepsilon\|T\|_{2}
$$

SPARSE RULER SAMPLE COMPLEXITY

Theorem. For any ruler $R \subset[d]$, covariance estimation with R gives $\|\tilde{T}-T\|_{2} \leq \varepsilon\|T\|_{2}$ with entry sample complexity $|R|$ and vector sample complexity $n=\tilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$.

SPARSE RULER SAMPLE COMPLEXITY

Theorem. For any ruler $R \subset[d]$, covariance estimation with R gives $\|\tilde{T}-T\|_{2} \leq \varepsilon\|T\|_{2}$ with entry sample complexity $|R|$ and vector sample complexity $n=\tilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$.

- Vector sample complexity matches the complexity of estimating an unstructured covariance with the empirical covariance but entry sample complexity can be $O(\sqrt{d})$ instead of d.

SPARSE RULER SAMPLE COMPLEXITY

Theorem. For any ruler $R \subset[d]$, covariance estimation with R gives $\|\tilde{T}-T\|_{2} \leq \varepsilon\|T\|_{2}$ with entry sample complexity $|R|$ and vector sample complexity $n=\tilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$.

- Vector sample complexity matches the complexity of estimating an unstructured covariance with the empirical covariance but entry sample complexity can be $O(\sqrt{d})$ instead of d.
- Proof uses the Fourier structure of Toeplitz matrices.

SPARSE RULER PROOF SKETCH

Algorithm: For each $s \in\{0,1\}$ approximate a_{s} by average over the ruler R :
$\tilde{a}_{s}=\frac{1}{n\left|R_{s}\right|} \sum_{j=1}^{n} \sum_{(k, \ell) \in R_{s}} x_{k}^{(j)} \cdot x_{\ell}^{(j)}$ where $R_{s}=\{k, \ell \in R:|k-\ell|=s\}$.
Let \tilde{T} be the Toeplitz matrix with $\tilde{a}_{\text {s }}$ on its $s^{\text {th }}$ diagonal.

SPARSE RULER PROOF SKETCH

Algorithm: For each $s \in\{0,1\}$ approximate a_{s} by average over the ruler R :
$\tilde{a}_{S}=\frac{1}{n\left|R_{S}\right|} \sum_{j=1}^{n} \sum_{(k, \ell) \in R_{s}} x_{k}^{(j)} \cdot x_{\ell}^{(j)}$ where $R_{S}=\{k, \ell \in R:|k-\ell|=s\}$.
Let \tilde{T} be the Toeplitz matrix with $\tilde{a}_{\text {s }}$ on its $s^{\text {th }}$ diagonal.

SPARSE RULER PROOF SKETCH

Algorithm: For each $s \in\{0,1\}$ approximate a_{s} by average over the ruler R :
$\tilde{a}_{s}=\frac{1}{n\left|R_{s}\right|} \sum_{j=1}^{n} \sum_{(k, \ell) \in R_{s}} x_{k}^{(j)} \cdot x_{\ell}^{(j)}$ where $R_{s}=\{k, \ell \in R:|k-\ell|=s\}$.
Let \tilde{T} be the Toeplitz matrix with $\tilde{a}_{\text {s }}$ on its $s^{\text {th }}$ diagonal.

- Let $E=T-\tilde{T}$ and $e=a-\tilde{a}$. We want to bound $\|E\|_{2}$.

SPARSE RULER PROOF SKETCH

Entry approximation to matrix approximation: Can bound $\|\tilde{T}-T\|_{2}=\|E\|_{2}$ in terms of the Fourier transform of e.

SPARSE RULER PROOF SKETCH

Entry approximation to matrix approximation: Can bound $\|\tilde{T}-T\|_{2}=\|E\|_{2}$ in terms of the Fourier transform of e.

SPARSE RULER PROOF SKETCH

Entry approximation to matrix approximation: Can bound $\|\tilde{T}-T\|_{2}=\|E\|_{2}$ in terms of the Fourier transform of e.

SPARSE RULER PROOF SKETCH

Entry approximation to matrix approximation: Can bound $\|\tilde{T}-T\|_{2}=\|E\|_{2}$ in terms of the Fourier transform of e.

SPARSE RULER PROOF SKETCH

Formulation as Trace Bound: For fixed f let M_{f} be the Toeplitz matrix with $\left(M_{f}\right)_{j, k}=\frac{\sin (2 \pi s f)}{\left|R_{s}\right|}$ when $|j-k|=s$.

SPARSE RULER PROOF SKETCH

Formulation as Trace Bound: For fixed f let M_{f} be the Toeplitz matrix with $\left(M_{f}\right)_{j, k}=\frac{\sin (2 \pi s f)}{\left|R_{s}\right|}$ when $|j-k|=s$.
Can rewrite the Fourier transform as:

$$
\|\tilde{T}-T\|_{2} \leq \max _{f \in[0,1]} \sum_{s=0}^{d}\left[a_{s}-\tilde{a}_{s}\right] \cdot \sin (2 \pi s f)=\max _{f \in[0,1]} \operatorname{tr}\left(T_{R}-\tilde{T}_{R}, M_{f}\right)
$$

where T_{R}, \tilde{T}_{R} are the principal submatrices of T and \tilde{T} restricted to the indices in the ruler R.

SPARSE RULER PROOF SKETCH

Formulation as Trace Bound: For fixed f let M_{f} be the Toeplitz matrix with $\left(M_{f}\right)_{j, k}=\frac{\sin (2 \pi s f)}{\left|R_{s}\right|}$ when $|j-k|=s$.
Can rewrite the Fourier transform as:

$$
\|\tilde{T}-T\|_{2} \leq \max _{f \in[0,1]} \sum_{s=0}^{d}\left[a_{s}-\tilde{a}_{s}\right] \cdot \sin (2 \pi s f)=\max _{f \in[0,1]} \operatorname{tr}\left(T_{R}-\tilde{T}_{R}, M_{f}\right)
$$

where T_{R}, \tilde{T}_{R} are the principal submatrices of T and \tilde{T} restricted to the indices in the ruler R.

SPARSE RULER PROOF SKETCH

Formulation as Trace Bound: For fixed f let M_{f} be the Toeplitz matrix with $\left(M_{f}\right)_{j, k}=\frac{\sin (2 \pi s f)}{\left|R_{s}\right|}$ when $|j-k|=s$.
Can rewrite the Fourier transform as:

$$
\|\tilde{T}-T\|_{2} \leq \max _{f \in[0,1]} \sum_{s=0}^{d}\left[a_{S}-\tilde{a}_{s}\right] \cdot \sin (2 \pi s f)=\max _{f \in[0,1]} \operatorname{tr}\left(T_{R}-\hat{T}_{R}, M_{f}\right)
$$

where T_{R}, \tilde{T}_{R} are the principal submatrices of T and \tilde{T} restricted to the indices in the ruler R.

SPARSE RULER PROOF SKETCH

$$
\left\|\tilde{T}_{R}-T_{R}\right\|_{2} \leq \max _{f \in[0,1]} \operatorname{tr}\left(T_{R}-\hat{T}_{R}, M_{f}\right)
$$

SPARSE RULER PROOF SKETCH

$$
\left\|\tilde{T}_{R}-T_{R}\right\|_{2} \leq \max _{f \in[0,1]} \operatorname{tr}\left(T_{R}-\hat{T}_{R}, M_{f}\right)
$$

Concentration Bound: (Hanson-Wright) For fixed f, if $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ can bound the righthand side with high prob. by:

$$
\varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot \sqrt{d} \leq \varepsilon\|T\|_{2} \cdot \sqrt{d}
$$

since each entry of $M_{f}=\frac{\sin (2 \pi s f)}{\left|R_{s}\right|}$ for some s so $\left\|M_{f}\right\|_{F} \leq \sqrt{d}$.

SPARSE RULER PROOF SKETCH

$$
\left\|\tilde{T}_{R}-T_{R}\right\|_{2} \leq \max _{f \in[0,1]} \operatorname{tr}\left(T_{R}-\hat{T}_{R}, M_{f}\right)
$$

Concentration Bound: (Hanson-Wright) For fixed f, if $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ can bound the righthand side with high prob. by:

$$
\varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot \sqrt{d} \leq \varepsilon\|T\|_{2} \cdot \sqrt{d}
$$

since each entry of $M_{f}=\frac{\sin (2 \pi s f)}{\left|R_{s}\right|}$ for some s so $\left\|M_{f}\right\|_{F} \leq \sqrt{d}$.

- Setting $\varepsilon^{\prime}=\varepsilon / \sqrt{d}$ and union bounding over a net of f values gives our $n=\tilde{O}\left(d / \varepsilon^{2}\right)$ bound.

SPARSE RULER PROOF SKETCH

$$
\left\|\tilde{T}_{R}-T_{R}\right\|_{2} \leq \max _{f \in[0,1]} \operatorname{tr}\left(T_{R}-\hat{T}_{R}, M_{f}\right)
$$

Concentration Bound: (Hanson-Wright) For fixed f, if $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ can bound the righthand side with high prob. by:

$$
\varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot \sqrt{d} \leq \varepsilon\|T\|_{2} \cdot \sqrt{d}
$$

since each entry of $M_{f}=\frac{\sin (2 \pi s f)}{\left|R_{s}\right|}$ for some s so $\left\|M_{f}\right\|_{F} \leq \sqrt{d}$.

- Setting $\varepsilon^{\prime}=\varepsilon / \sqrt{d}$ and union bounding over a net of f values gives our $n=\tilde{O}\left(d / \varepsilon^{2}\right)$ bound.
- The more coverage R has (the larger the $\left|R_{s}\right|$ is on average), the smaller $\left\|M_{f}\right\|_{F}$ will be. Let's us interpolate between minimal entry sample complexity and minimal vector sample complexity.

FULL RULER SAMPLE COMPLEXITY

For $R=[d]$, coverage is maximal and $\left\|M_{f}\right\|_{F}=O(\sqrt{\log d})$, letting us achieve vector sample complexity $n=\tilde{O}\left(\frac{1}{\varepsilon^{2}}\right)$.

FULL RULER SAMPLE COMPLEXITY

For $R=[d]$, coverage is maximal and $\left\|M_{f}\right\|_{F}=O(\sqrt{\log d})$, letting us achieve vector sample complexity $n=\tilde{O}\left(\frac{1}{\varepsilon^{2}}\right)$.

- Algorithm is equivalent to setting $T=\operatorname{avg}\left(\frac{1}{n} \sum x^{(j)} X^{(j)^{T}}\right)$.

True covariance T

Empirical covariance \widehat{T}

Improved estimator $\operatorname{avg}(\hat{T})$

FULL RULER SAMPLE COMPLEXITY

For $R=[d]$, coverage is maximal and $\left\|M_{f}\right\|_{F}=O(\sqrt{\log d})$, letting us achieve vector sample complexity $n=\tilde{O}\left(\frac{1}{\varepsilon^{2}}\right)$.

- Algorithm is equivalent to setting $T=\operatorname{avg}\left(\frac{1}{n} \sum x^{(j)} X^{(j)^{T}}\right)$.

True covariance T

Empirical covariance \hat{T}

Improved estimator $\operatorname{avg}(\widehat{T})$

- Improves on sample complexity of just using the empirical covariance by a $\tilde{O}(d)$ factor.

SPARSE RULER VS. FULL RULER

Total sample complexity is $O(\sqrt{d}) \cdot \tilde{O}(d)=\tilde{O}\left(d^{3 / 2}\right)$ for sparse ruler vs. $d \cdot \tilde{O}(1)=\tilde{O}(d)$ for full sample estimation.

SPARSE RULER VS. FULL RULER

Total sample complexity is $O(\sqrt{d}) \cdot \tilde{O}(d)=\tilde{O}\left(d^{3 / 2}\right)$ for sparse ruler vs. $d \cdot \tilde{O}(1)=\tilde{O}(d)$ for full sample estimation.

SPARSE RULER VS. FULL RULER

Total sample complexity is $O(\sqrt{d}) \cdot \tilde{O}(d)=\tilde{O}\left(d^{3 / 2}\right)$ for sparse ruler vs. $d \cdot \tilde{O}(1)=\tilde{O}(d)$ for full sample estimation.

- Prove bounds are tight when T is the identity.

IS THERE ALWAYS A TRADEOFF?

IS THERE ALWAYS A TRADEOFF?

- Total sample complexity is $\tilde{O}(\sqrt{d})$ for sparse ruler estimation vs. $\tilde{O}(d)$ for full sample estimation.

IS THERE ALWAYS A TRADEOFF?

- Total sample complexity is $\tilde{O}(\sqrt{d})$ for sparse ruler estimation vs. $\tilde{O}(d)$ for full sample estimation.
- Sparse rulers give much better total sample complexity when T is (approximately) low-rank.

IS THERE ALWAYS A TRADEOFF?

- Total sample complexity is $\tilde{O}(\sqrt{d})$ for sparse ruler estimation vs. $\tilde{O}(d)$ for full sample estimation.
- Sparse rulers give much better total sample complexity when T is (approximately) low-rank.

IS THERE ALWAYS A TRADEOFF?

- Total sample complexity is $\tilde{O}(\sqrt{d})$ for sparse ruler estimation vs. $\tilde{O}(d)$ for full sample estimation.
- Sparse rulers give much better total sample complexity when T is (approximately) low-rank. Can we explain this?

SPARSE RULERS FOR LOW-RANK MATRICES

Recall that we have with $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ samples:

$$
\|T-\tilde{T}\|_{2} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \sqrt{d} \leq \varepsilon\|T\|_{2} \sqrt{d} .
$$

SPARSE RULERS FOR LOW-RANK MATRICES

Recall that we have with $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ samples:

$$
\|T-\tilde{T}\|_{2} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \sqrt{d} \leq \varepsilon\|T\|_{2} \sqrt{d} .
$$

SPARSE RULERS FOR LOW-RANK MATRICES

Recall that we have with $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ samples:

$$
\|T-\tilde{T}\|_{2} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \sqrt{d} \leq \varepsilon\|T\|_{2} \sqrt{d} .
$$

SPARSE RULERS FOR LOW-RANK MATRICES

Recall that we have with $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ samples:

$$
\|T-\tilde{T}\|_{2} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \sqrt{d} \leq \varepsilon\|T\|_{2} \sqrt{d} .
$$

- If T is the identity, $\|T\|_{2}=\left\|T_{R}\right\|_{2}=1$. But this is 'very' full-rank.

SPARSE RULERS FOR LOW-RANK MATRICES

Recall that we have with $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ samples:

$$
\|T-\tilde{T}\|_{2} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \sqrt{d} \leq \varepsilon\|T\|_{2} \sqrt{d} .
$$

- If T is the identity, $\|T\|_{2}=\left\|T_{R}\right\|_{2}=1$. But this is 'very' full-rank.
- Low-rank matrices cannot look like the identity - have significant off diagonal mass [MMW '19].

SPARSE RULERS FOR LOW-RANK MATRICES

Recall that we have with $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ samples:

$$
\|T-\tilde{T}\|_{2} \leq \varepsilon\left\|T_{R}\right\|_{2} \cdot\left\|M_{f}\right\|_{F} \leq \varepsilon\left\|T_{R}\right\|_{2} \sqrt{d} \leq \varepsilon\|T\|_{2} \sqrt{d} .
$$

- If T is the identity, $\|T\|_{2}=\left\|T_{R}\right\|_{2}=1$. But this is 'very' full-rank.
- Low-rank matrices cannot look like the identity - have significant off diagonal mass [MMW '19].
- Upshot: Show $\left\|T_{R}\right\|_{2} \leq \frac{k}{\sqrt{d}}\|T\|_{2}$. Setting $\varepsilon^{\prime}=\varepsilon / k$ obtain total sample complexity Õ $\left(\frac{\sqrt{d} k^{2}}{\varepsilon^{2}}\right)$.

AN APPROACH VIA FOURIER METHODS

Remainder of the talk: Will sketch a different approach to low-rank Toeplitz covariance estimation using sparse Fourier transform methods.

AN APPROACH VIA FOURIER METHODS

Remainder of the talk: Will sketch a different approach to low-rank Toeplitz covariance estimation using sparse Fourier transform methods.

- Connections between these two approaches.

THE FOURIER PERSPECTIVE

Vandermonde Decomposition: Any rank- k Toeplitz $T \in R^{d \times d}$ can be written as $F_{S} D F_{S}$ where $F_{S} \in \mathbb{R}^{d \times k}$ is an 'off-grid' Fourier transform matrix with frequencies f_{1}, \ldots, f_{k} and D is a positive diagonal matrix.

THE FOURIER PERSPECTIVE

Vandermonde Decomposition: Any rank- k Toeplitz $T \in R^{d \times d}$ can be written as $F_{S} D F_{S}$ where $F_{S} \in \mathbb{R}^{d \times k}$ is an 'off-grid' Fourier transform matrix with frequencies f_{1}, \ldots, f_{k} and D is a positive diagonal matrix.

- Any sample $x \sim \mathcal{N}(0, T)$ can be written as $F_{S} D^{1 / 2} g$ for $g \sim \mathcal{N}(0, I) . \mathbb{E}\left[x x^{\top}\right]=F_{S} D^{1 / 2} \mathbb{E}\left[g g^{\top}\right] D^{1 / 2} F_{S}^{*}=T$.

SAMPLE RECOVERY VIA SPARSE FOURIER TRANSFORM

$$
x \sim \mathcal{N}(0, T)=F_{S} D^{1 / 2} g \text { is a Fourier sparse function. }
$$

SAMPLE RECOVERY VIA SPARSE FOURIER TRANSFORM

$$
x \sim \mathcal{N}(0, T)=F_{S} D^{1 / 2} g \text { is a Fourier sparse function. }
$$

SAMPLE RECOVERY VIA SPARSE FOURIER TRANSFORM

$$
x \sim \mathcal{N}(0, T)=F_{S} D^{1 / 2} g \text { is a Fourier sparse function. }
$$

- Can recover exactly e.g. via Prony’s sparse Fourier transform method by reading any $2 k$ entries.

SAMPLE RECOVERY VIA SPARSE FOURIER TRANSFORM

$$
x \sim \mathcal{N}(0, T)=F_{S} D^{1 / 2} g \text { is a Fourier sparse function. }
$$

- Can recover exactly e.g. via Prony’s sparse Fourier transform method by reading any $2 k$ entries.
- Take $n=\tilde{O}\left(1 / \varepsilon^{2}\right)$ samples, recover each in full by reading $2 k$ entries, and then apply our earlier resut for full ruler $R=[d]$. Total sample complexity: $\tilde{O}\left(k / \varepsilon^{2}\right)$.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some set of k frequencies that approximately spans each $x^{(j)} \sim \mathcal{N}(0, T)$.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some set of k frequencies that approximately spans each $x^{(j)} \sim \mathcal{N}(0, T)$.

- Not as easy as it sounds.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some set of k frequencies that approximately spans each $x^{(j)} \sim \mathcal{N}(0, T)$.

- Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to approximately recover $x^{(1)}, \ldots, x^{(n)}$ and then estimate T from these samples.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is some set of k frequencies that approximately spans each $x^{(j)} \sim \mathcal{N}(0, T)$.

- Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to approximately recover $x^{(1)}, \ldots, x^{(n)}$ and then estimate T from these samples.

- Well studied in TCS, especially in the case when f_{1}, \ldots, f_{k} are 'on grid' integer frequencies.

FREQUENCY-BASED LOW-RANK APPROXIMATION

Step 1: Prove that when T is close to low-rank, there is some set of k frequencies that approximately spans each $x^{(j)} \sim \mathcal{N}(0, T)$.

FREQUENCY-BASED LOW-RANK APPROXIMATION

Step 1: Prove that when T is close to low-rank, there is some set of k frequencies that approximately spans each $x^{(j)} \sim \mathcal{N}(0, T)$.

- We give a proof via a column subset selection result (see e.g., Guruswami Sinop '12):

FREQUENCY-BASED LOW-RANK APPROXIMATION

Step 1: Prove that when T is close to low-rank, there is some set of k frequencies that approximately spans each $x^{(j)} \sim \mathcal{N}(0, T)$.

- We give a proof via a column subset selection result (see e.g., Guruswami Sinop '12):

Theorem: Any $A \in \mathbb{R}^{n \times d}$, contains a subset of $O(k / \varepsilon)$ columns, C such that:

$$
\left\|A-P_{C} \cdot A\right\|_{F}^{2} \leq(1+\varepsilon) \min _{\text {rank }-k M}\|A-M\|_{F}^{2}
$$

FREQUENCY-BASED LOW-RANK APPROXIMATION

$x^{(1)}, \ldots, x^{(n)} \sim \mathcal{N}(0, T)$ can be written as $X=F_{S} D^{1 / 2} G$ where columns of G are distributed as $\mathcal{N}(0, I)$.

FREQUENCY-BASED LOW-RANK APPROXIMATION

$x^{(1)}, \ldots, x^{(n)} \sim \mathcal{N}(0, T)$ can be written as $X=F_{S} D^{1 / 2} G$ where columns of G are distributed as $\mathcal{N}(0, I)$.

FREQUENCY-BASED LOW-RANK APPROXIMATION

$x^{(1)}, \ldots, x^{(n)} \sim \mathcal{N}(0, T)$ can be written as $X=F_{S} D^{1 / 2} G$ where columns of G are distributed as $\mathcal{N}(0, I)$.

- Think of G as a linear sketch that ensures $F_{S} D^{1 / 2} G \approx F_{S} D^{1 / 2}$ (formally a projection-cost preserving sketch [CEMMP '15]).

FREQUENCY-BASED LOW-RANK APPROXIMATION

$x^{(1)}, \ldots, x^{(n)} \sim \mathcal{N}(0, T)$ can be written as $X=F_{S} D^{1 / 2} G$ where columns of G are distributed as $\mathcal{N}(0, I)$.

- Think of G as a linear sketch that ensures $F_{S} D^{1 / 2} G \approx F_{S} D^{1 / 2}$ (formally a projection-cost preserving sketch [CEMMP '15]).
- Apply column subset selection result to $F_{S} D^{1 / 2}$.

FREQUENCY-BASED LOW-RANK APPROXIMATION

$x^{(1)}, \ldots, x^{(n)} \sim \mathcal{N}(0, T)$ can be written as $X=F_{S} D^{1 / 2} G$ where columns of G are distributed as $\mathcal{N}(0, I)$.

- Think of G as a linear sketch that ensures $F_{S} D^{1 / 2} G \approx F_{S} D^{1 / 2}$ (formally a projection-cost preserving sketch [CEMMP '15]).
- Apply column subset selection result to $F_{S} D^{1 / 2}$.

FREQUENCY-BASED LOW-RANK APPROXIMATION

$x^{(1)}, \ldots, x^{(n)} \sim \mathcal{N}(0, T)$ can be written as $X=F_{S} D^{1 / 2} G$ where columns of G are distributed as $\mathcal{N}(0, I)$.

- Think of G as a linear sketch that ensures $F_{S} D^{1 / 2} G \approx F_{S} D^{1 / 2}$ (formally a projection-cost preserving sketch [CEMMP '15]).
- Apply column subset selection result to $F_{S} D^{1 / 2}$.

RECOVERING A SPARSE REPRESENTATION

Step 2: Recover frequencies f_{1}, \ldots, f_{m} and $Z \in \mathbb{C}^{m \times n}$ with $X \approx F_{M} \cdot Z$. Then estimate T using this approximation.

RECOVERING A SPARSE REPRESENTATION

Step 2: Recover frequencies f_{1}, \ldots, f_{m} and $Z \in \mathbb{C}^{m \times n}$ with
$X \approx F_{M} \cdot Z$. Then estimate T using this approximation.

- Find frequencies via brute force search over a net.

RECOVERING A SPARSE REPRESENTATION

Step 2: Recover frequencies f_{1}, \ldots, f_{m} and $Z \in \mathbb{C}^{m \times n}$ with
$X \approx F_{M} \cdot Z$. Then estimate T using this approximation.

- Find frequencies via brute force search over a net.
- At each step of the search, for a given F_{M}, we must find Z that reconstructs X as well as possible using these frequencies. How do we do this without reading all of X ?

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2} .
$$

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2} .
$$

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2} .
$$

- Suffices to sample $\tilde{O}(k)$ rows by the leverage scores of F_{M} and solve the regression problem just considering these rows.

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2} .
$$

- Suffices to sample $\tilde{O}(k)$ rows by the leverage scores of F_{M} and solve the regression problem just considering these rows.
- Remark: If f_{1}, \ldots, f_{m} are 'on-grid' integers, the columns of F_{M} are orthonormal and the leverage scores are all k / n

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2} .
$$

- Suffices to sample $\tilde{O}(k)$ rows by the leverage scores of F_{M} and solve the regression problem just considering these rows.
- Remark: If f_{1}, \ldots, f_{m} are 'on-grid' integers, the columns of F_{M} are orthonormal and the leverage scores are all $k / n \rightarrow$ RIP for subsampled Fourier matrices.

FOURIER LEVERAGE SCORES

Leverage scores measure much large a function in the column span of F_{M} can be at index i (i.e., how important that index may be in the regression.)

$$
\tau_{i}\left(F_{M}\right)=\max _{y} \frac{\left(F_{M} y\right)_{i}^{2}}{\left\|F_{M} y\right\|_{2}^{2}}
$$

FOURIER LEVERAGE SCORES

Leverage scores measure much large a function in the column span of F_{M} can be at index i (i.e., how important that index may be in the regression.)

$$
\tau_{i}\left(F_{M}\right)=\max _{y} \frac{\left(F_{M} y\right)_{i}^{2}}{\left\|F_{M} y\right\|_{2}^{2}}
$$

FOURIER LEVERAGE SCORES

Leverage scores measure much large a function in the column span of F_{M} can be at index i (i.e., how important that index may be in the regression.)

$$
\tau_{i}\left(F_{M}\right)=\max _{y} \frac{\left(F_{M} y\right)_{i}^{2}}{\left\|F_{M} y\right\|_{2}^{2}}
$$

- Using that $F_{M y}$ is a Fourier sparse function we can bound this quantity a priori, without any dependence on F_{M}.

FOURIER LEVERAGE SCORES

Extend bounds of [Chen Kane Price Song '16] to give explicit function upper bounding the leverage scores of any F_{M} :

FOURIER LEVERAGE SCORES

Extend bounds of [Chen Kane Price Song '16] to give explicit function upper bounding the leverage scores of any F_{M} :

Since this distribution is universal, can sample one set of entries by these leverages scores, and find $X \approx F_{M} \cdot Z$ with high probability for any set of frequencies f_{1}, \ldots, f_{m} in net.

FINAL ALGORITHM

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (a random 'ultra-sparse' ruler)

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (a random 'ultra-sparse' ruler)
2. For all f_{1}, \ldots, f_{m} in net \mathcal{N} : Compute approximate projection:

$$
Z=\underset{Z \in \mathbb{C}^{m} \times n}{\arg \min }\left\|X_{R}-\left(F_{M}\right)_{R} Z\right\|_{F}^{2}
$$

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (a random 'ultra-sparse' ruler)
2. For all f_{1}, \ldots, f_{m} in net \mathcal{N} : Compute approximate projection:

$$
Z=\underset{Z \in \mathbb{C}^{m} \times n}{\arg \min }\left\|X_{R}-\left(F_{M}\right)_{R} Z\right\|_{F}^{2}
$$

3. Set $\tilde{X}=F_{M}^{\star} \cdot Z^{\star}$ to the best frequency-based approximation.

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (a random 'ultra-sparse' ruler)
2. For all f_{1}, \ldots, f_{m} in net \mathcal{N} : Compute approximate projection:

$$
Z=\underset{Z \in \mathbb{C}^{m \times n}}{\arg \min }\left\|X_{R}-\left(F_{M}\right)_{R} Z\right\|_{F}^{2}
$$

3. Set $\tilde{X}=F_{M}^{\star} \cdot Z^{\star}$ to the best frequency-based approximation.
4. Return $\tilde{T}=\operatorname{avg}\left(\tilde{X} \tilde{X}^{\top}\right)$.

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (a random 'ultra-sparse' ruler)
2. For all f_{1}, \ldots, f_{m} in net \mathcal{N} : Compute approximate projection:

$$
Z=\underset{Z \in \mathbb{C}^{m} \times n}{\arg \min }\left\|X_{R}-\left(F_{M}\right)_{R} Z\right\|_{F}^{2}
$$

3. Set $\tilde{X}=F_{M}^{\star} \cdot Z^{\star}$ to the best frequency-based approximation.
4. Return $\tilde{T}=\operatorname{avg}\left(\tilde{X} \tilde{X}^{\top}\right)$.

Sample Complexity: Gives $\|T-\tilde{T}\|_{2} \leq \varepsilon\|T\|_{2}+f\left(T-T_{k}\right)$ when X contains $n=\tilde{O}(\operatorname{poly}(k / \epsilon))$ samples. Entry sample complexity $\operatorname{poly}(k / \varepsilon)$, total sample complexity $\tilde{O}(\operatorname{poly}(k / \varepsilon))$.

OPEN QUESTIONS AND NEXT DIRECTIONS

OPEN QUESTIONS AND NEXT DIRECTIONS

Concrete.

OPEN QUESTIONS AND NEXT DIRECTIONS

Concrete.

- Runtime efficiency?

OPEN QUESTIONS AND NEXT DIRECTIONS

Concrete.

- Runtime efficiency?
- Can likely avoid exponential time net approach using off-grid sparse Fourier transform of [Chen Kane Price Song '16.]
- Convex optimization-based approaches and 'off-grid' RIP?
- Matrix sparse Fourier transform $X \approx F_{M} \cdot Z$. Connections to MUSIC, ESPRIT, etc.
- In process, maybe improve our sample complexity.

OPEN QUESTIONS AND NEXT DIRECTIONS

Concrete.

- Runtime efficiency?
- Can likely avoid exponential time net approach using off-grid sparse Fourier transform of [Chen Kane Price Song '16.]
- Convex optimization-based approaches and 'off-grid’ RIP?
- Matrix sparse Fourier transform $X \approx F_{M} \cdot Z$. Connections to MUSIC, ESPRIT, etc.
- In process, maybe improve our sample complexity.
- 'Continuous’ setting with sample access to a arbitrary positions of a signal with stationary covariance. (E.g., $x^{(1)}, \ldots, x^{(n)}$ may be snapshots of this signal.)

OPEN QUESTIONS AND NEXT DIRECTIONS

Concrete.

- Runtime efficiency?
- Can likely avoid exponential time net approach using off-grid sparse Fourier transform of [Chen Kane Price Song '16.]
- Convex optimization-based approaches and 'off-grid' RIP?
- Matrix sparse Fourier transform $X \approx F_{M} \cdot Z$. Connections to MUSIC, ESPRIT, etc.
- In process, maybe improve our sample complexity.
- 'Continuous’ setting with sample access to a arbitrary positions of a signal with stationary covariance. (E.g., $x^{(1)}, \ldots, x^{(n)}$ may be snapshots of this signal.)
- Sample complexity bounds and tradeoffs for applications like direction-of-arrival estimation, Doppler imaging.

CONNECTIONS BETWEEN SAMPLING SCHEMES

CONNECTIONS BETWEEN SAMPLING SCHEMES

CONNECTIONS BETWEEN SAMPLING SCHEMES

- Some Formal Connections:

CONNECTIONS BETWEEN SAMPLING SCHEMES

- Some Formal Connections:
- Limiting density of Chebyshev nodes is the leverage score distribution for k degree polynomials.

CONNECTIONS BETWEEN SAMPLING SCHEMES

- Some Formal Connections:
- Limiting density of Chebyshev nodes is the leverage score distribution for k degree polynomials.
- Sampling $O(\sqrt{d})$ indices via Fourier sparse leverage scores gives a sparse ruler with good probability.

CONNECTIONS BETWEEN SAMPLING SCHEMES

- Some Formal Connections:
- Limiting density of Chebyshev nodes is the leverage score distribution for k degree polynomials.
- Sampling $O(\sqrt{d})$ indices via Fourier sparse leverage scores gives a sparse ruler with good probability.
- Also connected to multi-coset and non-uniform sampling schemes used in signal processing.

CONNECTIONS BETWEEN SAMPLING SCHEMES

- Some Formal Connections:
- Limiting density of Chebyshev nodes is the leverage score distribution for k degree polynomials.
- Sampling $O(\sqrt{d})$ indices via Fourier sparse leverage scores gives a sparse ruler with good probability.
- Also connected to multi-coset and non-uniform sampling schemes used in signal processing.
- Seem to have a lot more to understand.

Thanks! Questions?

Paper draft and slides available at cameronmusco.com

