SPECTRUM APPROXIMATION BEYOND FAST MATRIX MULTIPLICATION: ALGORITHMS AND HARDNESS

Cameron Musco (MIT), Praneeth Netrapalli (MSR), Aaron Sidford (Stanford), Shashanka Ubaru (UMN), David Woodruff (CMU)

ITCS 2018

MOTIVATING QUESTION

Despite tons of algorithmic work, we don't understand the fundamental complexity of many linear algebraic problems.

MOTIVATING QUESTION

Despite tons of algorithmic work, we don't understand the fundamental complexity of many linear algebraic problems.

- E.g. linear system solving, eigenvector/value computation, determinant computation, and low-rank approximation.

MOTIVATING QUESTION

Despite tons of algorithmic work, we don't understand the fundamental complexity of many linear algebraic problems.

- E.g. linear system solving, eigenvector/value computation, determinant computation, and low-rank approximation.
- Most can be solved with 'heavy hammers' like matrix inversion, full eigendecomposition, and SVD. These computations are known to be equivalent in difficulty to matrix multiplication and take $O\left(n^{\omega}\right)$ time for $n \times n$ matrices, $O\left(n^{3}\right)$ time in practice.

MOTIVATING QUESTION

Despite tons of algorithmic work, we don't understand the fundamental complexity of many linear algebraic problems.

- E.g. linear system solving, eigenvector/value computation, determinant computation, and low-rank approximation.
- Most can be solved with 'heavy hammers' like matrix inversion, full eigendecomposition, and SVD. These computations are known to be equivalent in difficulty to matrix multiplication and take $O\left(n^{\omega}\right)$ time for $n \times n$ matrices, $O\left(n^{3}\right)$ time in practice.

Which natural linear algebraic problems can be solved in $o\left(n^{\omega}\right)$ time for general matrices? Conversely, which are truly as hard as matrix multiplication?

MOTIVATING QUESTION

Despite tons of algorithmic work, we don't understand the fundamental complexity of many linear algebraic problems.

- E.g. linear system solving, eigenvector/value computation, determinant computation, and low-rank approximation.
- Most can be solved with 'heavy hammers' like matrix inversion, full eigendecomposition, and SVD. These computations are known to be equivalent in difficulty to matrix multiplication and take $O\left(n^{\omega}\right)$ time for $n \times n$ matrices, $O\left(n^{3}\right)$ time in practice.

Which natural linear algebraic problems can be solved in $o\left(n^{\omega}\right)$ time for general matrices? Conversely, which are truly as hard as matrix multiplication? ${ }^{1}$
${ }^{1}$ Important even if $\omega=2$.

PRIOR WORK

$o\left(n^{\omega}\right)$ Time Algorithms - Two Main Approaches:
$o\left(n^{\omega}\right)$ Time Algorithms - Two Main Approaches:

- Assumptions like bounded condition number or eigengaps yield accurate algorithms for linear systems, more general matrix functions, and eigenvector computation. Algorithms are typically iterative and linearly convergent (ie., with $\log (1 / \epsilon)$ error dependence).
$o\left(n^{\omega}\right)$ Time Algorithms - Two Main Approaches:
- Assumptions like bounded condition number or eigengaps yield accurate algorithms for linear systems, more general matrix functions, and eigenvector computation. Algorithms are typically iterative and linearly convergent (ie., with $\log (1 / \epsilon)$ error dependence).
- Coarser approximation methods give general solutions e.g. for linear systems, eigenvalue computation, and low-rank approximation, with poly $(1 / \epsilon)$ dependence.
$o\left(n^{\omega}\right)$ Time Algorithms - Two Main Approaches:
- Assumptions like bounded condition number or eigengaps yield accurate algorithms for linear systems, more general matrix functions, and eigenvector computation. Algorithms are typically iterative and linearly convergent (i.e., with $\log (1 / \epsilon)$ error dependence).
- Coarser approximation methods give general solutions e.g. for linear systems, eigenvalue computation, and low-rank approximation, with poly $(1 / \epsilon)$ dependence.
- Essentially nothing is known beyond these techniques.
$o\left(n^{\omega}\right)$ Time Algorithms - Two Main Approaches:
- Assumptions like bounded condition number or eigengaps yield accurate algorithms for linear systems, more general matrix functions, and eigenvector computation. Algorithms are typically iterative and linearly convergent (i.e., with $\log (1 / \epsilon)$ error dependence).
- Coarser approximation methods give general solutions e.g. for linear systems, eigenvalue computation, and low-rank approximation, with poly $(1 / \epsilon)$ dependence.
- Essentially nothing is known beyond these techniques.
- All known linear algebraic algorithms which work with high accuracy on general matrices require full $n \times n \times n$ matrix multiplication (i.e. $O\left(n^{\omega}\right)$ time). Why?

PRIOR WORK

Lower Bounds (much less work here):

Lower Bounds (much less work here):

- [Baur, Strassen '83] shows that an arithmetic circuit for the determinant with M gates gives a circuit for matrix inversion/multiplication with $O(M)$ gates.

Lower Bounds (much less work here):

- [Baur, Strassen '83] shows that an arithmetic circuit for the determinant with M gates gives a circuit for matrix inversion/multiplication with $O(M)$ gates.
- No reduction known for uniform computation.

Lower Bounds (much less work here):

- [Baur, Strassen '83] shows that an arithmetic circuit for the determinant with M gates gives a circuit for matrix inversion/multiplication with $O(M)$ gates.
- No reduction known for uniform computation.
- An emerging line of work on reductions and hardness for linear algebraic problems [Kyng, Zhang '17], [Backurs, Indyk, Schmidt '17], [Musco, Woodruff '17].

THIS WORK

THIS WORK

Algorithms: Give $o\left(n^{\omega}\right)$ time approximation algorithms (poly $(1 / \epsilon)$ dependence) for a many spectral summarization tasks, like trace norm computation, SVD entropy, etc.

THIS WORK

Algorithms: Give $o\left(n^{\omega}\right)$ time approximation algorithms (poly $(1 / \epsilon)$ dependence) for a many spectral summarization tasks, like trace norm computation, SVD entropy, etc.

Lower Bounds: Show that it may be hard to find highly accurate $o\left(n^{\omega}\right)$ time methods for many of these tasks by giving reductions from matrix multiplication.

THIS WORK

Algorithms: Give $o\left(n^{\omega}\right)$ time approximation algorithms (poly $(1 / \epsilon)$ dependence) for a many spectral summarization tasks, like trace norm computation, SVD entropy, etc.

Lower Bounds: Show that it may be hard to find highly accurate $o\left(n^{\omega}\right)$ time methods for many of these tasks by giving reductions from matrix multiplication.

- Bounds extend to many natural problems like determinant, trace inverse, effective resistance computation, etc.

SPECTRUM APPROXIMATION

Basic Question: Given a matrix $A \in \mathbb{R}^{n \times n}$, can we approximate, in some useful way, its singular value spectrum
$\sigma_{1}>\ldots .>\sigma_{n} \geq 0$ without performing a full SVD. I.e., in o $\left(n^{\omega}\right)$ time, for the current value of ω ?

SPECTRUM APPROXIMATION

Basic Question: Given a matrix $A \in \mathbb{R}^{n \times n}$, can we approximate, in some useful way, its singular value spectrum
$\sigma_{1}>\ldots .>\sigma_{n} \geq 0$ without performing a full SVD. I.e., in $o\left(n^{\omega}\right)$
time, for the current value of ω ?
Our algorithmic contribution: Show how to efficiently compute an approximate histogram of the spectrum.

SPECTRUM APPROXIMATION

Basic Question: Given a matrix $A \in \mathbb{R}^{n \times n}$, can we approximate, in some useful way, its singular value spectrum
$\sigma_{1}>\ldots .>\sigma_{n} \geq 0$ without performing a full SVD. I.e., in o($\left.n^{\omega}\right)$
time, for the current value of ω ?
Our algorithmic contribution: Show how to efficiently compute an approximate histogram of the spectrum.

Use our histogram primitive to give the first algorithms for approximating many matrix norms in $o\left(n^{\omega}\right)$ time.

Use our histogram primitive to give the first algorithms for approximating many matrix norms in $o\left(n^{\omega}\right)$ time.

- On $\left(n^{2.18} / \epsilon^{3}\right)$ time algorithm for approximating the nuclear norm to $1+\epsilon$ relative error. $\tilde{O}\left(n^{2.33} / \epsilon^{3}\right)$ time without fast matrix mull.

$$
\|\mathbf{A}\|_{*}=\sum_{i=1}^{n} \sigma_{i}
$$

Use our histogram primitive to give the first algorithms for approximating many matrix norms in $o\left(n^{\omega}\right)$ time.

- $\tilde{O}\left(n^{2.18} / \epsilon^{3}\right)$ time algorithm for approximating the nuclear norm to $1+\epsilon$ relative error. $\tilde{O}\left(n^{2.33} / \epsilon^{3}\right)$ time without fast matrix mult.

$$
\|\mathbf{A}\|_{*}=\sum_{i=1}^{n} \sigma_{i}
$$

- $\tilde{O}\left(n^{2} \cdot p / \epsilon^{3}\right)$ time algorithm for approximating the Schatten p-norm for any real $p>2$:

$$
\|\mathrm{A}\|_{p}=\left(\sum_{i=1}^{n} \sigma_{i}^{p}\right)^{1 / p}
$$

APPLICATION: $O\left(n^{\omega}\right)$ TIME MATRIX NORMS

Use our histogram primitive to give the first algorithms for approximating many matrix norms in $o\left(n^{\omega}\right)$ time.

- $\tilde{O}\left(n^{2.18} / \epsilon^{3}\right)$ time algorithm for approximating the nuclear norm to $1+\epsilon$ relative error. $\tilde{O}\left(n^{2.33} / \epsilon^{3}\right)$ time without fast matrix mult.

$$
\|\mathbf{A}\|_{*}=\sum_{i=1}^{n} \sigma_{i}
$$

- $\tilde{O}\left(n^{2} \cdot p / \epsilon^{3}\right)$ time algorithm for approximating the Schatten p-norm for any real $p>2$:

$$
\|A\|_{p}=\left(\sum_{i=1}^{n} \sigma_{i}^{p}\right)^{1 / p}
$$

- Results for general Schatten p-norms, SVD entropy, and more general matrix norms of the form $\sum_{i=1}^{n} g\left(\sigma_{i}\right)$.

LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in some sense as hard as matrix multiplication.

LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in
some sense as hard as matrix multiplication.

- For $\|A\|_{p}$ for any $p \neq 2$, SVD entropy, $\operatorname{tr}\left(\mathrm{A}^{-1}\right), \operatorname{tr}(\exp (\mathrm{A}))$, $\operatorname{det}(A), \log (\operatorname{det}(A))$, all pairs effective resistances:

```
1+\varepsilon approximation
    in O(n}\mp@subsup{n}{}{\nu}\mp@subsup{\varepsilon}{}{-c})\mathrm{ time, even when \(\mathbf{A}\) is a well-conditioned graph Laplacian
```

$\mathrm{O}\left(\mathrm{n}^{\gamma+4 \mathrm{c}}\right)$ time
triangle detection
for general graphs

LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in
some sense as hard as matrix multiplication.

- For $\|\mathbf{A}\|_{p}$ for any $p \neq 2$, SVD entropy, $\operatorname{tr}\left(\mathbf{A}^{-1}\right), \operatorname{tr}(\exp (\mathbf{A}))$, $\operatorname{det}(A), \log (\operatorname{det}(A))$, all pairs effective resistances:

$1+\varepsilon$ approximation in $O\left(n^{\gamma} \varepsilon^{-c}\right)$ time, even when \mathbf{A} is a well-conditioned graph Laplacian	$O\left(\mathrm{n}^{\gamma+4 \mathrm{c}}\right)$ time triangle detection for general graphs	[VW'10]	$\mathrm{O}\left(\mathrm{n}^{2+[y+4 \mathrm{c}] / 3}\right)$ time Boolean matrix multiplication

- Our $\tilde{O}\left(n^{2} / \epsilon^{3}\right)$ time algorithm for $\|\mathrm{A}\|_{3}$ would give faster triangle detection if the ϵ dependence was $\approx \frac{1}{\epsilon^{1 / 10}}$.

LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in
some sense as hard as matrix multiplication.

- For $\|A\|_{p}$ for any $p \neq 2$, SVD entropy, $\operatorname{tr}\left(\mathrm{A}^{-1}\right), \operatorname{tr}(\exp (\mathrm{A}))$, $\operatorname{det}(A), \log (\operatorname{det}(A))$, all pairs effective resistances:

$1+\varepsilon$ approximation in $O\left(n^{\gamma} \varepsilon^{-c}\right)$ time, even when \mathbf{A} is a well-conditioned graph Laplacian	$O\left(n^{r+4 c}\right)$ time triangle detection for general graphs	[VW'10]	$\mathrm{O}\left(\mathrm{n}^{2+[\gamma+4 \mathrm{c}] / 3}\right)$ time Boolean matrix multiplication

- Our $\tilde{O}\left(n^{2} / \epsilon^{3}\right)$ time algorithm for $\|\mathbf{A}\|_{3}$ would give faster triangle detection if the ϵ dependence was $\approx \frac{1}{\epsilon^{1 / 10}}$.
- An $O\left(n^{3-\delta} \cdot \log (1 / \epsilon)\right)$ time algorithm gives $\tilde{O}\left(n^{3-\delta}\right)$ time triangle detection and $\tilde{O}\left(n^{3-\delta / 3}\right)$ time matrix multiplication.

HIGH LEVEL VIEW

Slow: $\Theta\left(n^{\omega}\right)$

Matrix multiplication
Matrix inversion Eigendecomposition Full SVD

Fast, With Assumptions:

Linear systems
Eigenvectors/values
Low-rank approximation $\exp (\mathbf{A}), \mathbf{A}^{1 / 2}$, etc.

Fast, Approximate:

$o\left(n^{\omega}\right) / \varepsilon^{c}$ for $c \geq 1 / 2$

Linear systems
Top eigenvalue
Low-rank approximation Schatten norms SVD entropy

Fast, Accurate, No Assumptions:

$$
\begin{gathered}
o\left(n^{\omega}\right) / \varepsilon^{c} \text { for small } \mathrm{C} \\
o\left(n^{\omega} \log (1 / \varepsilon)\right)
\end{gathered}
$$

Anything?
Our results give negative evidence for many candidate problems.

ALGORITHMIC TECHNIQUES

ALGORITHMIC TECHNIQUES

Key Primitive: Approximately count the number of singular values in each bucket.

ALGORITHMIC TECHNIQUES

Key Primitive: Approximately count the number of singular values in each bucket.

- Combine randomized trace estimation, stochastic optimization, polynomial approximation, and preconditioning.

ALGORITHMIC TECHNIQUES

Key Primitive: Approximately count the number of singular values in each bucket.

- Combine randomized trace estimation, stochastic optimization, polynomial approximation, and preconditioning.
- Leverage stochastic gradient based system solvers, which give better guarantees than the conjugate gradient method for certain spectrums. Use these guarantees to give generic speed ups. E.g., $O\left(n^{2.5}\right) \rightarrow O\left(n^{2.33}\right)$ for $\|\mathrm{A}\|_{*}$.

REDUCTION SKETCH

Triangle detection naturally reduces to Schatten-3 norm estimation (almost).

REDUCTION SKETCH

Triangle detection naturally reduces to Schatten-3 norm estimation (almost).

- Detecting a triangle in a graph is equivalent to testing if $\operatorname{tr}\left(\mathrm{A}^{3}\right)>0$, where A is the adjacency matrix. I.e., relative error approximation to $\operatorname{tr}\left(\mathrm{A}^{3}\right)$ gives triangle detection. nonzeros $=$ length -3 paths

REDUCTION SKETCH

Triangle detection naturally reduces to Schatten-3 norm estimation (almost).

- Detecting a triangle in a graph is equivalent to testing if $\operatorname{tr}\left(\mathrm{A}^{3}\right)>0$, where A is the adjacency matrix. I.e., relative error approximation to $\operatorname{tr}\left(\mathrm{A}^{3}\right)$ gives triangle detection. nonzeros $=$ length -3 paths

- $\operatorname{tr}\left(\mathrm{A}^{3}\right)=\sum_{i=1}^{n} \lambda_{i}\left(\mathrm{~A}^{3}\right)=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~A})^{3}$

REDUCTION SKETCH

Triangle detection naturally reduces to Schatten-3 norm estimation (almost).

- Detecting a triangle in a graph is equivalent to testing if $\operatorname{tr}\left(\mathrm{A}^{3}\right)>0$, where A is the adjacency matrix. I.e., relative error approximation to $\operatorname{tr}\left(\mathrm{A}^{3}\right)$ gives triangle detection. nonzeros $=$ length -3 paths

$\cdot \operatorname{tr}\left(\mathrm{A}^{3}\right)=\sum_{i=1}^{n} \lambda_{i}\left(\mathrm{~A}^{3}\right)=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~A})^{3} \neq \sum_{i=1}^{n} \sigma_{i}(\mathrm{~A})^{3} \stackrel{\text { def }}{=}\|\mathrm{A}\|_{3}^{3}$.

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

- $\lambda_{i}(\mathrm{~L}) \geq 0$ for all i, so $\lambda_{i}(\mathrm{~L})=\sigma_{i}(\mathrm{~L})$.

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

- $\lambda_{i}(\mathrm{~L}) \geq 0$ for all i, so $\lambda_{i}(\mathrm{~L})=\sigma_{i}(\mathrm{~L})$.
$\|\mathrm{L}\|_{3}^{3}=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~L})^{3}=\operatorname{tr}\left(\mathrm{L}^{3}\right)=\operatorname{tr}\left(\mathrm{D}^{3}\right)-3 \operatorname{tr}\left(\mathrm{D}^{2} \mathrm{~A}\right)+3 \operatorname{tr}\left(\mathrm{DA}^{2}\right)-\operatorname{tr}\left(\mathrm{A}^{3}\right)$

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

- $\lambda_{i}(\mathrm{~L}) \geq 0$ for all i, so $\lambda_{i}(\mathrm{~L})=\sigma_{i}(\mathrm{~L})$.
$\|\mathrm{L}\|_{3}^{3}=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~L})^{3}=\operatorname{tr}\left(\mathrm{L}^{3}\right)=\operatorname{tr}\left(\mathrm{D}^{3}\right)-3 \operatorname{tr}\left(\mathrm{D}^{2} \mathrm{~A}\right)+3 \operatorname{tr}\left(\mathrm{DA}^{2}\right)-\operatorname{tr}\left(\mathrm{A}^{3}\right)$

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

- $\lambda_{i}(\mathrm{~L}) \geq 0$ for all i, so $\lambda_{i}(\mathrm{~L})=\sigma_{i}(\mathrm{~L})$.
$\|\mathrm{L}\|_{3}^{3}=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~L})^{3}=\operatorname{tr}\left(\mathrm{L}^{3}\right)=\operatorname{tr}\left(\mathrm{D}^{3}\right)-3 \operatorname{tr}\left(\mathrm{D}^{2} \mathrm{~A}\right)+3 \operatorname{tr}\left(\mathrm{DA}^{2}\right)-\operatorname{tr}\left(\mathrm{A}^{3}\right)$

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

- $\lambda_{i}(\mathrm{~L}) \geq 0$ for all i, so $\lambda_{i}(\mathrm{~L})=\sigma_{i}(\mathrm{~L})$.
$\|\mathrm{L}\|_{3}^{3}=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~L})^{3}=\operatorname{tr}\left(\mathrm{L}^{3}\right)=\operatorname{tr}\left(\mathrm{D}^{3}\right)-3 \operatorname{tr}\left(\mathrm{D}^{2} \mathrm{~A}\right)+3 \operatorname{tr}\left(\mathrm{DA}^{2}\right)-\operatorname{tr}\left(\mathrm{A}^{3}\right)$

- $\operatorname{tr}\left(\mathrm{D}^{3}\right)$ exactly computable in $O\left(n^{2}\right)$ time.

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

- $\lambda_{i}(\mathrm{~L}) \geq 0$ for all i, so $\lambda_{i}(\mathrm{~L})=\sigma_{i}(\mathrm{~L})$.
$\|\mathrm{L}\|_{3}^{3}=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~L})^{3}=\operatorname{tr}\left(\mathrm{L}^{3}\right)=\operatorname{tr}\left(\mathrm{D}^{3}\right)-3 \operatorname{tr}\left(\mathrm{D}^{2} \mathrm{~A}\right)+3 \operatorname{tr}\left(\mathrm{DA}^{2}\right)-\operatorname{tr}\left(\mathrm{A}^{3}\right)$

- $\operatorname{tr}\left(D^{3}\right)$ exactly computable in $O\left(n^{2}\right)$ time.
- $\operatorname{tr}\left(D^{2} A\right)=0$.

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

- $\lambda_{i}(\mathrm{~L}) \geq 0$ for all i, so $\lambda_{i}(\mathrm{~L})=\sigma_{i}(\mathrm{~L})$.
$\|\mathrm{L}\|_{3}^{3}=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~L})^{3}=\operatorname{tr}\left(\mathrm{L}^{3}\right)=\operatorname{tr}\left(\mathrm{D}^{3}\right)-3 \operatorname{tr}\left(\mathrm{D}^{2} \mathrm{~A}\right)+3 \operatorname{tr}\left(\mathrm{DA}^{2}\right)-\operatorname{tr}\left(\mathrm{A}^{3}\right)$

- $\operatorname{tr}\left(D^{3}\right)$ exactly computable in $O\left(n^{2}\right)$ time.
- $\operatorname{tr}\left(D^{2} A\right)=0$.
- $\operatorname{tr}\left(\mathrm{DA}^{2}\right)=\operatorname{tr}\left(\mathrm{D}^{2}\right)$, exactly computable in $O\left(n^{2}\right)$ time.

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L = D - A.

$$
\text { - } \lambda_{i}(\mathrm{~L}) \geq 0 \text { for all } i \text {, so } \lambda_{i}(\mathrm{~L})=\sigma_{i}(\mathrm{~L})
$$

$$
\|\mathrm{L}\|_{3}^{3}=\sum_{i=1}^{n} \lambda_{i}(\mathrm{~L})^{3}=\operatorname{tr}\left(\mathrm{L}^{3}\right)=\operatorname{tr}\left(\mathrm{D}^{3}\right)-3 \operatorname{tr}\left(\mathrm{D}^{2} \mathrm{~A}\right)+3 \operatorname{tr}\left(\mathrm{DA}^{2}\right)-\operatorname{tr}\left(\mathrm{A}^{3}\right)
$$

- $\operatorname{tr}\left(D^{3}\right)$ exactly computable in $O\left(n^{2}\right)$ time.
- $\operatorname{tr}\left(D^{2} A\right)=0$.
- $\operatorname{tr}\left(\mathrm{DA}^{2}\right)=\operatorname{tr}\left(\mathrm{D}^{2}\right)$, exactly computable in $O\left(n^{2}\right)$ time.

Thus, additive $\delta<1$ approximation to $\|\mathrm{L}\|_{3}^{3}$ gives additive $\delta<1$ approximation to $\operatorname{tr}\left(\mathrm{A}^{3}\right)$ and triangle detection.

REDUCTION SKETCH

Additive $\delta<1$ approximation to $\|\mathrm{L}\|_{3}^{3}$ gives additive $\delta<1$ approximation to $\operatorname{tr}\left(\mathrm{A}^{3}\right)$ and triangle detection.

REDUCTION SKETCH

Additive $\delta<1$ approximation to $\|\mathrm{L}\|_{3}^{3}$ gives additive $\delta<1$ approximation to $\operatorname{tr}\left(\mathrm{A}^{3}\right)$ and triangle detection.

- $\|\mathrm{L}\|_{3}^{3} \leq 8 n^{4}$ for unweighted graphs.

REDUCTION SKETCH

Additive $\delta<1$ approximation to $\|\mathrm{L}\|_{3}^{3}$ gives additive $\delta<1$ approximation to $\operatorname{tr}\left(\mathrm{A}^{3}\right)$ and triangle detection.

- $\|\mathrm{L}\|_{3}^{3} \leq 8 n^{4}$ for unweighted graphs.
- So multiplicative $(1+\epsilon)$ approximation for $\epsilon<\frac{1}{8 n^{4}}$ gives triangle detection.

REDUCTION SKETCH

Additive $\delta<1$ approximation to $\|\mathrm{L}\|_{3}^{3}$ gives additive $\delta<1$ approximation to $\operatorname{tr}\left(\mathrm{A}^{3}\right)$ and triangle detection.

- $\|\mathrm{L}\|_{3}^{3} \leq 8 n^{4}$ for unweighted graphs.
- So multiplicative $(1+\epsilon)$ approximation for $\epsilon<\frac{1}{8 n^{4}}$ gives triangle detection.
- Computing $(1 \pm \epsilon)\|L\|_{3}^{3}$ in $O\left(n^{\gamma} \cdot \epsilon^{-c}\right)$ time gives triangle detection in $O\left(n^{\gamma+4 c}\right)$ time.

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse, trace exponential, etc. via Taylor expansion.

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse, trace exponential, etc. via Taylor expansion.

- $\frac{1}{1+x}=\sum_{i=0}^{\infty}(-x)^{i}$.

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse, trace exponential, etc. via Taylor expansion.

- $\frac{1}{1+x}=\sum_{i=0}^{\infty}(-x)^{i}$.

- Traces of large terms can again be computed exactly.

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse, trace exponential, etc. via Taylor expansion.

- $\frac{1}{1+x}=\sum_{i=0}^{\infty}(-x)^{i}$.

- Traces of large terms can again be computed exactly.
- After subtracting out these terms, $\operatorname{tr}\left(\delta^{3} \mathrm{~A}^{3}\right)$ dominates $\operatorname{tr}\left((I+\delta A)^{-1}\right)$ (we set $\left.\delta=1 / \operatorname{poly}(n)\right)$. So fine enough approximation gives triangle detection.

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse, trace exponential, etc. via Taylor expansion.

- $\frac{1}{1+x}=\sum_{i=0}^{\infty}(-x)^{i}$.

- ...
- Traces of large terms can again be computed exactly.
- After subtracting out these terms, $\operatorname{tr}\left(\delta^{3} \mathrm{~A}^{3}\right)$ dominates $\operatorname{tr}\left((I+\delta A)^{-1}\right)$ (we set $\left.\delta=1 / \operatorname{poly}(n)\right)$. So fine enough approximation gives triangle detection.
- Bound for determinant is similar, by expanding out $\operatorname{det}(\mathbf{I}+\delta \mathbf{A})=\prod_{i=1}^{n}\left(1+\delta \lambda_{i}(\mathrm{~A})\right)$.

OPEN QUESTIONS (A SMALL SUBSET)

- Can any natural linear algebraic problem be solved in $o\left(n^{\omega}\right)$ time for general matrices with high accuracy? (e.g. $\log (1 / \epsilon)$ dependence on the error).
- Can we compute even a constant factor approximation to $\operatorname{det}(\mathrm{A})$ in $o\left(n^{\omega}\right)$ time?
- Can the our reductions from matrix multiplication (through triangle detection) be tightened?

OPEN QUESTIONS (A SMALL SUBSET)

- Can any natural linear algebraic problem be solved in $o\left(n^{\omega}\right)$ time for general matrices with high accuracy? (e.g. $\log (1 / \epsilon)$ dependence on the error).
- Can we compute even a constant factor approximation to $\operatorname{det}(\mathrm{A})$ in $o\left(n^{\omega}\right)$ time?
- Can the our reductions from matrix multiplication (through triangle detection) be tightened?
- Can we deterministically approximate $\sigma_{1}(\mathrm{~A})$ without computing a full SVD (i.e. in o($\left.n^{\omega}\right)$ time).
- If we could solve any PSD linear system in $O\left(n^{2}\right)$ time, would this imply anything about how fast we can solve matrix multiplication?

OPEN QUESTIONS (A SMALL SUBSET)

- Can any natural linear algebraic problem be solved in $o\left(n^{\omega}\right)$ time for general matrices with high accuracy? (e.g. $\log (1 / \epsilon)$ dependence on the error).
- Can we compute even a constant factor approximation to $\operatorname{det}(\mathrm{A})$ in $o\left(n^{\omega}\right)$ time?
- Can the our reductions from matrix multiplication (through triangle detection) be tightened?
- Can we deterministically approximate $\sigma_{1}(\mathrm{~A})$ without computing a full SVD (i.e. in o($\left.n^{\omega}\right)$ time).
- If we could solve any PSD linear system in $O\left(n^{2}\right)$ time, would this imply anything about how fast we can solve matrix multiplication?

Thanks! Questions?

