Linear Least Squares, Projection, Pseudoinverses

Cameron Musco

1 Over Determined Systems - Linear Regression

- A is a data matrix. Many samples (rows), few parameters (columns).
- b is like your y values - the values you want to predict. x is the linear coefficients in the regression.
- Overdetermined system. Can't exactly reconstruct b just from columns of A. But we want to find x that recombines columns of A to get as close to b as possible. Assume for now the best case - the columns of A are linearly independent.

$$
\left[\begin{array}{ll}
A \\
& \\
& \\
& \\
& \\
\\
\\
\\
\\
\end{array}\right]
$$

The Solution - Pseudoinverse

- We can use the pseudoinverse: $A^{+}=\left(A^{\top} A\right)^{-1} A^{\top} . x=A^{+} b$.
- The pseudoinverse takes vectors in the column space of A to vectors in the row space of A. In this case, b might not actually be in the column space, so the pseudoinverse takes the projection of b onto the column space to a vector x in the row space.
- Technically, x might not be in the row space, if the matrix doesn't have full row rank. But remember: 'in the row space' means you are a linear combination of rows in A. You are not in the null space, the set of x such that $A x=0$. If in the null space, your dot product with every row is 0 so you are orthogonal to the row space. Any x can be written as a sum of its row space and null space components $x_{R}+x_{N}$. And $A x=A x_{R}+A x_{N}=A x_{R}$. So, if we choose the minimum length x, it will have no null space component, and will be in the row space of A.

There are multiple ways to arrive at the pseudoinverse:

Optimization Problem

$$
\begin{aligned}
& \min _{x}\|b-A x\|^{2}=\min _{x}(b-A x)^{\top}(b-A x) \\
& \min _{x}\|b-A x\|^{2}=\min _{x} b^{\top} b-2 x^{\top} A^{\top} b+x^{\top} A^{\top} A x
\end{aligned}
$$

Optimized when gradient is 0 . Remember, just treat matrices as numbers:

$$
\nabla_{x}=-2 A^{\top} b+2 A^{\top} A x
$$

So need:

$$
\begin{aligned}
\nabla_{x}=0 & =-2 A^{\top} b+2 A^{\top} A x \\
2 A^{\top} b & =2 A^{\top} A x \\
\boldsymbol{A}^{\top} \boldsymbol{b} & =\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}
\end{aligned}
$$

This is called the normal equations. And is solved with

$$
\boldsymbol{x}=\underbrace{\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top}}_{\boldsymbol{A}^{+}} \boldsymbol{b}
$$

Projection Onto Column Space

- Just project b onto the column space of A to get b_{c} and then solve $A x=b_{c}$.
- Get b 's similarity to each column vector by dotting it with each: $A^{\top} b$.
- Normalize weights by multiplying by $\left(A^{\top} A\right)^{-1}$. So weight vector becomes: $\left(A^{\top} A\right)^{-1} A^{\top} b$. Intuitively you can see how this works by thinking about the case when b is a column vector. $b=c_{i}$. Then we want our weights vector to be $e_{i} .\left(A^{\top} A\right)^{-1} A^{T} A=I$ so $\left(A^{\top} A\right)^{-1} A^{T} c_{i}$ is just the $i^{\text {th }}$ column of I, aka e_{i}.
- Now actually use these weights to combine the columns of A to get $b_{c} . b_{c}=A *\left[\left(A^{\top} A\right)^{-1} A^{\top} b\right]=$ $A\left(A^{\top} A\right)^{-1} A^{\top} b$
- Now we can actually solve:

$$
\begin{aligned}
A x & =b_{c} \\
A x & =A\left(A^{\top} A\right)^{-1} A^{\top} b \\
\boldsymbol{x} & =\underbrace{\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top}}_{\boldsymbol{A}^{+}} \boldsymbol{b}
\end{aligned}
$$

Singular Value Decomposition

- Decompose $A=U D V^{\top}$

- This is the 'truncated SVD. In general U is $m \times m(m$ is height of $A)$, and D is $m \times n$. But since we have rank of A at most n, the $n+1 \ldots m$ columns of u are just zero columns, and only the first n diagonal entries of D are nonzero.

$$
\begin{aligned}
A x & =b \\
U D V^{\top} x & =b \\
\left(V D^{-1} U^{\top}\right)\left(U D V^{\top}\right) x & =\left(V D^{-1} U^{\top}\right) b \\
x & =\left(V D^{-1} U^{\top}\right) b
\end{aligned}
$$

since U and V are both orthogonal matrices.

- What exactly is $\left(V D^{-1} U^{T}\right)$? Well try the pseudoinverse:

$$
\begin{aligned}
\left(A^{\top} A\right)^{-1} A^{\top} & =\left(V D U^{\top} U D V^{\top}\right)^{-1}\left(V D U^{\top}\right) \\
\left(A^{\top} A\right)^{-1} A^{\top} & =\left(V D^{-2} V^{\top}\right)\left(V D U^{\top}\right) \\
\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-\mathbf{1}} \boldsymbol{A}^{\top} & =\boldsymbol{V} \boldsymbol{D}^{-\mathbf{1}} \boldsymbol{U}^{\top}
\end{aligned}
$$

2 Under Determined Systems

- If A is short and fat or if A is tall but does not have full column rank. Then there are multiple x 's such that $A x=b$ or that achieve $\min \|b-A x\|^{2}$.
- Then we want to solve for the x minimizing $\|x\|^{2}$. And yay. The pseudoinverse gives us exactly that x.

Optimization with Lagrange Multipliers

- Take the simplest case first and the analog to linear regression - A is short and fat but has full row rank. Use Lagrange multiplier to optimize.

$$
\begin{array}{r}
\min _{x \in\{x: A x=b\}}\|x\|^{2} \\
\min _{x} \max _{\lambda}\|x\|^{2}+\lambda^{\top}(b-A x)
\end{array}
$$

Need to have $\nabla_{x}=2 x-A^{\top} \lambda=0$ and $\nabla_{\lambda}=b-A x=0$ so $x=A^{\top} \lambda / 2$

$$
\begin{aligned}
0 & =b-A A^{\top} \lambda / 2 \\
\lambda & =2\left(A A^{\top}\right)^{-1} b
\end{aligned}
$$

so:

$$
\boldsymbol{x}=\underbrace{\boldsymbol{A}^{\top}\left(A A^{\top}\right)^{-1}}_{A^{+}} \boldsymbol{b}
$$

Projection Onto Row Space

- We want a solution x in the row space of A. So simply right x as a combination of row vectors: $x=A^{\top} w$.

$$
\begin{aligned}
A x & =b \\
A\left(A^{T} w\right) & =b \\
w & =\left(A A^{\top}\right)^{-1} b \\
x & =A^{\top} w=\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1} \boldsymbol{b}
\end{aligned}
$$

3 Under And Over Determined Systems - The Golden Goose

- A has neither full row rank nor full column rank. There is no exact solution to $A x=b$, but there are many optimal solutions.
- Project bonto $\operatorname{col}(\mathbf{A}): A=U D V^{\top}$, where U provides an orthonormal basis for the column space of A. So just project b onto columns of U. $b_{P}=U w$, where we can find the weights by dotting b with each of the columns of U. So $w=U^{\top} b$. Since U is orthonormal, no need to normalize weights - $\left(U^{\top} U\right)^{-1}=I$. (Remember, U is always tall and thin, or at best square, since we truncate it to only have $\operatorname{rank}(A)$ columns. And since U has full column rank, $U^{\top} U=I$. So we now want to solve: $A x=U U^{\top} b$.
- Take x in rowspace of A : To minimize the norm of x choose an x such that $x=A^{\top} c$.
- Solve the new system using SVDs: Remember we are using the truncated SVD. D has all positive diagonal entries so can be inverted, U is full column rank, and V is full row rank.

$$
\begin{aligned}
A\left(A^{\top} c\right) & =U U^{\top} b \\
U D V^{\top} V D U^{\top} c & =U U^{\top} b \\
U D^{2} U^{\top} c & =U U^{\top} b \\
c & =\left(U D^{-2} U^{\top}\right) U U^{\top} b \\
c & =U D^{-2} U b \\
x & =\left(V D U^{\top}\right) U D^{-2} U b \\
\boldsymbol{x} & =\underbrace{\boldsymbol{V} \boldsymbol{D}^{-1} \boldsymbol{U}}_{\boldsymbol{A}^{+}} \boldsymbol{b}
\end{aligned}
$$

