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Matrix Function Approximation

Basic problem:

• Consider a scalar function f : R → R.

• For symmetric A ∈ Rn×n with eigendecomposition
A =

∑n
i=1 λivivTi , define the matrix function f(A) =

∑n
i=1 f(λi)vivTi .

• Given b ∈ Rn we would like to compute the matrix-vector
product f(A)b.

• For general A, ‘exact’ computation requires O(nω) time (i.e.,
roughly a full eigendecomposition).

• We will thus seek approximation algorithms that are much
faster.
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Example Applications

• When f(x) = 1/x, f(A) = A−1 and A−1b is the solution to a linear
system.

• When A is PSD (i.e., has non-negative eigenvalues) and
f(x) =

√
x, f(A) = A1/2 is the matrix squareroot. Needed e.g., to

sample from a multivariate Gaussian distribution with
covariance A.

• In many cases, the trace of f(A) is of interest since
tr(f(A)) =

∑n
i=1 f(λi). E.g., when f(x) = log(x),

tr(f(A)) =
∑n

i=1 log(λi) = logdet(A).

• tr(f(A)) can be estimated by repeatedly multiplying f(A) by
random b (Hutchinson’s method).

Other important matrix functions: The matrix sign function, step
functions, the matrix exponential, the matrix squareroot.
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Krylov Subspace Methods

Krylov subspace methods are the dominant approach to
approximating matrix functions.

• Key idea: when f(x) is a degree-q polynomial, f(A) can be
computed with just q matrix-vector products with A. At most
O(n2 · q) run time – faster for sparse or structured A.

f(A)b = c0b+ c1Ab+ c2A2b+ . . .+ cqAqb.

• Krylov methods approximate general functions as polynomials,
and then use the above fact to compute them quickly.

• In this talk we will focus on the Lanczos method, which can be
used to approximate any f(A) and is very popular in practice.

• If A is PSD and f(x) = 1/x, the Lanczos method gives the same
output as the conjugate gradient (CG) algorithm.

Other examples: MINRES, gradient descent, accelerated gradient
descent, and many other iterative methods for linear systems.
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The Lanczos Method

• The Lanczos method run for k iterations employs k− 1 matrix
vector products with A and computes Q ∈ Rn×k with
orthonormal columns that span the Krylov subspace
{b,Ab,A2b, . . . , Ak−1b}.

• The method orthogonalizes Q via a tri-term recurrence which
ensures that T = QTAQ is tridiagonal.

• We then approximate f(A)b ≈ Qf(T)QTb.

• f(T) can be computed in O(k2) = O(nk) time, so the total
runtime of the method is just k ·mvm(A) + O(nk).

• Observe that for i < k, Aib = QQTAib = QQTAiQQTb = QTiQTb.

• So, by linearity, if p is a polynomial of degree < k, the method is
exact. I.e., p(A)b = Qp(T)QTb.
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Uniform Error Bound for the Lanczos Method

Via triangle inequality, we get a really nice error bound for
approximating general matrix functions.

Assume ∥b∥2 = 1. Then for any polynomial p with degree < k,

∥f(A)b− Qf(T)QTb∥2 ≤ ∥p(A)b− Qp(T)QTb∥2
+ ∥f(A)b− p(A)b∥2 + ∥Qf(T)QTb− Qp(T)QTb∥2

≤ ∥f(A)− p(A)∥2 + ∥f(T)− p(T)∥2
≤ max

λi(A)
|f(λi)− p(λi)|+max

λi(T)
|f(λi)− p(λi)|

≤ 2 · max
λ∈[λmin(A),λmax(A)]

|f(λ)− p(λ)|.

The above holds for any polynomial p. By optimizing over p we have:

∥f(A)b− Qf(T)QTb∥2 ≤ 2 · min
{p: degree p < k}

max
λ∈[λmin(A),λmax(A)]

|f(λ)− p(λ)|.

I.e., Lanczos gives within a two factor of the best uniform
approximation error of f by a polynomial on A’s spectral range.
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Uniform Error Bound for the Lanczos Method

• The uniform convergence bound for Lanczos is very powerful.

• It can be used e.g. to show that CG solves linear systems to
accuracy ϵ in O(

√
κ(A) · log 1/ϵ) iterations.

• It is robust to roundoff error [Druskin, Knizhnerman ‘91], [Musco,
Musco, Sidford ‘18].

• It can be shown to be tight up to a factor 2 for any continuous f
and worst case A,b, even when n = k+ 1.

• But the uniform approximation bound almost always fails to
capture the very strong performance of Lanczos in practice.

• This gap between theory and practice is what our work seeks to
address.
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Performance in Practice

In practice, Lanczos often far outperforms the uniform error bound.
It is often within a small constant factor of the best approximation in
the Krylov subspace. I.e., of min

{p: degree p < k}
∥f(A)b− p(A)b∥2.
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Instance Optimality Bounds

Our Goal: Show that for common matrix functions f,

∥f(A)b− Qf(T)QTb∥2 ≤ C · min
{p: degree p < k}

∥f(A)b− p(A)b∥2,

for some reasonably small approximation factor C.

• Note that this ‘instance optimality guarantee’ is always at most
the uniform approximation bound, and often is smaller by a
wide margin.

• When f(x) = 1/x (the linear system case), Lanczos is instance
optimal for C =

√
κ(A).

• A related guarantee is was shown for the matrix exponential by
[Druskin, Greenbaum, Knizhnerman ‘98].

• But we are not aware of any other known results for important
functions like the matrix sign function, square root, etc.
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Our Result: Instance Optimality Bounds for Rational Functions

Setting:

• Let r(x) = p(x)
(x−z1)(x−z2)...(x−zq) be a degree-(m,q) rational function

with real poles lying outside the spectral range of A. I.e.,
z1, . . . , zq /∈ [λmin(A), λmax(A)].

• Let Ai = A− ziI.

Main Theorem: Lanczos is instance optimal for a such a rational
function with C = q ·

∏q
i=1 κ(Ai). Specifically, for k ≥ max{m,q− 1},

∥f(A)b− Qf(T)QTb∥2 ≤ C · min
{p: degree p < k-q+1}

∥f(A)b− p(A)b∥2.
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Remarks on the Main Result

• Rational functions are interesting in their own right. They
include e.g. 1/x, 1/xq, etc.

• More importantly, they often give very accurate approximations
to functions with discontinuities, like the squareroot or step
functions.

• Our error bound can be used to give stronger error bounds for
Lanczos in approximating such functions.

• Our approximation factor C = q ·
∏q

i=1 κ(Ai) is really bad. Grows
exponentially in q. We believe it can be significantly improved!

• The best empirical lower bound we observe for C when all poles
are at 0 is roughly

√
q · κ(A).
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Empirical Performance

Despite the seeming looseness in our bound, it often more
accurately reflects the performance of Lanczos in practice than the
classic uniform approximation bound does.
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Proof Sketch for the Inverse

Our proof starts with the instance optimality of Lanczos (equivilantly
CG) for applying f(x) = 1/x. I.e., f(A)b = A−1b.

∥A−1b− QT−1QTb∥2 ≤
√

λmax(A) · ∥A−1/2b− A1/2QT−1QTb∥2

=
√
λmax(A) · ∥A−1/2b− A1/2Q(QTAQ)−1QTA1/2A−1/2b∥2

=
√
λmax(A) · min

x∈Rk
∥A−1/2b− A1/2Qx∥2

≤

√
λmax(A)
λmin(A)

· min
x∈Rk

∥A−1b− Qx∥2

=
√
κ(A) · min

{p: degree p < k}
∥A−1b− p(A)b∥2

Another view: Lanczos computes the A-norm optimal approximation
to A−1b in the Krylov subspace. This is within a

√
κ(A) factor of the

best ℓ2 norm approximation.
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∥A−1b− QT−1QTb∥2 ≤
√

λmax(A) · ∥A−1/2b− A1/2QT−1QTb∥2
=

√
λmax(A) · ∥A−1/2b− A1/2Q(QTAQ)−1QTA1/2A−1/2b∥2

=
√

λmax(A) · min
x∈Rk

∥A−1/2b− A1/2Qx∥2

≤

√
λmax(A)
λmin(A)

· min
x∈Rk

∥A−1b− Qx∥2

=
√

κ(A) · min
{p: degree p < k}

∥A−1b− p(A)b∥2

Another view: Lanczos computes the A-norm optimal approximation
to A−1b in the Krylov subspace. This is within a

√
κ(A) factor of the

best ℓ2 norm approximation.
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Proof Sketch

To get the main idea of how to generalize this to rational functions, it
suffices to consider the special case of r(x) = 1/x2. I.e., r(A) = A−2.

∥A−2b− QT−2QTb∥2 = ∥A−2b− QT−1QTA−1b∥2 + ∥QT−2QTb− QT−1QTA−1b∥2.

Term 1: ∥A−2b− QT−1QTA−1b∥2.

• This is the best approximation to A−2b in the span of the Krylov
subspace in the A-norm. Following the same proof as in the
f(x) = 1/x case we have:

∥A−2b− QT−1QTA−1b∥2 ≤
√
κ(A) · min

{p: degree p < k}
∥A−2b− p(A)b∥2.
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≤
√
κ(A)

λmin(A)
· min
{p: degree p < k}

∥A−1b− p(A)b∥2.

Key Idea: The optimal error for approximating A−1 with degree k can
be bounded by the optimal error for approximating A−2 with degree
k− 1. Since ∥A−1b− p(A)Ab∥2 ≤ λmax(A) · ∥A−2b− p(A)b∥2.

Overall, this gives:

∥QT−2QTb− QT−1QTA−1b∥2 ≤ κ(A)3/2 · min
{p: degree p < k-1}

∥A−2b− p(A)b∥2.
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Proof Sketch

Overall, we have:

∥A−2b− QT−2QTb∥2 = ∥A−2b− QT−1QTA−1b∥2 + ∥QT−2QTb− QT−1QTA−1b∥2
≤

√
κ(A) · min

{p: degree p < k}
∥A−2b− p(A)b∥2

+ κ(A)3/2 · min
{p: degree p < k-1}

∥A−2b− p(A)b∥2

≤ 2κ(A)3/2 · min
{p: degree p < k-1}

∥A−2b− p(A)b∥2.

• This gives our main result in the special case of r(x) = 1/x2.

• The general result follows by iterating these types of ideas to
bound the error on higher degree rational functions.
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Open Questions

• Tighten our bounds, or show stronger lower bounds. Our best
numerical lower bound for A−q is C =

√qκ, as compared to our
best theoretical upper bound of C = qκq.

• Extend our results to the case when r(x) has poles in A’s
spectral range. In this case, Lanczos seems to be oscillate
between very bad and near optimal solutions.

• Can explain when A is not PSD and r(x) = 1/x by relating the
convergence of CG to that of MINRES. But lack a general result.

• Prove an instance optimality bound for the matrix exponential.
Some progress in [Druskin, Greenbaum, Knizhnerman ‘98].

• Prove instance optimality bounds for the matrix squareroot,
inverse squareroot, or other central functions.

• Understand the role of finite precision. We know that it matters
a lot – uniform approximation bounds are much more stable
than instance optimal ones.
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