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Linear Sketching

Two Main Tools

I Johnson Lindenstrauss sketches (randomized dimensionality
reduction, subspace embedding, etc..)

I Heavy-Hitters sketches (sparse recovery, compressive sensing,
`p sampling, graph sketching, etc....)



Johnson-Lindenstrauss Lemma

I Low Dimensional Embedding. n→ m = O(log(1/δ)/ε2)

I ‖Πx‖22 ≈ε ‖x‖22.
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Johnson-Lindenstrauss Lemma

That’s it! - basic statistics

I Sparse constructions.

I ±1 replace Gaussians

I Small sketch representation - i.e. small random seed
(otherwise storing Π takes more space than storing x)



Heavy-Hitters

I Count sketch, sparse recovery, `p sampling, point query, graph
sketching, sparse fourier transform

I Simple idea: Hashing
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Heavy-Hitters

I Just random encoding

I polylog(n) to recover entires with 1
log(n) of the total norm

I Basically best we could hope for.

I Random scalings gives `p sampling.



Application 1: k-means Clustering

I Assign points to k clusters

I k is fixed

I Minimize distance to centroids:
∑n

i=1 ‖ai − µC(i)‖22
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Application 1: k-means Clustering

What if data is distributed?



Application 1: k-means Clustering
I At each iteration each server sends out new local centroids
I Adding them together, gives the new global centroids.
I O(sdk) communication per iteration



Application 1: k-means Clustering

Can we do better?

I Balcan et al. 2013 - Õ((kd + sk)d)

I Locally computable Õ(kd + sk) sized coreset.

I All data is aggregated and k-means performed on single
server.
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Application 1: k-means Clustering

I ‖ai − aj‖22 ≈ε ‖(ai − aj)Π‖22 = ‖aiΠ− ajΠ‖22
I O(n2) distance vectors so set failure probability δ = 1

100∗n2 .

I Π needs O(log 1/δ/ε2) = O(log n/ε2) dimensions



Application 1: k-means Clustering

Immediately distributes - just need to share randomness
specifying Π.



Application 1: k-means Clustering

Our Paper [Cohen Elder Musco Musco Persu 14]

I Show that Π only needs to have O(k/ε2) columns

I Almost completely removes dependence on input size!

I Õ(k3 + sk2 + log d) - log d gets swallowed in the word size.



Application 1: k-means Clustering

Highest Level Idea for how this works

I Show that the cost of projecting the columns AΠ to any
k-dimensional subspace approximates the cost of projecting A
to that subspace.

I Note that k-means can actually be viewed as a column
projection problem.

I k-means clustering is ‘constrained’ PCA

I Lots of applications aside from k-means clustering.



Application 1: k-means Clustering

Open Questions

I (9 + ε)-approximation with only O(log k) dimensions! What is
the right answer?

I We use Õ(kd + sk) sized coresets blackbox and reduce d .
Can we use our linear algebraic understanding to improve
coreset constructions? I feels like we should be able to.

I These algorithms should be practical. I think testing them out
would be useful - for both k-means and PCA.

I Other problems (spectral clustering, SVM, what do people
actually do?)
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I Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Application 2: Spectral Sparsification

Cut Sparsification (Benczúr, Karger ’96)
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I Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .
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I Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

I Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)
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Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96) So, ‖Bx‖22 = cut value.

Goal
Find some B̃ such that, for all x ∈ {0, 1}n,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

I x>B̃>B̃x ≈ x>B>Bx.

I L = B>B is the graph Laplacian.
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Spectral Sparsification (Spielman, Teng ’04)

Goal
Find some B̃ such that, for all x ∈ {0, 1}n Rn,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.
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Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

I Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

I Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).
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Application 2: Spectral Sparsification

Why?

I Semi-streaming model with insertions and deletions

I Near optimal oblivious graph compression

I Distributed Graph Computations
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Distributed Graph Computation

I Trinity, Pregel, Giraph



Application 2: Spectral Sparsification

I Naive to share my data: O(|Vi |n)

I With sketching: O(|Vi | logc n)



Application 2: Spectral Sparsification
Alternatives to Sketching?

I Simulate message passing algorithms over the nodes - this is
what’s done in practice.



Application 2: Spectral Sparsification

Alternatives to Sketching?

I Koutis ’14 gives distributed algorithm for spectral
sparsification

I Iteratively computes O(log n) spanners (alternatively, low
stretch trees) to upper bound effective resistances and sample
edges.

I Combinatorial and local



Application 2: Spectral Sparsification

I Cost per spanner: O(log2 n) rounds, O(m log n) messages,
O(log n) message size.

I If simulating, each server sends O(δ(Vi ) log n) per round.

I O(δ(Vi ) log n) beats our bound of O(|Vi | log n) iff
δ(Vi ) ≤ |Vi |

I But in that case, just keep all your outgoing edges and
sparsify locally! At worst adds n edges to the final sparsifier.



Application 2: Spectral Sparsification

Moral of That Story?

I I’m not sure.

I Sparsifiers are very strong. Could we do better for other
problems?

I Can we reduce communication of simulated distributed
protocols using sparsifiers?

I What other things can sketches be applied to? Biggest open
question is distances - spanners, etc.



Sketching a Sparsifier

We are still going to sample by effective resistance.

I Treat graph as resistor network, each edge has resistance 1.

I Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.
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Sketching a Sparsifier

We just need two more ingredients: BL−1xe

`2 Heavy Hitters [GLPS10]:

I Sketch vector poly(n) vector in polylog(n) space.

I Extract any element who’s square is a O(1/ log n) fraction of
the vector’s squared norm.

Coarse Sparsifier:

I L̃ such that x>L̃x = (1± constant)x>Lx
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Sketching a Sparsifier

Putting it all together: BL−1xe

1. Sketch (Πheavy hitters)B in n logc n space.

2. Compute (Πheavy hitters)BL̃−1.

3. For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4. Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!
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Sketching a Sparsifier

BL−1xe
How about edges with lower effective resistance?

I First level: τe > 1/ log n with probability 1.

I Second level: τe > 1/2 log n with probability 1/2.

I Third level: τe > 1/4 log n with probability 1/4.

I Forth level: τe > 1/8 log n with probability 1/8.

I ...

So, we can sample every edge by (effective resistance)× O(log n).
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Final Piece [Li, Miller, Peng ’12]

I We needed a constant error spectral sparsifier to get our
(1± ε) sparsifier.


