SPECTRUM APPROXIMATION BEYOND FAST MATRIX MULTIPLICATION: ALGORITHMS AND HARDNESS

Cameron Musco (MIT), Praneeth Netrapalli (MSR), Aaron Sidford (Stanford), Shashanka Ubaru (UMN), David Woodruff (CMU)

ITCS 2018

• E.g. linear system solving, eigenvector/value computation, determinant computation, and low-rank approximation.

- E.g. linear system solving, eigenvector/value computation, determinant computation, and low-rank approximation.
- Most can be solved with 'heavy hammers' like matrix inversion, full eigendecomposition, and SVD. These computations are known to be equivalent in difficulty to matrix multiplication and take $O(n^{\omega})$ time for $n \times n$ matrices, $O(n^3)$ time in practice.

- E.g. linear system solving, eigenvector/value computation, determinant computation, and low-rank approximation.
- Most can be solved with 'heavy hammers' like matrix inversion, full eigendecomposition, and SVD. These computations are known to be equivalent in difficulty to matrix multiplication and take $O(n^{\omega})$ time for $n \times n$ matrices, $O(n^3)$ time in practice.

Which natural linear algebraic problems can be solved in $o(n^{\omega})$ time for general matrices? Conversely, which are truly as hard as matrix multiplication?

- E.g. linear system solving, eigenvector/value computation, determinant computation, and low-rank approximation.
- Most can be solved with 'heavy hammers' like matrix inversion, full eigendecomposition, and SVD. These computations are known to be equivalent in difficulty to matrix multiplication and take $O(n^{\omega})$ time for $n \times n$ matrices, $O(n^3)$ time in practice.

Which natural linear algebraic problems can be solved in $o(n^{\omega})$ time for general matrices? Conversely, which are truly as hard as matrix multiplication?¹

¹Important even if $\omega = 2$.

• Assumptions like bounded condition number or eigengaps yield accurate algorithms for linear systems, more general matrix functions, and eigenvector computation. Algorithms are typically iterative and linearly convergent (i.e., with $log(1/\epsilon)$ error dependence).

- Assumptions like bounded condition number or eigengaps yield accurate algorithms for linear systems, more general matrix functions, and eigenvector computation. Algorithms are typically iterative and linearly convergent (i.e., with $log(1/\epsilon)$ error dependence).
- Coarser approximation methods give general solutions e.g. for linear systems, eigenvalue computation, and low-rank approximation, with $poly(1/\epsilon)$ dependence.

- Assumptions like bounded condition number or eigengaps yield accurate algorithms for linear systems, more general matrix functions, and eigenvector computation. Algorithms are typically iterative and linearly convergent (i.e., with $log(1/\epsilon)$ error dependence).
- Coarser approximation methods give general solutions e.g. for linear systems, eigenvalue computation, and low-rank approximation, with $poly(1/\epsilon)$ dependence.
- $\cdot\,$ Essentially nothing is known beyond these techniques.

- Assumptions like bounded condition number or eigengaps yield accurate algorithms for linear systems, more general matrix functions, and eigenvector computation. Algorithms are typically iterative and linearly convergent (i.e., with $log(1/\epsilon)$ error dependence).
- Coarser approximation methods give general solutions e.g. for linear systems, eigenvalue computation, and low-rank approximation, with $poly(1/\epsilon)$ dependence.
- $\cdot\,$ Essentially nothing is known beyond these techniques.
- All known linear algebraic algorithms which work with high accuracy on general matrices require full $n \times n \times n$ matrix multiplication (i.e. $O(n^{\omega})$ time). Why?

• [Baur, Strassen '83] shows that an arithmetic circuit for the determinant with *M* gates gives a circuit for matrix inversion/multiplication with *O*(*M*) gates.

- [Baur, Strassen '83] shows that an arithmetic circuit for the determinant with *M* gates gives a circuit for matrix inversion/multiplication with *O*(*M*) gates.
- $\cdot\,$ No reduction known for uniform computation.

- [Baur, Strassen '83] shows that an arithmetic circuit for the determinant with *M* gates gives a circuit for matrix inversion/multiplication with *O*(*M*) gates.
- \cdot No reduction known for uniform computation.
- An emerging line of work on reductions and hardness for linear algebraic problems [Kyng, Zhang '17], [Backurs, Indyk, Schmidt '17], [Musco, Woodruff '17].

THIS WORK

Algorithms: Give $o(n^{\omega})$ time approximation algorithms (poly(1/ ϵ) dependence) for a many spectral summarization tasks, like trace norm computation, SVD entropy, etc.

Algorithms: Give $o(n^{\omega})$ time approximation algorithms (poly(1/ ϵ) dependence) for a many spectral summarization tasks, like trace norm computation, SVD entropy, etc.

Lower Bounds: Show that it may be hard to find highly accurate $o(n^{\omega})$ time methods for many of these tasks by giving reductions from matrix multiplication.

Algorithms: Give $o(n^{\omega})$ time approximation algorithms (poly(1/ ϵ) dependence) for a many spectral summarization tasks, like trace norm computation, SVD entropy, etc.

Lower Bounds: Show that it may be hard to find highly accurate $o(n^{\omega})$ time methods for many of these tasks by giving reductions from matrix multiplication.

• Bounds extend to many natural problems like determinant, trace inverse, effective resistance computation, etc.

Basic Question: Given a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, can we approximate, in some useful way, its singular value spectrum $\sigma_1 > \dots > \sigma_n \ge 0$ without performing a full SVD. I.e., in $o(n^{\omega})$ time, for the current value of ω ?

Basic Question: Given a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, can we approximate, in some useful way, its singular value spectrum $\sigma_1 > \dots > \sigma_n \ge 0$ without performing a full SVD. I.e., in $o(n^{\omega})$ time, for the current value of ω ?

Our algorithmic contribution: Show how to efficiently compute an approximate histogram of the spectrum.

Basic Question: Given a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, can we approximate, in some useful way, its singular value spectrum $\sigma_1 > \dots > \sigma_n \ge 0$ without performing a full SVD. I.e., in $o(n^{\omega})$ time, for the current value of ω ?

Our algorithmic contribution: Show how to efficiently compute an approximate histogram of the spectrum.

• $\tilde{O}(n^{2.18}/\epsilon^3)$ time algorithm for approximating the nuclear norm to $1 + \epsilon$ relative error. $\tilde{O}(n^{2.33}/\epsilon^3)$ time without fast matrix mult.

$$\|\mathbf{A}\|_* = \sum_{i=1}^n \sigma_i.$$

• $\tilde{O}(n^{2.18}/\epsilon^3)$ time algorithm for approximating the nuclear norm to $1 + \epsilon$ relative error. $\tilde{O}(n^{2.33}/\epsilon^3)$ time without fast matrix mult.

$$\|\mathbf{A}\|_* = \sum_{i=1}^n \sigma_i.$$

• $\tilde{O}(n^2 \cdot p/\epsilon^3)$ time algorithm for approximating the Schatten *p*-norm for any real p > 2:

$$\|\mathbf{A}\|_p = \left(\sum_{i=1}^n \sigma_i^p\right)^{1/p}$$

• $\tilde{O}(n^{2.18}/\epsilon^3)$ time algorithm for approximating the nuclear norm to $1 + \epsilon$ relative error. $\tilde{O}(n^{2.33}/\epsilon^3)$ time without fast matrix mult.

$$\|\mathbf{A}\|_* = \sum_{i=1}^n \sigma_i.$$

• $\tilde{O}(n^2 \cdot p/\epsilon^3)$ time algorithm for approximating the Schatten *p*-norm for any real p > 2:

$$\|\mathbf{A}\|_p = \left(\sum_{i=1}^n \sigma_i^p\right)^{1/p}$$

• Results for general Schatten *p*-norms, SVD entropy, and more general matrix norms of the form $\sum_{i=1}^{n} g(\sigma_i)$.

• For $\|\mathbf{A}\|_p$ for any $p \neq 2$, SVD entropy, tr(\mathbf{A}^{-1}), tr(exp(\mathbf{A})), det(\mathbf{A}), log(det(\mathbf{A})), all pairs effective resistances:

• For $\|\mathbf{A}\|_p$ for any $p \neq 2$, SVD entropy, tr(\mathbf{A}^{-1}), tr(exp(\mathbf{A})), det(\mathbf{A}), log(det(\mathbf{A})), all pairs effective resistances:

• Our $\tilde{O}(n^2/\epsilon^3)$ time algorithm for $\|\mathbf{A}\|_3$ would give faster triangle detection if the ϵ dependence was $\approx \frac{1}{\epsilon^{1/10}}$.

• For $\|\mathbf{A}\|_p$ for any $p \neq 2$, SVD entropy, tr(\mathbf{A}^{-1}), tr(exp(\mathbf{A})), det(\mathbf{A}), log(det(\mathbf{A})), all pairs effective resistances:

- Our $\tilde{O}(n^2/\epsilon^3)$ time algorithm for $\|\mathbf{A}\|_3$ would give faster triangle detection if the ϵ dependence was $\approx \frac{1}{\epsilon^{1/10}}$.
- An $O(n^{3-\delta} \cdot \log(1/\epsilon))$ time algorithm gives $\tilde{O}(n^{3-\delta})$ time triangle detection and $\tilde{O}(n^{3-\delta/3})$ time matrix multiplication.

Slow: $\Theta(n^{\omega})$

Matrix multiplication Matrix inversion Eigendecomposition Full SVD Fast, Approximate: $o(n^{\omega})/\epsilon^{c}$ for $c \ge 1/2$

Linear systems Top eigenvalue Low-rank approximation Schatten norms SVD entropy

Fast, Accurate, No Assumptions: $o(n^{\omega})/\epsilon^{c}$ for small c $o(n^{\omega} \log(1/\epsilon))$

> Anything? Our results give negative evidence for many candidate problems.

Fast, With Assumptions:

Linear systems Eigenvectors/values Low-rank approximation exp(**A**), **A**^{1/2}, etc.

Key Primitive: Approximately count the number of singular values in each bucket.

Key Primitive: Approximately count the number of singular values in each bucket.

 Combine randomized trace estimation, stochastic optimization, polynomial approximation, and preconditioning.

Key Primitive: Approximately count the number of singular values in each bucket.

- Combine randomized trace estimation, stochastic optimization, polynomial approximation, and preconditioning.
- Leverage stochastic gradient based system solvers, which give better guarantees than the conjugate gradient method for certain spectrums. Use these guarantees to give generic speed ups. E.g., $O(n^{2.5}) \rightarrow O(n^{2.33})$ for $||\mathbf{A}||_*$.

 Detecting a triangle in a graph is equivalent to testing if tr(A³) > 0, where A is the adjacency matrix. I.e., relative error approximation to tr(A³) gives triangle detection.

nonzeros = length-3 paths

 Detecting a triangle in a graph is equivalent to testing if tr(A³) > 0, where A is the adjacency matrix. I.e., relative error approximation to tr(A³) gives triangle detection.

nonzeros = length-3 paths

• tr(
$$A^3$$
) = $\sum_{i=1}^n \lambda_i(A^3) = \sum_{i=1}^n \lambda_i(A)^3$

 Detecting a triangle in a graph is equivalent to testing if tr(A³) > 0, where A is the adjacency matrix. I.e., relative error approximation to tr(A³) gives triangle detection.

nonzeros = length-3 paths

• tr(A³) =
$$\sum_{i=1}^{n} \lambda_i(A^3) = \sum_{i=1}^{n} \lambda_i(A)^3 \neq \sum_{i=1}^{n} \sigma_i(A)^3 \stackrel{\text{def}}{=} \|A\|_3^3$$

·
$$\lambda_i(\mathbf{L}) \geq 0$$
 for all *i*, so $\lambda_i(\mathbf{L}) = \sigma_i(\mathbf{L})$.

$$\cdot \lambda_i(\mathsf{L}) \ge 0 \text{ for all } i, \text{ so } \lambda_i(\mathsf{L}) = \sigma_i(\mathsf{L}).$$
$$\|\mathsf{L}\|_3^3 = \sum_{i=1}^n \lambda_i(\mathsf{L})^3 = \operatorname{tr}(\mathsf{L}^3) = \operatorname{tr}(\mathsf{D}^3) - 3\operatorname{tr}(\mathsf{D}^2\mathsf{A}) + 3\operatorname{tr}(\mathsf{D}\mathsf{A}^2) - \operatorname{tr}(\mathsf{A}^3)$$

$$\cdot \lambda_i(\mathsf{L}) \ge 0 \text{ for all } i, \text{ so } \lambda_i(\mathsf{L}) = \sigma_i(\mathsf{L}).$$
$$\|\mathsf{L}\|_3^3 = \sum_{i=1}^n \lambda_i(\mathsf{L})^3 = \operatorname{tr}(\mathsf{L}^3) = \operatorname{tr}(\mathsf{D}^3) - 3\operatorname{tr}(\mathsf{D}^2\mathsf{A}) + 3\operatorname{tr}(\mathsf{D}\mathsf{A}^2) - \operatorname{tr}(\mathsf{A}^3)$$

$$\cdot \lambda_i(\mathsf{L}) \ge 0 \text{ for all } i, \text{ so } \lambda_i(\mathsf{L}) = \sigma_i(\mathsf{L}).$$
$$\|\mathsf{L}\|_3^3 = \sum_{i=1}^n \lambda_i(\mathsf{L})^3 = \operatorname{tr}(\mathsf{L}^3) = \operatorname{tr}(\mathsf{D}^3) - 3\operatorname{tr}(\mathsf{D}^2\mathsf{A}) + 3\operatorname{tr}(\mathsf{D}\mathsf{A}^2) - \operatorname{tr}(\mathsf{A}^3)$$

•
$$\lambda_i(\mathbf{L}) \ge 0$$
 for all *i*, so $\lambda_i(\mathbf{L}) = \sigma_i(\mathbf{L})$.
$$\|\mathbf{L}\|_3^3 = \sum_{i=1}^n \lambda_i(\mathbf{L})^3 = \operatorname{tr}(\mathbf{L}^3) = \operatorname{tr}(\mathbf{D}^3) - 3\operatorname{tr}(\mathbf{D}^2\mathbf{A}) + 3\operatorname{tr}(\mathbf{D}\mathbf{A}^2) - \operatorname{tr}(\mathbf{A}^3)$$

• tr(D^3) exactly computable in $O(n^2)$ time.

·
$$\lambda_i(\mathsf{L}) \geq 0$$
 for all *i*, so $\lambda_i(\mathsf{L}) = \sigma_i(\mathsf{L})$.

$$\|\mathbf{L}\|_{3}^{3} = \sum_{i=1} \lambda_{i}(\mathbf{L})^{3} = tr(\mathbf{L}^{3}) = tr(\mathbf{D}^{3}) - 3tr(\mathbf{D}^{2}\mathbf{A}) + 3tr(\mathbf{D}\mathbf{A}^{2}) - tr(\mathbf{A}^{3})$$

- tr(D^3) exactly computable in $O(n^2)$ time.
- · tr($\mathbf{D}^2\mathbf{A}$) = 0.

•
$$\lambda_i(\mathsf{L}) \geq 0$$
 for all *i*, so $\lambda_i(\mathsf{L}) = \sigma_i(\mathsf{L})$.

$$\|\mathbf{L}\|_{3}^{3} = \sum_{i=1}^{n} \lambda_{i}(\mathbf{L})^{3} = tr(\mathbf{L}^{3}) = tr(\mathbf{D}^{3}) - 3tr(\mathbf{D}^{2}\mathbf{A}) + 3tr(\mathbf{D}\mathbf{A}^{2}) - tr(\mathbf{A}^{3})$$

- tr(D^3) exactly computable in $O(n^2)$ time.
- $\cdot tr(\mathbf{D}^{2}\mathbf{A}) = 0.$
- $tr(DA^2) = tr(D^2)$, exactly computable in $O(n^2)$ time.

·
$$\lambda_i(\mathbf{L}) \geq 0$$
 for all *i*, so $\lambda_i(\mathbf{L}) = \sigma_i(\mathbf{L})$.

$$\|\mathbf{L}\|_{3}^{3} = \sum_{i=1}^{n} \lambda_{i}(\mathbf{L})^{3} = tr(\mathbf{L}^{3}) = tr(\mathbf{D}^{3}) - 3tr(\mathbf{D}^{2}\mathbf{A}) + 3tr(\mathbf{D}\mathbf{A}^{2}) - tr(\mathbf{A}^{3})$$

- tr(D^3) exactly computable in $O(n^2)$ time.
- $\cdot tr(\mathbf{D}^2\mathbf{A}) = 0.$
- $tr(DA^2) = tr(D^2)$, exactly computable in $O(n^2)$ time.

Thus, additive $\delta < 1$ approximation to $\|\mathbf{L}\|_{3}^{3}$ gives additive $\delta < 1$ approximation to tr(\mathbf{A}^{3}) and triangle detection.

• $\|\mathbf{L}\|_3^3 \le 8n^4$ for unweighted graphs.

- $\|\mathbf{L}\|_3^3 \le 8n^4$ for unweighted graphs.
- So multiplicative $(1 + \epsilon)$ approximation for $\epsilon < \frac{1}{8n^4}$ gives triangle detection.

- $\cdot \|\mathbf{L}\|_3^3 \le 8n^4$ for unweighted graphs.
- So multiplicative $(1 + \epsilon)$ approximation for $\epsilon < \frac{1}{8n^4}$ gives triangle detection.
- Computing $(1 \pm \epsilon) \|\mathbf{L}\|_3^3$ in $O(n^{\gamma} \cdot \epsilon^{-c})$ time gives triangle detection in $O(n^{\gamma+4c})$ time.

$$\frac{1}{1+x} = \sum_{i=0}^{\infty} (-x)^{i}$$

$$\cdot \quad \frac{1}{1+x} = \sum_{i=0}^{\infty} (-x)^i.$$

• Traces of large terms can again be computed exactly.

$$\frac{1}{1+x} = \sum_{i=0}^{\infty} (-x)^{i}.$$

- Traces of large terms can again be computed exactly.
- After subtracting out these terms, $tr(\delta^3 A^3)$ dominates $tr((I + \delta A)^{-1})$ (we set $\delta = 1/poly(n)$). So fine enough approximation gives triangle detection.

$$\frac{1}{1+x} = \sum_{i=0}^{\infty} (-x)^{i}.$$

- Traces of large terms can again be computed exactly.
- After subtracting out these terms, $tr(\delta^3 A^3)$ dominates $tr((I + \delta A)^{-1})$ (we set $\delta = 1/poly(n)$). So fine enough approximation gives triangle detection.
- Bound for determinant is similar, by expanding out $det(\mathbf{I} + \delta \mathbf{A}) = \prod_{i=1}^{n} (1 + \delta \lambda_i(\mathbf{A})).$

- Can any natural linear algebraic problem be solved in $o(n^{\omega})$ time for general matrices with high accuracy? (e.g. $\log(1/\epsilon)$ dependence on the error).
- Can we compute even a constant factor approximation to $det(\mathbf{A})$ in $o(n^{\omega})$ time?
- Can the our reductions from matrix multiplication (through triangle detection) be tightened?

- Can any natural linear algebraic problem be solved in $o(n^{\omega})$ time for general matrices with high accuracy? (e.g. $\log(1/\epsilon)$ dependence on the error).
- Can we compute even a constant factor approximation to $det(\mathbf{A})$ in $o(n^{\omega})$ time?
- Can the our reductions from matrix multiplication (through triangle detection) be tightened?
- Can we deterministically approximate $\sigma_1(\mathbf{A})$ without computing a full SVD (i.e. in $o(n^{\omega})$ time).
- If we could solve any PSD linear system in $O(n^2)$ time, would this imply anything about how fast we can solve matrix multiplication?

- Can any natural linear algebraic problem be solved in $o(n^{\omega})$ time for general matrices with high accuracy? (e.g. $\log(1/\epsilon)$ dependence on the error).
- Can we compute even a constant factor approximation to $det(\mathbf{A})$ in $o(n^{\omega})$ time?
- Can the our reductions from matrix multiplication (through triangle detection) be tightened?
- Can we deterministically approximate $\sigma_1(\mathbf{A})$ without computing a full SVD (i.e. in $o(n^{\omega})$ time).
- If we could solve any PSD linear system in $O(n^2)$ time, would this imply anything about how fast we can solve matrix multiplication?

Thanks! Questions?