FAST LOW-RANK APPROXIMATION AND PCA: BEYOND SKETCHING

Cameron Musco
June 20, 2016

Massachusetts Institute of Technology (currently at IBM Research Almaden)

OVERVIEW

Why study low-rank approximation and PCA?

OVERVIEW

Why study low-rank approximation and PCA? Both basically boil down to singular value decomposition - aren't these solved problems?

OVERVIEW

- New matrices (not just larger)

OVERVIEW

- New matrices (not just larger)

OVERVIEW

- New matrices (not just larger)
- New parameter regimes (few top principal components vs. full SVD)

OVERVIEW

- New matrices (not just larger)
- New parameter regimes (few top principal components vs. full SVD)
- New accuracy metrics (driven by new applications)

OVERVIEW

- New matrices (not just larger)
- New parameter regimes (few top principal components vs. full SVD)
- New accuracy metrics (driven by new applications)

$$
\epsilon \gg \epsilon_{\mathrm{MACHINE}}
$$

OVERVIEW

- New matrices (not just larger)
- New parameter regimes (few top principal components vs. full SVD)
- New accuracy metrics (driven by new applications)
- New tools (randomized methods)

OVERVIEW

- Lots of room for cross-fertilization between Numerical Linear Algebra and Machine Learning.

OVERVIEW

- Lots of room for cross-fertilization between Numerical Linear Algebra and Machine Learning.
- In this talk I will give three examples of this.

EXAMPLE 1

Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition. NIPS 2016.
Cameron Musco and Christopher Musco.

EXAMPLE 1

Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition. NIPS 2016.
Cameron Musco and Christopher Musco.

Random Sketching + Krylov Subspace Methods

SINGULAR VALUE DECOMPOSITION

SINGULAR VALUE DECOMPOSITION

- Key primitive for dimensionality reduction, low-rank approximation, PCA, etc.

SINGULAR VALUE DECOMPOSITION

- Key primitive for dimensionality reduction, low-rank approximation, PCA, etc.

$$
\mathrm{A}_{k}=\underset{\mathrm{B}: \operatorname{rank}(\mathrm{B})=k}{\arg \min }\|\mathrm{~A}-\mathrm{B}\|_{F}
$$

SINGULAR VALUE DECOMPOSITION

- Key primitive for dimensionality reduction, low-rank approximation, PCA, etc.

$$
\mathrm{A}_{k}=\underset{\mathrm{B}: \operatorname{rank}(\mathrm{B})=k}{\arg \min }\|\mathrm{~A}-\mathrm{B}\|_{2}
$$

SINGULAR VALUE DECOMPOSITION

- Key primitive for dimensionality reduction, low-rank approximation, PCA, etc.

$$
\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}=\underset{\mathrm{B}: \operatorname{rank}(\mathbf{B})=k}{\arg \min }\|\mathbf{A}-\mathbf{B}\|_{2}
$$

SINGULAR VALUE DECOMPOSITION

- Key primitive for dimensionality reduction, low-rank approximation, PCA, etc.

$$
\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}=\underset{\mathrm{B}: \operatorname{rank}(\mathbf{B})=k}{\arg \min }\|\mathbf{A}-\mathbf{B}\|_{2}
$$

- Full SVD requires roughly $O\left(n d^{2}\right)$ time - much too slow.

ITERATIVE SVD

Traditional Solution: Iterative methods
Compute just k top singular vectors roughly in time:

$$
O(n n z(A) k \cdot \# \text { iterations })
$$

ITERATIVE SVD

Traditional Solution: Iterative methods
Compute just k top singular vectors roughly in time:

$$
O(n n z(A) k \cdot \# \text { iterations }) \ll O\left(n d^{2}\right)
$$

ITERATIVE SVD

Traditional Solution: Iterative methods

Compute just k top singular vectors roughly in time:

$$
O(n n z(A) k \cdot \# \text { iterations }) \ll O\left(n d^{2}\right)
$$

- Power method (Müntz 1913, vo Mires 1929)
- Krylov/Lanczos methods (Lanczos 1950)

Traditional Solution: Iterative methods

ITERATIVE SVD

Traditional Solution: Iterative methods

- Typical accuracy guarantees of the form

$$
\left\|\tilde{u}_{i}-u_{i}\right\|_{2} \leq \epsilon .
$$

ITERATIVE SVD

Traditional Solution: Iterative methods

- Typical accuracy guarantees of the form

$$
\left\|\tilde{u}_{i}-u_{i}\right\|_{2} \leq \epsilon .
$$

- Runtime for block power method:

$$
O\left(n n z(\mathbf{A}) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right)
$$

ITERATIVE SVD

Traditional Solution: Iterative methods

- Typical accuracy guarantees of the form

$$
\left\|\tilde{u}_{i}-u_{i}\right\|_{2} \leq \epsilon .
$$

- Runtime for block power method:

$$
O\left(\operatorname{nnz}(\mathbf{A}) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right)
$$

ITERATIVE SVD

Traditional Solution: Iterative methods

- Typical accuracy guarantees of the form

$$
\left\|\tilde{u}_{i}-u_{i}\right\|_{2} \leq \epsilon .
$$

- Runtime for block power method:

$$
O\left(n n z(\mathbf{A}) k \cdot \frac{\log (d / \epsilon)}{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}\right)
$$

- Often the dominant factor in runtime bound.

RANDOM SKETCHING

Modern Solution: Sketching Methods

RANDOM SKETCHING

Modern Solution: Sketching Methods

- Sparse Subspace Embeddings [Clarkson, Woodruff 2013]:

$$
\left\|\mathrm{A}-\tilde{\mathrm{U}}_{k} \tilde{\mathrm{U}}_{k}^{T} \mathrm{~A}\right\|_{F} \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{F} \text { in time } O(n n z(\mathrm{~A}))+\tilde{O}\left(\frac{n k^{2}}{\epsilon^{4}}\right)
$$

RANDOM SKETCHING

Modern Solution: Sketching Methods

- Sparse Subspace Embeddings [Clarkson, Woodruff 2013]:

$$
\left\|\mathrm{A}-\tilde{\mathrm{U}}_{k} \tilde{\mathrm{U}}_{k}^{\top} \mathrm{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{F} \text { in time } O(n n z(\mathrm{~A}))+\tilde{O}\left(\frac{n k^{2}}{\epsilon^{4}}\right)
$$

FROBENIUS NORM LOW-RANK APPROXIMATION

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{R} \tilde{U}_{k}^{\top} \mathbf{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}
$$

FROBENIUS NORM LOW-RANK APPROXIMATION

$$
\left\|\mathrm{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathrm{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathrm{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathrm{~A}\right\|_{F}
$$

- Very different from classic $\left\|u_{i}-\tilde{u}_{i}\right\| \leq \epsilon$ guarantee.

FROBENIUS NORM LOW-RANK APPROXIMATION

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathrm{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathrm{A}\right\|_{F}
$$

- Very different from classic $\left\|u_{i}-\tilde{u}_{i}\right\| \leq \epsilon$ guarantee.
- Still sufficient for many tasks (e.g. dimensionality reduction for clustering)

FROBENIUS NORM LOW-RANK APPROXIMATION

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathrm{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathrm{A}\right\|_{F}
$$

- Very different from classic $\left\|u_{i}-\tilde{u}_{i}\right\| \leq \epsilon$ guarantee.
- Still sufficient for many tasks (e.g. dimensionality reduction for clustering)
- But can be weak.

FROBENIUS NORM LOW-RANK APPROXIMATION

$$
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}^{2}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \sigma_{i}^{2}
$$

FROBENIUS NORM LOW-RANK APPROXIMATION

$$
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}^{2}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \sigma_{i}^{2}
$$

FROBENIUS NORM LOW-RANK APPROXIMATION

$$
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}^{2}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \sigma_{i}^{2}
$$

FROBENIUS NORM LOW-RANK APPROXIMATION

$$
\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}^{2}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \sigma_{i}^{2}
$$

Often $\epsilon\left\|\mathbf{A}-\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{A}\right\|_{F}^{2}$ is bigger than even \mathbf{A} 's largest singular value and so guarantee isn't meaningful. Literally any Ũ ${ }_{k}$ would work!

BACK TO ITERATIVE METHODS

How to avoid tail noise?

BACK TO ITERATIVE METHODS

How to avoid tail noise? Apply sketching method to A^{9} instead.

BACK TO ITERATIVE METHODS

How to avoid tail noise? Apply sketching method to A^{9} instead.
Assuming A is symmetric, if $\mathbf{A}=\boldsymbol{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ then $\mathbf{A}^{q}=\mathbf{U} \boldsymbol{\Sigma}^{q} \mathbf{U}^{\top}$.

BACK TO ITERATIVE METHODS

How to avoid tail noise? Apply sketching method to A^{9} instead. Assuming \mathbf{A} is symmetric, if $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ then $\mathbf{A}^{q}=\mathbf{U} \boldsymbol{\Sigma}^{q} \mathbf{U}^{\top}$.

BACK TO ITERATIVE METHODS

How to avoid tail noise? Apply sketching method to A^{9} instead. Assuming \mathbf{A} is symmetric, if $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$ then $\mathbf{A}^{q}=\mathbf{U} \boldsymbol{\Sigma}^{q} \mathbf{U}^{\top}$.

$\left\|\mathrm{A}^{q}-\mathrm{A}_{k}^{q}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \sigma_{i}^{2 q}$ is extremely small.

RANDOMIZED BLOCK POWER METHOD

- This is exactly what Block Power Method does!

$$
\Pi \rightarrow \mathrm{A} \Pi \rightarrow \mathrm{~A}^{2} \boldsymbol{\Pi} \rightarrow \ldots \rightarrow \mathrm{~A}^{q} \boldsymbol{\Pi}
$$

RANDOMIZED BLOCK POWER METHOD

- This is exactly what Block Power Method does!

$$
\boldsymbol{\Pi} \rightarrow \mathrm{A} \boldsymbol{\Pi} \rightarrow \mathrm{~A}^{2} \boldsymbol{\Pi} \rightarrow \ldots \rightarrow \mathrm{~A}^{q} \boldsymbol{\Pi}
$$

- 'Denoising’ analysis gives new 'gap-independent' bounds for block power method (with randomized start vectors):

$$
\left\|\mathbf{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{T} \mathbf{A}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2} \text { in time } O\left(n n z(\mathbf{A}) k \cdot \frac{\log d}{\epsilon}\right)
$$

RANDOMIZED BLOCK POWER METHOD

Long series of refinements and improvements:

- Rokhlin, Szlam, Tygert 2009
- Halko, Martinsson, Tropp 2011
- Boutsidis, Drineas, Magdon-Ismail 2011
- Witten, Candès 2014
- Woodruff 2014

RANDOMIZED BLOCK POWER METHOD

Randomized Block Power Method is widely cited and
implemented - simple algorithm with simple bounds.

RANDOMIZED BLOCK POWER METHOD

Randomized Block Power Method is widely cited and implemented - simple algorithm with simple bounds.

redSVD
 libSkylark

ScalaNLP (Breeze)

learn

RANDOMIZED BLOCK POWER METHOD

Randomized Block Power Method is widely cited and implemented - simple algorithm with simple bounds.

But in the numerical linear algebra community, Krylov/ Lanczos methods have long been prefered over power iteration.

RANDOMIZED BLOCK POWER METHOD

Randomized Block Power Method is widely cited and implemented - simple algorithm with simple bounds.

Matlab

SisciPy P ARPACK Kand mous

But in the numerical linear algebra community, Krylov/ Lanczos methods have long been prefered over power iteration.

POLYNOMIAL ACCELERATION

Key Idea: Better polynomials than A for "denoising" A.

POLYNOMIAL ACCELERATION

Key Idea: Better polynomials than A for "denoising" A.

POLYNOMIAL ACCELERATION

Key Idea: Better polynomials than A^{9} for "denoising" A.

With Chebyshev polynomials only need degree $q=\tilde{O}(1 / \sqrt{\epsilon})$.

POLYNOMIAL ACCELERATION

Key Idea: Better polynomials than A^{9} for "denoising" A.

With Chebyshev polynomials only need degree $q=\tilde{O}(1 / \sqrt{\epsilon})$.

KRYLOV ACCELERATION

- Chebyshev polynomial $T_{q}(\mathrm{~A})$ has a very small tail.

KRYLOV ACCELERATION

- Chebyshev polynomial $T_{q}(\mathrm{~A})$ has a very small tail.
- But we can't compute it explicitly - parameters depend on A's (unknown) singular values.

KRYLOV ACCELERATION

- Chebyshev polynomial $T_{q}(\mathrm{~A})$ has a very small tail.
- But we can't compute it explicitly - parameters depend on A's (unknown) singular values.

Traditional Solution: Produce a Krylov Subspace:

$$
\mathcal{K}=\underbrace{\left[\boldsymbol{\Pi}, \mathbf{A} \boldsymbol{\Pi}, A^{2} \boldsymbol{\Pi}, \ldots, A^{q} \boldsymbol{\Pi}\right]}_{\text {Krylov subspace }}
$$

KRYLOV ACCELERATION

- Chebyshev polynomial $T_{q}(\mathrm{~A})$ has a very small tail.
- But we can't compute it explicitly - parameters depend on A's (unknown) singular values.

Traditional Solution: Produce a Krylov Subspace:

$$
\mathcal{K}=\underbrace{\left[\boldsymbol{\Pi}, \mathbf{A} \boldsymbol{\Pi}, \mathrm{A}^{2} \boldsymbol{\Pi}, \ldots, \mathrm{~A}^{q} \boldsymbol{\Pi}\right]}_{\text {Krylov subspace }}
$$

Best solution in the span of \mathcal{K} is only better than $T_{q}(A) \Pi$.

RAYLEIGH-RITZ POST-PROCESSING

What is the best solution?

RAYLEIGH-RITZ POST-PROCESSING

What is the best solution? Traditionally, use Rayleigh-Ritz method:

- Project A to \mathcal{K} and take the top k singular vectors (using an accurate classical method):

$$
\tilde{\mathrm{U}}_{k}=\operatorname{span}\left(\left(\mathrm{P}_{\mathcal{K}} \mathrm{A}\right)_{k}\right) .
$$

RAYLEIGH-RITZ POST-PROCESSING

What is the best solution? Traditionally, use Rayleigh-Ritz method:

- Project A to \mathcal{K} and take the top k singular vectors (using an accurate classical method):

$$
\tilde{U}_{k}=\operatorname{span}\left(\left(\mathrm{P}_{\mathcal{K}} \mathrm{A}\right)_{k}\right)
$$

- But classic Lanczos/Krylov analysis requires convergence to the true singular vectors to show the effectiveness of Rayleigh-Ritz.

OUR SOLUTION

- Rayleigh-Ritz method gives provably optimal \tilde{U}_{k} for Frobenius norm low-rank approximation error.

OUR SOLUTION

- Rayleigh-Ritz method gives provably optimal \tilde{U}_{k} for Frobenius norm low-rank approximation error.
- Our entire analysis relies on converting very small Frobenius norm error to stronger spectral norm error!

OUR SOLUTION

- Rayleigh-Ritz method gives provably optimal \tilde{U}_{k} for Frobenius norm low-rank approximation error.
- Our entire analysis relies on converting very small Frobenius norm error to stronger spectral norm error!

Modern denoising analysis gives new insight into the practical effectiveness of Rayleigh-Ritz projection.

FINAL COMMENTS

Main Takeaway: First gap independent bound for Krylov methods. $\left\|\mathrm{A}-\tilde{\mathbf{U}}_{k} \tilde{\mathbf{U}}_{k}^{\top} \mathrm{A}\right\|_{2} \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{2}$.

$$
O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\sqrt{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}}\right) \rightarrow O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right)
$$

FINAL COMMENTS

Main Takeaway: First gap independent bound for Krylov methods. $\left\|\mathrm{A}-\tilde{\mathrm{U}}_{k} \tilde{\mathrm{U}}_{k}^{\top} \mathrm{A}\right\|_{2} \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{2}$.

$$
O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\sqrt{\left(\sigma_{k}-\sigma_{k+1}\right) / \sigma_{k}}}\right) \rightarrow O\left(\mathrm{nnz}(\mathrm{~A}) k \cdot \frac{\log d}{\sqrt{\epsilon}}\right)
$$

Open Questions

- Full stability analysis - similar to power method analysis in [Hardt, Price 2014], [Balcan, Du, Wang, Yu 2016]
- 'Master' potential function for gap independent results.
- Analysis for small space/restarted block Krylov methods?
- O(nnz(A) + poly $(k, \epsilon))$ time for spectral norm error?

EXAMPLE 2

Faster Eigenvector Computation via Shift-and-Invert
Preconditioning. ICML 2016. Garber, Hazan, Jin, Kakade, Musco,
Netrapalli, and Sidford.

EXAMPLE 2

> Faster Eigenvector Computation via Shift-and-Invert Preconditioning. ICML 2016. Garber, Hazan, Jin, Kakade, Musco, Netrapalli, and Sidford.

Stochastic Gradient Descent + Inverse Iteration

STOCHASTIC OPTIMIZATION METHODS

Key Idea: Accelerate iterative methods by replacing full matrix multiplications with single row updates.

STOCHASTIC OPTIMIZATION METHODS

Key Idea: Accelerate iterative methods by replacing full matrix multiplications with single row updates. Per iteration cost $n n z(A) \rightarrow d$.

STOCHASTIC OPTIMIZATION METHODS

Key Idea: Accelerate iterative methods by replacing full matrix multiplications with single row updates. Per iteration cost $n n z(A) \rightarrow d$.

- Implementable in streaming setting using just $O(d)$ space.

STOCHASTIC OPTIMIZATION FOR PCA

- Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun 2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]

STOCHASTIC OPTIMIZATION FOR PCA

- Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun 2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]
- Analyze stochastic convex optimization methods applied to non-convex top singular vector problem.

STOCHASTIC OPTIMIZATION FOR PCA

- Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun 2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]
- Analyze stochastic convex optimization methods applied to non-convex top singular vector problem.
- Alternative idea: reduce singular vector computation to most well-studied convex problem, linear system solving.

STOCHASTIC OPTIMIZATION FOR PCA

- Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun 2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]
- Analyze stochastic convex optimization methods applied to non-convex top singular vector problem.
- Alternative idea: reduce singular vector computation to most well-studied convex problem, linear system solving.

Shift-and-Invert Preconditioning

SHIFT-AND-INVERT PRECONDITIONING WITH STOCHASTIC METHODS

- Key Idea: Power Method on $(\sigma I-A)^{-1}$ converges extremely quickly when $\sigma \approx \sigma_{1}(\mathrm{~A})$.

$$
\sigma_{1}\left((\sigma \mathrm{I}-\mathrm{A})^{-1}\right) \gg \sigma_{2}\left((\sigma \mathrm{I}-\mathrm{A})^{-1}\right)
$$

SHIFT-AND-INVERT PRECONDITIONING WITH STOCHASTIC METHODS

- Key Idea: Power Method on $(\sigma I-A)^{-1}$ converges extremely quickly when $\sigma \approx \sigma_{1}(\mathrm{~A})$.

$$
\sigma_{1}\left((\sigma \mathrm{I}-\mathrm{A})^{-1}\right) \gg \sigma_{2}\left((\sigma \mathrm{I}-\mathrm{A})^{-1}\right)
$$

- We can apply stochastic system solvers black box (almost) to accelerate iterations and implement them in streaming/online setting.

SHIFT-AND-INVERT PRECONDITIONING WITH STOCHASTIC METHODS

- Key Idea: Power Method on $(\sigma \mathrm{I}-\mathrm{A})^{-1}$ converges extremely quickly when $\sigma \approx \sigma_{1}(\mathrm{~A})$.

$$
\sigma_{1}\left((\sigma \mathrm{I}-\mathrm{A})^{-1}\right) \gg \sigma_{2}\left((\sigma \mathrm{I}-\mathrm{A})^{-1}\right)
$$

- We can apply stochastic system solvers black box (almost) to accelerate iterations and implement them in streaming/online setting.
- Give a significantly more robust analysis of shift-and-invert preconditioning, which handles approximate solvers.

UP SHOT

$$
\tilde{O}\left(n n z(A) \cdot \frac{1}{\sqrt{g a p}}\right) \rightarrow \tilde{o}\left(n n z(A)+\frac{d^{2}}{\operatorname{gap}^{2}}\right)
$$

EXAMPLE 3

> Principal Component Projection Without Principal Component Analysis. ICML 2016. Roy Frostig, Cameron Musco, Christopher Musco, Aaron Sidford.

EXAMPLE 3

Principal Component Projection Without Principal Component Analysis. ICML 2016. Roy Frostig, Cameron Musco, Christopher Musco, Aaron Sidford.

Regularized Regression + Polynomial Approximation

PRINCIPAL COMPONENT PROJECTION

Instead of returning \mathbf{U}_{k} we often just want to compute $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{y}$ for some input vector.

PRINCIPAL COMPONENT PROJECTION

Instead of returning \mathbf{U}_{k} we often just want to compute $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{y}$ for some input vector.

- Useful in many applications like principal component regression (PCR).

PRINCIPAL COMPONENT PROJECTION

Instead of returning \mathbf{U}_{k} we often just want to compute $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{y}$ for some input vector.

- Useful in many applications like principal component regression (PCR).
- It's very often more efficient to apply a matrix function once than compute it explicitly.

PRINCIPAL COMPONENT PROJECTION

Instead of returning \mathbf{U}_{k} we often just want to compute $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{y}$ for some input vector.

- Useful in many applications like principal component regression (PCR).
- It's very often more efficient to apply a matrix function once than compute it explicitly.
- $A^{q} \mathbf{x}, A^{-1} \mathbf{x}, \exp (A) \ldots$ many more.

STEP FUNCTION APPROXIMATION

- For symmetric $\mathbf{A}, \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{y}=s(\mathrm{~A}) \mathbf{y}=\mathbf{U s}(\boldsymbol{\Sigma}) \mathbf{U}^{\top} \mathbf{y}$ where $s(x)=0$ for $x \leq \sigma_{k}$ and $s(x)=1$ for $x \geq \sigma_{k}$.

STEP FUNCTION APPROXIMATION

- For symmetric $\mathbf{A}, \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{y}=s(\mathrm{~A}) \mathbf{y}=\mathbf{U s}(\boldsymbol{\Sigma}) \mathbf{U}^{\top} \mathbf{y}$ where $s(x)=0$ for $x \leq \sigma_{k}$ and $s(x)=1$ for $x \geq \sigma_{k}$.

STEP FUNCTION APPROXIMATION

- For symmetric $\mathbf{A}, \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{y}=s(\mathrm{~A}) \mathbf{y}=\mathbf{U s}(\boldsymbol{\Sigma}) \mathbf{U}^{\top} \mathbf{y}$ where $s(x)=0$ for $x \leq \sigma_{k}$ and $s(x)=1$ for $x \geq \sigma_{k}$.

- Our Method: Coarsely approximate the step function using ridge regression.

APPLYING RIDGE REGRESSION

Main Observation: The step function removes small principal components. Ridge regression dampens them.

APPLYING RIDGE REGRESSION

Main Observation: The step function removes small principal components. Ridge regression dampens them.

$$
\left(\mathrm{A}+\sigma_{k} \mathrm{I}\right)^{-1} \mathrm{~A} y \approx s(\mathrm{~A}) \mathrm{y}
$$

APPLYING RIDGE REGRESSION

Main Observation: The step function removes small principal components. Ridge regression dampens them.

$$
\left(\mathbf{A}+\sigma_{k} \mathrm{I}\right)^{-1} \mathbf{A} \mathbf{y} \approx s(\mathbf{A}) \mathbf{y} .
$$

APPLYING RIDGE REGRESSION

Main Observation: The step function removes small principal components. Ridge regression dampens them.

$$
\begin{gathered}
\left(\mathrm{A}+\sigma_{k} \mathrm{I}\right)^{-1} \mathrm{~A} y \approx s(\mathrm{~A}) \mathrm{y} . \\
\frac{x}{x+\sigma_{k}} \approx\left\{\begin{array}{l}
0 \text { for } x \ll \sigma_{k} \\
1 \text { for } x \gg \sigma_{k}
\end{array}\right.
\end{gathered}
$$

SHARPENING THE APPROXIMATION

- Sharpen this coarse approximation using a low-degree polynomial approximation to a symmetric step function

SHARPENING THE APPROXIMATION

- Sharpen this coarse approximation using a low-degree polynomial approximation to a symmetric step function
- Symmetric step/sign function approximation is well-studied in numerical analysis, but again we give a significantly more robust analysis.

UPSHOT

Direct method for principal component projection that doesn't require computing the top singular vectors of A.

UPSHOT

Direct method for principal component projection that doesn't require computing the top singular vectors of A.

- Faster PCA by not doing PCA at all.

Thank you!

(And thanks to my collaborators!)

