RANDOMIZED BLOCK KRYLOV METHODS FOR STRONGER AND FASTER APPROXIMATE SVD

Cameron Musco and Christopher Musco
December 11, 2015

Massachusetts Institute of Technology, EECS

SINGULAR VALUE DECOMPOSITION

SINGULAR VALUE DECOMPOSITION

- Extremely important primitive for dimensionality reduction, low-rank approximation, PCA, etc.

SINGULAR VALUE DECOMPOSITION

- Extremely important primitive for dimensionality reduction, low-rank approximation, PCA, etc.

$$
u_{i}=\underset{x:\|x\|=1, x \perp u_{1}, \ldots, u_{i-1}}{\arg \max } x^{\top} A A^{\top} x
$$

SINGULAR VALUE DECOMPOSITION

- Extremely important primitive for dimensionality reduction, low-rank approximation, PCA, etc.

$$
\begin{gathered}
u_{i}=\underset{x:\|x\|=1, x \perp u_{1}, \ldots, u_{i-1}}{\arg \max } \mathrm{XA}^{\top} x \\
\mathbf{A}_{k}=\underset{\mathrm{B}: \operatorname{rank}(\mathrm{B})=k}{\arg \min }\|\mathbf{A}-\mathbf{B}\|_{F}
\end{gathered}
$$

SINGULAR VALUE DECOMPOSITION

- Extremely important primitive for dimensionality reduction, low-rank approximation, PCA, etc.

$$
\begin{gathered}
u_{i}=\underset{x:\|x\|=1, x \perp u_{1}, \ldots, u_{i-1}}{\arg \max } \mathrm{XA}^{\top} x \\
\mathbf{A}_{k}=\underset{\mathrm{B}: \operatorname{rank}(\mathrm{B})=k}{\arg \min }\|\mathbf{A}-\mathbf{B}\|_{2}
\end{gathered}
$$

SINGULAR VALUE DECOMPOSITION

- Extremely important primitive for dimensionality reduction, low-rank approximation, PCA, etc.

$$
\begin{aligned}
& u_{i}=\underset{x:\|x\|=1, x \perp u_{1}, \ldots, u_{i-1}}{\arg \max } x^{\top} \mathrm{AA}^{\top} x \\
& \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}=\underset{\mathrm{B}: \operatorname{rank}(\mathbf{B})=k}{\arg \min }\|\mathbf{A}-\mathbf{B}\|_{2}
\end{aligned}
$$

STANDARD SVD APPROXIMATION METRICS

- Frobenius Norm Low-Rank Approximation:

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{A}\right\|_{F}
$$

STANDARD SVD APPROXIMATION METRICS

- Frobenius Norm Low-Rank Approximation (weak):

$$
\begin{gathered}
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{U}_{k}^{\top} \mathbf{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F} \\
\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{d} \sigma_{i}^{2} \text { and }\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}^{2}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \sigma_{i}^{2} .
\end{gathered}
$$

STANDARD SVD APPROXIMATION METRICS

- Frobenius Norm Low-Rank Approximation (weak):

$$
\begin{gathered}
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{U}_{k}^{\top} \mathbf{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F} \\
\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{d} \sigma_{i}^{2} \text { and }\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}^{2}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \sigma_{i}^{2} .
\end{gathered}
$$

For many datasets literally any \tilde{U}_{k} would work!

STANDARD SVD APPROXIMATION METRICS

- Frobenius Norm Low-Rank Approximation (weak):

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}
$$

- Spectral Norm Low-Rank Approximation (stronger):

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathrm{A}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{2}
$$

STANDARD SVD APPROXIMATION METRICS

- Frobenius Norm Low-Rank Approximation (weak):

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}
$$

- Spectral Norm Low-Rank Approximation (stronger):

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{T} \mathbf{A}\right\|_{2} \leq(1+\epsilon) \sigma_{k+1}
$$

STANDARD SVD APPROXIMATION METRICS

- Frobenius Norm Low-Rank Approximation (weak):

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{T} \mathbf{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{A}\right\|_{F}
$$

- Spectral Norm Low-Rank Approximation (stronger):

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{T} \mathbf{A}\right\|_{2} \leq(1+\epsilon) \sigma_{k+1}
$$

- Per Vector Principal Component Error (strongest):

$$
\tilde{u}_{i}^{\top} \mathrm{AA}^{\top} \tilde{u}_{i} \geq(1-\epsilon) u_{i}^{\top} \mathrm{AA}^{\top} u_{i} \quad \text { for all } i \leq k .
$$

MAIN RESEARCH QUESTION

Classic Full SVD Algorithms (e.g. QR Algorithm):
All of these goals in roughly $O\left(n d^{2}\right)$ time (error dependence is $\log \log 1 / \epsilon$ on lower order terms).

Unfortunately, this is much too slow for many data sets.

MAIN RESEARCH QUESTION

Classic Full SVD Algorithms (e.g. QR Algorithm):
All of these goals in roughly $O\left(n d^{2}\right)$ time (error dependence is $\log \log 1 / \epsilon$ on lower order terms).

Unfortunately, this is much too slow for many data sets.

How fast can we approximately compute just u_{1}, \ldots, u_{k} ?

FROBENIUS NORM ERROR

'Weak' Approximation Algorithms:

- Strong Rank Revealing QR (Gu, Eisenstat 1996):

$$
\left\|\mathrm{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathrm{A}\right\|_{F} \leq \operatorname{poly}(n, k)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{F} \text { in time } O(n d k)
$$

FROBENIUS NORM ERROR

'Weak' Approximation Algorithms:

- Strong Rank Revealing QR (Gu, Eisenstat 1996):

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{T} \mathrm{~A}\right\|_{F} \leq \operatorname{poly}(n, k)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F} \text { in time } O(n d k)
$$

- Sparse Subspace Embeddings (Clarkson, Woodruff 2013):

$$
\left\|\mathrm{A}-\tilde{\mathrm{U}}_{k} \tilde{U}_{k}^{\top} \mathrm{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{F} \text { in time } O(n n z(\mathrm{~A}))+\tilde{O}\left(\frac{n k^{2}}{\epsilon^{4}}\right)
$$

ITERATIVE SVD ALGORITHMS

Iterative methods are the only game in town for stronger guarantees. Runtime is approximately:

$$
O(n n z(A) k \cdot \# \text { iterations })
$$

- Power method (Müntz 1913, von Mises 1929)
- Krylov/Lanczos methods (Lanczos 1950)

ITERATIVE SVD ALGORITHMS

Iterative methods are the only game in town for stronger guarantees. Runtime is approximately:

$$
O(\mathrm{nnz}(\mathrm{~A}) k \cdot \# \text { iterations }) \leq O(n d k \cdot \# \text { iterations }) \ll O\left(n d^{2}\right)
$$

- Power method (Müntz 1913, von Mises 1929)
- Krylov/Lanczos methods (Lanczos 1950)

ITERATIVE SVD ALGORITHMS

Iterative methods are the only game in town for stronger guarantees. Runtime is approximately:

$$
O(\mathrm{nnz}(\mathrm{~A}) k \cdot \# \text { iterations }) \leq O(n d k \cdot \# \text { iterations }) \ll O\left(n d^{2}\right)
$$

- Power method (Müntz 1913, von Mises 1929)
- Krylov/Lanczos methods (Lanczos 1950)
- Stochastic Methods?

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD REVIEW

Traditional Power Method:

$$
x_{0} \in \mathbb{R}^{d}, \quad x_{i+1} \leftarrow \frac{\mathrm{~A} x_{i}}{\left\|\mathrm{~A} x_{i}\right\|}
$$

Block Power Method (Simultaneous/Subspace Iteration):

$$
X_{0} \in \mathbb{R}^{d \times k}, \quad X_{i+1} \leftarrow \text { orthonormalize }\left(\mathrm{AX}_{i}\right)
$$

POWER METHOD RUNTIME

Runtime for Block Power method is roughly:

$$
O\left(\operatorname{nnz}(\mathrm{~A}) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right)
$$

POWER METHOD RUNTIME

Runtime for Block Power method is roughly:

$$
O\left(n n z(A) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right)
$$

POWER METHOD RUNTIME

Runtime for Block Power method is roughly:

$$
O\left(\operatorname{nnz}(\mathbf{A}) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right)
$$

POWER METHOD RUNTIME

Runtime for Block Power method is roughly:

$$
O\left(\operatorname{nnz}(\mathrm{~A}) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right)
$$

- Linear dependence on the singular value gap:

$$
\text { gap }=\frac{\sigma_{k}-\sigma_{k+1}}{\sigma_{k}}
$$

POWER METHOD RUNTIME

Runtime for Block Power method is roughly:

$$
O\left(n n z(A) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right)
$$

- Linear dependence on the singular value gap:

$$
\text { gap }=\frac{\sigma_{k}-\sigma_{k+1}}{\sigma_{k}}
$$

- While this gap is traditionally assumed to be constant, it is the dominant factor in the iteration count for many datasets.

TYPICAL GAP VALUES

Stanford Network Analysis Project - Slashdot Social Network

TYPICAL GAP VALUES

Stanford Network Analysis Project - Slashdot Social Network

TYPICAL GAP VALUES

Stanford Network Analysis Project - Slashdot Social Network

Median value of $\operatorname{gap}_{k}=\frac{\sigma_{k}-\sigma_{k+1}}{\sigma_{k}}$ for $k \leq 200$:

TYPICAL GAP VALUES

Stanford Network Analysis Project - Slashdot Social Network

Minimum value of $\operatorname{gap}_{k}=\frac{\sigma_{k}-\sigma_{k+1}}{\sigma_{k}}$ for $k \leq 200$:

.00004

TYPICAL GAP VALUES

Stanford Network Analysis Project - Slashdot Social Network

Minimum value of $\operatorname{gap}_{k}=\frac{\sigma_{k}-\sigma_{k+1}}{\sigma_{k}}$ for $k \leq 200$:

$$
\text { Runtime }=O(25,000 \cdot n n z(A) k \log (d / \epsilon))
$$

GAP INDEPENDENT BOUNDS

Recent work shows Block Power method (with randomized start vectors) gives:

GAP INDEPENDENT BOUNDS

Recent work shows Block Power method (with randomized start vectors) gives:

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2} \text { in time } O\left(n n z(\mathrm{~A}) k \cdot \frac{\log d}{\epsilon}\right)
$$

GAP INDEPENDENT BOUNDS

Recent work shows Block Power method (with randomized start vectors) gives:

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2} \text { in time } O\left(n n z(\mathbf{A}) k \cdot \frac{\log d}{\epsilon}\right)
$$

Improves on classical bounds when $\epsilon>\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}$.

GAP INDEPENDENT BOUNDS

Recent work shows Block Power method (with randomized start vectors) gives:

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2} \text { in time } O\left(n n z(\mathrm{~A}) k \cdot \frac{\log d}{\epsilon}\right)
$$

Improves on classical bounds when $\epsilon>\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}$.

Long series of refinements and improvements:

- Rokhlin, Szlam, Tygert 2009
- Halko, Martinsson, Tropp 2011
- Boutsidis, Drineas, Magdon-Ismail 2011
- Witten, Candès 2014
- Woodruff 2014

RANDOMIZED BLOCK POWER METHOD

Randomized Block Power Method is widely cited and
implemented - simple algorithm with simple bounds.

RANDOMIZED BLOCK POWER METHOD

Randomized Block Power Method is widely cited and implemented - simple algorithm with simple bounds.

redSVD

RANDOMIZED BLOCK POWER METHOD

Randomized Block Power Method is widely cited and implemented - simple algorithm with simple bounds.

But in the numerical linear algebra community, Krylov/Lanczos methods have long been prefered over power iteration.

RANDOMIZED BLOCK POWER METHOD

Randomized Block Power Method is widely cited and implemented - simple algorithm with simple bounds.

But in the numerical linear algebra community, Krylov/ Lanczos methods have long been prefered over power iteration.

Power Method
Krylov Methods

$$
O\left(n n z(A) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right) \rightarrow O\left(n n z(\mathbf{A}) k \cdot \frac{\log (d / \epsilon)}{\sqrt{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}}\right)
$$

Power Method

Krylov Methods

$$
\begin{array}{cc}
O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right) & \rightarrow O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log (d / \epsilon)}{\sqrt{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}}\right) \\
O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\epsilon}\right) & \rightarrow
\end{array}
$$

No gap independent analysis of Krylov methods!

$$
\begin{aligned}
O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right) & \rightarrow O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log (d / \epsilon)}{\sqrt{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}}\right) \\
O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\epsilon}\right) & \rightarrow \underbrace{O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right)}_{\text {Our Contribution }}
\end{aligned}
$$

OUR MAIN RESULT

A simple randomized Block Krylov Iteration gives all three of our target error bounds in time:

$$
\begin{gathered}
O\left(n n z(\mathbf{A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right) \\
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{2} \leq(1+\epsilon) \sigma_{k+1} \quad \text { and } \quad \tilde{u}_{i}^{\top} A A^{\top} \tilde{u}_{i} \geq \sigma_{i}^{2}-\epsilon \sigma_{k+1}^{2}
\end{gathered}
$$

OUR MAIN RESULT

A simple randomized Block Krylov Iteration gives all three of our target error bounds in time:

$$
\begin{gathered}
O\left(n n z(\mathbf{A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right) \\
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathrm{A}\right\|_{2} \leq(1+\epsilon) \sigma_{k+1} \quad \text { and } \quad \tilde{u}_{i}^{\top} \mathrm{AA}^{\top} \tilde{u}_{i} \geq \sigma_{i}^{2}-\epsilon \sigma_{k+1}^{2}
\end{gathered}
$$

- Gives a runtime bound that is independent of A.

OUR MAIN RESULT

A simple randomized Block Krylov Iteration gives all three of our target error bounds in time:

$$
\begin{gathered}
O\left(n n z(\mathbf{A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right) \\
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathrm{A}\right\|_{2} \leq(1+\epsilon) \sigma_{k+1} \quad \text { and } \quad \tilde{u}_{i}^{\top} \mathrm{AA}^{\top} \tilde{u}_{i} \geq \sigma_{i}^{2}-\epsilon \sigma_{k+1}^{2}
\end{gathered}
$$

- Gives a runtime bound that is independent of A.
- Beats runtime of Block Power Method: . $0001 \rightarrow .01$.

OUR MAIN RESULT

A simple randomized Block Krylov Iteration gives all three of our target error bounds in time:

$$
\begin{gathered}
O\left(n n z(\mathbf{A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right) \\
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathrm{A}\right\|_{2} \leq(1+\epsilon) \sigma_{k+1} \quad \text { and } \quad \tilde{u}_{i}^{\top} \mathrm{AA}^{\top} \tilde{u}_{i} \geq \sigma_{i}^{2}-\epsilon \sigma_{k+1}^{2}
\end{gathered}
$$

- Gives a runtime bound that is independent of A.
- Beats runtime of Block Power Method: $10,000 \rightarrow 100$.

OUR MAIN RESULT

A simple randomized Block Krylov Iteration gives all three of our target error bounds in time:

$$
\begin{gathered}
O\left(n n z(\mathbf{A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right) \\
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{2} \leq(1+\epsilon) \sigma_{k+1} \quad \text { and } \quad \tilde{u}_{i}^{\top} \mathbf{A A}^{T} \tilde{u}_{i} \geq \sigma_{i}^{2}-\epsilon \sigma_{k+1}^{2}
\end{gathered}
$$

- Gives a runtime bound that is independent of A.
- Beats runtime of Block Power Method: $10,000 \rightarrow 100$.
- Improves classic Lanczos bounds when $\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}<\epsilon$.

UNDERSTANDING GAP DEPENDENCE

First Step: Where does gap dependence actually comes from?

UNDERSTANDING GAP DEPENDENCE

To prove guarantees like: $\tilde{u}_{i}^{\top} A A^{\top} \tilde{u}_{i} \geq(1-\epsilon) \sigma_{i}^{2}$, classical analysis argues about convergence to A's true singular vectors.

Traditional objective function: $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$.

UNDERSTANDING GAP DEPENDENCE

Traditional objective function: $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$

- Simple potential function, easy to work with.

UNDERSTANDING GAP DEPENDENCE

Traditional objective function: $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$

- Simple potential function, easy to work with.
- Can be used to prove strong per-vector error or spectral norm guarantees for $\left\|\mathrm{A}-\tilde{\mathrm{U}}_{k} \tilde{\mathrm{U}}_{\mathrm{k}}^{\top} \mathrm{A}\right\|_{2}$.

UNDERSTANDING GAP DEPENDENCE

Traditional objective function: $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$

- Simple potential function, easy to work with.
- Can be used to prove strong per-vector error or spectral norm guarantees for $\left\|\mathrm{A}-\tilde{\mathrm{U}}_{k} \tilde{\mathrm{U}}_{k}^{\top} \mathrm{A}\right\|_{2}$.
- Inherently requires an iteration count that depends on singular value gaps.

UNDERSTANDING GAP DEPENDENCE

Traditional objective function: $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$

KEY INSIGHT

Convergence becomes less necessary precisely when it is difficult to achieve!

KEY INSIGHT

Convergence becomes less necessary precisely when it is difficult to achieve!

Minimizing $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$ is sufficient, but far from necessary.

MODERN APPROACH TO ANALYSIS

Iterative methods viewed as denoising procedures for Random Sketching methods.

MODERN APPROACH TO ANALYSIS

Iterative methods viewed as denoising procedures for Random Sketching methods.

Choose $\mathrm{G} \sim \mathcal{N}(0,1)^{d \times k}$. If A is rank k then:

$$
\operatorname{span}(\mathrm{AG})=\operatorname{span}(\mathrm{A})
$$

MODERN APPROACH TO ANALYSIS

Iterative methods viewed as denoising procedures for Random Sketching methods.

Choose $\mathrm{G} \sim \mathcal{N}(0,1)^{d \times k}$. If A is rank k then:

$$
\begin{gathered}
\operatorname{span}(\mathrm{AG})=\operatorname{span}(\mathrm{A}) \\
\tilde{\mathrm{U}}_{k}=\operatorname{span}(\mathrm{AG}) \Longrightarrow\left\|\mathrm{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathrm{A}\right\|_{F}=\|\mathbf{A}-\mathbf{A}\|_{F}=0
\end{gathered}
$$

MODERN APPROACH TO ANALYSIS

Iterative methods viewed as denoising procedures for Random Sketching methods.

Choose $\mathrm{G} \sim \mathcal{N}(0,1)^{d \times k}$. If A is rank k then:

$$
\begin{gathered}
\operatorname{span}(\mathrm{AG})=\operatorname{span}(\mathrm{A}) \\
\tilde{\mathbf{U}}_{k}=\operatorname{span}(\mathrm{A}) \Longrightarrow\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathrm{A}\right\|_{F}=\|\mathbf{A}-\mathbf{A}\|_{F}=0
\end{gathered}
$$

MODERN APPROACH TO ANALYSIS

Iterative methods viewed as denoising procedures for Random Sketching methods.

Choose $\mathrm{G} \sim \mathcal{N}(0,1)^{d \times k}$. If A is rank k then:

$$
\begin{gathered}
\operatorname{span}(\mathrm{AG})=\operatorname{span}(\mathrm{A}) \\
\tilde{\mathbf{U}}_{k}=\operatorname{span}(\mathrm{A}) \Longrightarrow\left\|\mathrm{A}-\tilde{\mathbf{U}}_{k} \tilde{U}_{k}^{\top} \mathrm{A}\right\|_{F}=\|\mathrm{A}-\mathrm{A}\|_{F}=0
\end{gathered}
$$

If A is not rank k then we have error due to $\mathrm{A}-\mathrm{A}_{k}$:

$$
\tilde{\mathbf{U}}_{k}=\operatorname{span}(\mathrm{AG}) \Longrightarrow\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{F} \leq \operatorname{poly}(d)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}
$$

MODERN APPROACH TO ANALYSIS

Iterative methods viewed as denoising procedures for Random Sketching methods.

Choose $\mathrm{G} \sim \mathcal{N}(0,1)^{d \times k}$. If A is rank k then:

$$
\begin{gathered}
\operatorname{span}(\mathrm{AG})=\operatorname{span}(\mathrm{A}) \\
\tilde{\mathbf{U}}_{k}=\operatorname{span}(\mathrm{A}) \Longrightarrow\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{U}_{k}^{\top} \mathbf{A}\right\|_{F}=\|\mathbf{A}-\mathbf{A}\|_{F}=0
\end{gathered}
$$

If A is not rank k then we have error due to $\mathrm{A}-\mathrm{A}_{k}$:

$$
\tilde{\mathbf{U}}_{k}=\operatorname{span}(\mathbf{A G}) \Longrightarrow\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{F} \leq \operatorname{poly}(d)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}
$$

- Gives an error bound for a single power method iteration.

MODERN APPROACH TO ANALYSIS

Iterative methods viewed as denoising procedures for Random Sketching methods.

Choose $\mathrm{G} \sim \mathcal{N}(0,1)^{d \times k}$. If A is rank k then:

$$
\begin{gathered}
\operatorname{span}(\mathrm{AG})=\operatorname{span}(\mathrm{A}) \\
\tilde{\mathbf{U}}_{k}=\operatorname{span}(\mathrm{A}) \Longrightarrow\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{U}_{k}^{T} \mathbf{A}\right\|_{F}=\|\mathbf{A}-\mathbf{A}\|_{F}=0
\end{gathered}
$$

If A is not rank k then we have error due to $\mathrm{A}-\mathrm{A}_{k}$:

$$
\tilde{\mathbf{U}}_{k}=\operatorname{span}(\mathbf{A G}) \Longrightarrow\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}\right\|_{F} \leq \operatorname{poly}(d)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}
$$

- Gives an error bound for a single power method iteration.
- Meaningless unless $\left\|A-A_{k}\right\|_{F}$ (the 'tail noise') is very small.

MODERN APPROACH TO ANALYSIS

How to avoid tail noise? Apply sketching method to A^{9} instead.

MODERN APPROACH TO ANALYSIS

How to avoid tail noise? Apply sketching method to A^{9} instead.
This is exactly what Block Power Method does:

$$
\mathrm{G} \rightarrow \mathrm{AG} \rightarrow \mathrm{~A}^{2} \mathrm{G} \rightarrow \ldots \rightarrow \mathrm{~A}^{q} \mathrm{G}, \quad \tilde{\mathrm{U}}_{k}=\operatorname{span}\left(\mathrm{A}^{q} \mathrm{G}\right)
$$

MODERN APPROACH TO ANALYSIS

How to avoid tail noise? Apply sketching method to A^{9} instead. Assuming \mathbf{A} is symmetric, if $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ then $\mathbf{A}^{q}=\mathbf{U} \boldsymbol{\Sigma}^{q} \mathbf{U}^{\top}$.

MODERN APPROACH TO ANALYSIS

How to avoid tail noise? Apply sketching method to A^{9} instead. Assuming \mathbf{A} is symmetric, if $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ then $\mathbf{A}^{q}=\mathbf{U} \boldsymbol{\Sigma}^{q} \mathbf{U}^{\top}$.

MODERN APPROACH TO ANALYSIS

How to avoid tail noise? Apply sketching method to A^{9} instead. Assuming A is symmetric, if $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ then $\mathbf{A}^{q}=\mathbf{U} \boldsymbol{\Sigma}^{q} \mathbf{U}^{\top}$.

MODERN APPROACH TO ANALYSIS

How to avoid tail noise? Apply sketching method to A^{9} instead. Assuming \mathbf{A} is symmetric, if $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ then $\mathbf{A}^{q}=\mathbf{U} \boldsymbol{\Sigma}^{q} \mathbf{U}^{\top}$.

MODERN APPROACH TO ANALYSIS

- $q=\tilde{O}(1 / \epsilon)$ ensures that any singular value below σ_{k+1} becomes extremely small in comparison to any singular value above $(1+\epsilon) \sigma_{k+1}$.

MODERN APPROACH TO ANALYSIS

- $q=\tilde{O}(1 / \epsilon)$ ensures that any singular value below σ_{k+1} becomes extremely small in comparison to any singular value above $(1+\epsilon) \sigma_{k+1}$.

$$
(1-\epsilon)^{O(1 / \epsilon)} \ll 1
$$

MODERN APPROACH TO ANALYSIS

- $q=\tilde{O}(1 / \epsilon)$ ensures that any singular value below σ_{k+1} becomes extremely small in comparison to any singular value above $(1+\epsilon) \sigma_{k+1}$.

$$
(1-\epsilon)^{O(1 / \epsilon)} \ll 1
$$

- $\tilde{\mathbf{U}}_{k}=\operatorname{span}\left(\mathbf{A}^{q} \mathbf{G}\right)$ must align well with large (but not the largest!) singular vectors of \mathbf{A}^{9} to achieve even coarse Frobenius norm error:

$$
\left\|\mathbf{A}^{q}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}^{q}\right\|_{F} \leq \operatorname{poly}(d)\left\|\mathbf{A}^{q}-\mathbf{A}_{k}^{q}\right\|_{F} \approx 0
$$

MODERN APPROACH TO ANALYSIS

- $q=\tilde{O}(1 / \epsilon)$ ensures that any singular value below σ_{k+1} becomes extremely small in comparison to any singular value above $(1+\epsilon) \sigma_{k+1}$.

$$
(1-\epsilon)^{O(1 / \epsilon)} \ll 1
$$

- $\tilde{\mathbf{U}}_{k}=\operatorname{span}\left(\mathbf{A}^{q} \mathbf{G}\right)$ must align well with large (but not the largest!) singular vectors of A 9 to achieve even coarse Frobenius norm error:

$$
\left\|\mathbf{A}^{q}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathbf{A}^{q}\right\|_{F} \leq \operatorname{poly}(d)\left\|\mathbf{A}^{q}-\mathbf{A}_{k}^{q}\right\|_{F} \approx 0
$$

- A and A^{q} have the same singular vectors so \tilde{U}_{k} is good for A.

MODERN APPROACH TO ANALYSIS

We use new tools for converting very small Frobenius norm low-rank approximation error to spectral norm and per vector error, without arguing about convergence of \tilde{u}_{i} and u_{i}.

There are better polynomials than A^{9} for "denoising" A .

KRYLOV ACCELERATION

There are better polynomials than A^{9} for "denoising" A .

KRYLOV ACCELERATION

There are better polynomials than A^{9} for "denoising" A .

With Chebyshev polynomials only need degree $q=\tilde{O}(1 / \sqrt{\epsilon})$.

KRYLOV ACCELERATION

There are better polynomials than A^{9} for "denoising" A .

With Chebyshev polynomials only need degree $q=\tilde{O}(1 / \sqrt{\epsilon})$.

KRYLOV ACCELERATION

- Chebyshev polynomial $T_{q}(\mathrm{~A})$ has a very small tail. So returning $\tilde{U}_{k}=\operatorname{span}\left(T_{q}(\mathrm{~A}) \mathrm{G}\right)$ would suffice.

KRYLOV ACCELERATION

- Chebyshev polynomial $T_{q}(\mathrm{~A})$ has a very small tail. So returning $\tilde{U}_{k}=\operatorname{span}\left(T_{q}(\mathrm{~A}) \mathrm{G}\right)$ would suffice.
- Furthermore, block power iteration computes (at intermediate steps) all of the components needed for:

$$
T_{q}(\mathrm{~A}) \mathrm{G}=c_{0} \mathrm{G}+c_{1} \mathrm{AG}+\ldots+c_{q} \mathrm{~A}^{q} \mathrm{G}
$$

KRYLOV ACCELERATION

- Chebyshev polynomial $T_{q}(\mathrm{~A})$ has a very small tail. So returning $\tilde{U}_{k}=\operatorname{span}\left(T_{q}(\mathrm{~A}) \mathrm{G}\right)$ would suffice.
- Furthermore, block power iteration computes (at intermediate steps) all of the components needed for:

$$
\begin{gathered}
T_{q}(\mathrm{~A}) \mathrm{G}=c_{0} \mathrm{G}+\mathrm{c}_{1} \mathrm{AG}+\ldots+\mathrm{c}_{q} \mathrm{~A}^{q} \mathrm{G} \\
\mathrm{G} \rightarrow \mathrm{AG} \rightarrow \mathrm{~A}^{2} \mathrm{G} \rightarrow \ldots \rightarrow \mathrm{~A}^{q} \mathbf{G}
\end{gathered}
$$

KRYLOV ACCELERATION

- Chebyshev polynomial $T_{q}(\mathrm{~A})$ has a very small tail. So returning $\tilde{U}_{k}=\operatorname{span}\left(T_{q}(\mathrm{~A}) \mathrm{G}\right)$ would suffice.
- Furthermore, block power iteration computes (at intermediate steps) all of the components needed for:

$$
\begin{gathered}
T_{q}(\mathrm{~A}) \mathrm{G}=c_{0} \mathrm{G}+\mathrm{c}_{1} \mathrm{AG}+\ldots+c_{q} \mathrm{~A}^{q} \mathrm{G} \\
\mathrm{G} \rightarrow \mathrm{AG} \rightarrow \mathrm{~A}^{2} \mathrm{G} \rightarrow \ldots \rightarrow \mathrm{~A}^{q} \mathrm{G}
\end{gathered}
$$

Block Krylov Iteration:

$$
\mathcal{K}=\underbrace{\left[G, A G, A^{2} G, \ldots, A^{q} G\right]}_{\text {Krylov subspace }}
$$

But...

IMPLICIT USE OF ACCELERATION POLYNOMIAL

But... we can't explicitly compute $T_{q}(\mathrm{~A})$, since its parameters depend on A's (unknown) singular values.

IMPLICIT USE OF ACCELERATION POLYNOMIAL

But... we can't explicitly compute $T_{q}(\mathrm{~A})$, since its parameters depend on A's (unknown) singular values.

Solution: Returning the best $\tilde{\mathbf{U}}_{k}$ in the span of \mathcal{K} is only better then returning $\operatorname{span}\left(T_{q}(\mathrm{~A}) \mathrm{G}\right)$.

IMPLICIT USE OF ACCELERATION POLYNOMIAL

What is the best \tilde{U}_{k} ?

IMPLICIT USE OF ACCELERATION POLYNOMIAL

What is the best \tilde{U}_{k} ? Surprisingly difficult question.

IMPLICIT USE OF ACCELERATION POLYNOMIAL

What is the best \tilde{U}_{k} ? Surprisingly difficult question.

- For Block Power Method, did not need to consider this $\tilde{U}_{k}=\operatorname{span}\left(\mathbf{A}^{q} \mathbf{G}\right)$ was the only option.

IMPLICIT USE OF ACCELERATION POLYNOMIAL

What is the best \tilde{U}_{R} ? Surprisingly difficult question.

- For Block Power Method, did not need to consider this $\tilde{U}_{k}=\operatorname{span}\left(\mathbf{A}^{q} \mathbf{G}\right)$ was the only option.
- In classical Lanczos/Krylov analysis, convergence to the true singular vectors also lets us avoid this issue. Use Rayleigh Ritz procedure.

RAYLEIGH-RITZ POST-PROCESSING

- Project \mathbf{A} to \mathcal{K} and take the top k singular vectors (using an accurate classical method):

$$
\tilde{U}_{k}=\operatorname{span}\left(\left(\mathrm{P}_{\mathcal{K}} \mathrm{A}\right)_{k}\right)
$$

RAYLEIGH-RITZ POST-PROCESSING

- Project \mathbf{A} to \mathcal{K} and take the top k singular vectors (using an accurate classical method):

$$
\tilde{U}_{k}=\operatorname{span}\left(\left(\mathrm{P}_{\mathcal{K}} \mathrm{A}\right)_{k}\right)
$$

Block Krylov Iteration:

$$
\mathcal{K}=\underbrace{\left[G, A G, A^{2} G, \ldots, A^{q} G\right]}_{\text {Krylov subspace }}, \underbrace{\tilde{U}_{k}=\operatorname{span}\left(\left(P_{\mathcal{K}} A\right)_{k}\right)}_{\text {'best' solution in Krylov subspace }}
$$

RAYLEIGH-RITZ POST-PROCESSING

- Project A to \mathcal{K} and take the top k singular vectors (using an accurate classical method):

$$
\tilde{U}_{k}=\operatorname{span}\left(\left(\mathrm{P}_{\mathcal{K}} \mathrm{A}\right)_{k}\right)
$$

Block Krylov Iteration:

$$
\mathcal{K}=\underbrace{\left[G, A G, A^{2} G, \ldots, A^{q} G\right]}_{\text {Krylov subspace }}, \underbrace{\tilde{U}_{k}=\operatorname{span}\left(\left(P_{\mathcal{K}} A\right)_{k}\right)}_{\text {'best' solution in Krylov subspace }}
$$

- Equivalent to the classic Block Lanczos algorithm in exact arithmetic.

RAYLEIGH-RITZ POST-PROCESSING

This post-processing step provably gives an optimal \tilde{U}_{k} for Frobenius norm low-rank approximation error.

This post-processing step provably gives an optimal \tilde{U}_{k} for Frobenius norm low-rank approximation error.

- Our entire analysis relied on converting very small Frobenius norm error to strong spectral norm and per vector error!

This post-processing step provably gives an optimal \tilde{U}_{k} for Frobenius norm low-rank approximation error.

- Our entire analysis relied on converting very small Frobenius norm error to strong spectral norm and per vector error!

Take away: Modern denoising analysis gives new insight into the practical effectiveness of Rayleigh-Ritz projection.

FINAL IMPLEMENTATION

Similar to randomized Block Power Method - extremely simple (pseudocode in paper).

Block Power Method

```
X = randn(d,k);
for i=1:iter
        [X,R] = qr(A*X);
end
U = X;
```

Block Krylov Iteration

$$
\begin{aligned}
& X=\operatorname{randn}(d, k) ; \\
& K=\text { zeros }(d, k * i t e r) ; \\
& \text { for } i=1: \operatorname{iter} \\
& \quad[X, R]=\operatorname{qr}(A * X) ; \\
& \quad K(:,(i-1) * k+1: i * k)=X ; \\
& \text { end } \\
& {[Q, R]=\operatorname{qr}(K) ;} \\
& {[U, S]=\operatorname{svd}\left(Q * A, \text { 'econ' }^{\prime}\right) ;} \\
& U=Q * U(:, 1: K) ;
\end{aligned}
$$

PERFORMANCE

Block Krylov beats Block Power Method definitively for small ϵ.

20 Newsgroups, $k=20$

PERFORMANCE

Block Krylov beats Block Power Method definitively for small ϵ.

20 NewsGroups, $k=20$

FINAL COMMENTS

Main Takeaway: First gap independent bound for Krylov methods.

$$
O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\sqrt{\left(\sigma_{k}-\sigma_{k+1} / \sigma_{k}\right.}}\right) \rightarrow O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right)
$$

Open Questions

- Full stability analysis.
- 'Master' error metric for gap independent results.
- Gap independent bounds for other methods (e.g. online and stochastic PCA).
- Analysis for small space/restarted block Krylov methods?

Thank you!

STABILITY

Stability

- Lanczos algorithms are often considered to be unstable.
- Largely due to the fact that a recurrence is used to efficiently compute a basis for the Krylov subspace "on the fly".
- Since our subspace is small, we do not use the recurrence. Computing the basis explicitly avoids serious stability issues.
- There is some loss of orthogonality between blocks. However it only occurs once the algorithm has converged and we can show that it is not an issue in practice.

STABILITY

On poorly conditioned matrices Randomized Block Krylov Iteration still significantly outperforms Block Power Method.

Per Vector Error for $k=10, \kappa=100,000$

