RANDOM FOURIER FEATURES FOR KERNEL RIDGE REGRESSION: APPROXIMATION BOUNDS AND STATISTICAL GUARANTEES

Haim Avron, Michael Kapralov, **Cameron Musco**, Christopher Musco, Ameya Velingker, and Amir Zandieh

Tel Aviv University, EPFL, and MIT. ICML 2017.

• Analyze the random Fourier features method (Rahimi Recht '07) for kernel approximation using leverage score-based techniques.

- Analyze the random Fourier features method (Rahimi Recht '07) for kernel approximation using leverage score-based techniques.
- **Concrete:** Introduce new sampling distribution that gives statistical guarantees for kernel ridge regression when used to approximate the Gaussian kernel.

- Analyze the random Fourier features method (Rahimi Recht '07) for kernel approximation using leverage score-based techniques.
- **Concrete:** Introduce new sampling distribution that gives statistical guarantees for kernel ridge regression when used to approximate the Gaussian kernel.
- **High Level:** Hope that Fourier leverage scores will have further applications in kernel approximation, function approximation, and sparse Fourier transform methods.

• Even writing down **K** requires $\Omega(n^2)$ time.

- Even writing down **K** requires $\Omega(n^2)$ time.
- Other operations require even more. A single iteration of a linear system solver takes Ω(n²) time.

- Even writing down **K** requires $\Omega(n^2)$ time.
- Other operations require even more. A single iteration of a linear system solver takes Ω(n²) time.
- For n = 100,000, K has 10 billion entries. Takes 80 GB of storage if each is a double.

Employ classic solution: low-rank approximation

Employ classic solution: low-rank approximation

Storing Z uses O(ns) space and computing ZZ^Tx takes O(ns) time. Orthogonalization, eigendecomposition, and pseudo-inversion of ZZ^T all take just O(ns²) time.

 Optimal low-rank approximation via a direct eigendecomposition, or even approximation via Krylov subspace methods are out of the question since they at least require fully forming K.

- Optimal low-rank approximation via a direct eigendecomposition, or even approximation via Krylov subspace methods are out of the question since they at least require fully forming K.
- Many faster methods have been studied: incomplete Cholesky factorization (Fine & Scheinberg '02, Bach & Jordan '02), entrywise sampling (Achlioptas, McSherry, & Schölkopf '01), Nyström approximation (Williams & Seeger '01), random Fourier features (Rahimi & Recht '07)

- Optimal low-rank approximation via a direct eigendecomposition, or even approximation via Krylov subspace methods are out of the question since they at least require fully forming K.
- Many faster methods have been studied: incomplete Cholesky factorization (Fine & Scheinberg '02, Bach & Jordan '02), entrywise sampling (Achlioptas, McSherry, & Schölkopf '01), Nyström approximation (Williams & Seeger '01), random Fourier features (Rahimi & Recht '07)

 For any shift-invariant k(x_i, x_j) = k(x_i - x_j) let p(·) be the Fourier transform of k(·). By Bochner's theorem, p(η) ≥ 0 for all η.

- For any shift-invariant k(x_i, x_j) = k(x_i x_j) let p(·) be the Fourier transform of k(·). By Bochner's theorem, p(η) ≥ 0 for all η.
- Sample $\eta_1,...,\eta_s\in\mathbb{R}^d$ with probabilities proportional to $p(\eta)$.

- For any shift-invariant k(x_i, x_j) = k(x_i x_j) let p(·) be the Fourier transform of k(·). By Bochner's theorem, p(η) ≥ 0 for all η.
- Sample $\eta_1,...,\eta_s\in\mathbb{R}^d$ with probabilities proportional to $p(\eta)$.

- For any shift-invariant k(x_i, x_j) = k(x_i x_j) let p(·) be the Fourier transform of k(·). By Bochner's theorem, p(η) ≥ 0 for all η.
- Sample $\eta_1,...,\eta_s\in\mathbb{R}^d$ with probabilities proportional to $p(\eta)$.

Fourier transform $k(\mathbf{z}) = \int_{\eta \in \mathbb{R}^d} p(\eta) e^{-2\pi i \eta^T \mathbf{z}} d\eta$ gives:

• $\int_{\eta} \Phi_i(\eta) p(\eta) \Phi_j(\eta)^* d\eta$

•
$$\int_{\boldsymbol{\eta}} \boldsymbol{\Phi}_i(\boldsymbol{\eta}) p(\boldsymbol{\eta}) \boldsymbol{\Phi}_j(\boldsymbol{\eta})^* d\boldsymbol{\eta} = \int_{\boldsymbol{\eta}} e^{-2\pi i \boldsymbol{\eta}^\top (\mathbf{x}_i - \mathbf{x}_j)} p(\boldsymbol{\eta}) d\boldsymbol{\eta}$$

•
$$\int_{\boldsymbol{\eta}} \boldsymbol{\Phi}_i(\boldsymbol{\eta}) p(\boldsymbol{\eta}) \boldsymbol{\Phi}_j(\boldsymbol{\eta})^* d\boldsymbol{\eta} = \int_{\boldsymbol{\eta}} e^{-2\pi i \boldsymbol{\eta}^T (\mathbf{x}_i - \mathbf{x}_j)} p(\boldsymbol{\eta}) d\boldsymbol{\eta} = k(\mathbf{x}_i - \mathbf{x}_j)$$

• $\int_{\boldsymbol{\eta}} \boldsymbol{\Phi}_i(\boldsymbol{\eta}) p(\boldsymbol{\eta}) \boldsymbol{\Phi}_j(\boldsymbol{\eta})^* d\boldsymbol{\eta} = \int_{\boldsymbol{\eta}} e^{-2\pi i \boldsymbol{\eta}^T (\mathbf{x}_i - \mathbf{x}_j)} p(\boldsymbol{\eta}) d\boldsymbol{\eta} = k(\mathbf{x}_i - \mathbf{x}_j) = \mathbf{K}_{i,j}.$

•
$$\int_{\eta} \Phi_i(\eta) p(\eta) \Phi_j(\eta)^* d\eta = \int_{\eta} e^{-2\pi i \eta^T (\mathbf{x}_i - \mathbf{x}_j)} p(\eta) d\eta = k(\mathbf{x}_i - \mathbf{x}_j) = \mathbf{K}_{i,j}$$
.

• Set $\mathbf{\bar{\Phi}} = \mathbf{\Phi} \mathbf{P}^{1/2}$. So $\mathbf{K} = \mathbf{\bar{\Phi}} \mathbf{\bar{\Phi}}^T$.

• $\mathbf{Z}(j) = \frac{1}{\sqrt{sp(\eta)}} \bar{\mathbf{\Phi}}(\eta)$ with probability $p(\eta)$. So $\mathbb{E}[\mathbf{Z}\mathbf{Z}^T] = \mathbf{K}$.

Z(j) = 1/√sp(η) Φ(η) with probability p(η). So E[ZZ^T] = K.
Z_i = 1/√s [e<sup>-2πiη₁^Tx_i, ..., e<sup>-2πiη_s^Tx_i] for η₁, ..., η_s sampled according to p(η).
</sup></sup>

• **Z** is a sample of $\bar{\Phi} = \Phi P^{1/2}$. Columns are sampled with probability $\propto p(\eta)$, i.e., their squared column norms.

- **Z** is a sample of $\bar{\Phi} = \Phi P^{1/2}$. Columns are sampled with probability $\propto p(\eta)$, i.e., their squared column norms.
- It is well known from work on randomized methods in linear algebra that there are better sampling probabilities (in both theory and practice): the column leverage scores.

- **Z** is a sample of $\bar{\Phi} = \Phi P^{1/2}$. Columns are sampled with probability $\propto p(\eta)$, i.e., their squared column norms.
- It is well known from work on randomized methods in linear algebra that there are better sampling probabilities (in both theory and practice): the column leverage scores.
- Also noted by Bach '17, implicit in Rudi et al. '16.

Column Norm Sampling: $s = \tilde{O}(d/\epsilon^2)$ samples ensure that $(\mathbf{Z}\mathbf{Z}^T)_{i,j} = \mathbf{K}_{i,j} \pm \epsilon$ for all i, j with high probability [RR07].

Column Norm Sampling: $s = \tilde{O}(d/\epsilon^2)$ samples ensure that $(\mathbf{ZZ}^T)_{i,j} = \mathbf{K}_{i,j} \pm \epsilon$ for all i, j with high probability [RR07].

Ridge Leverage Score Sampling: $s = \tilde{O}(s_{\lambda}/\epsilon^2)$ samples gives spectral approximation:

$$(1-\epsilon)(\mathbf{Z}\mathbf{Z}^{T}+\lambda\mathbf{I}) \preceq \mathbf{K}+\lambda\mathbf{I} \preceq (1+\epsilon)(\mathbf{Z}\mathbf{Z}^{T}+\lambda\mathbf{I}).$$

where $s_{\lambda} = tr(\mathbf{K}(\mathbf{K} + \lambda \mathbf{I})^{-1})$ is the statistical dimension.

Column Norm Sampling: $s = \tilde{O}(d/\epsilon^2)$ samples ensure that $(\mathbf{ZZ}^T)_{i,j} = \mathbf{K}_{i,j} \pm \epsilon$ for all i, j with high probability [RR07].

Ridge Leverage Score Sampling: $s = \tilde{O}(s_{\lambda}/\epsilon^2)$ samples gives spectral approximation:

$$(1-\epsilon)(\mathbf{Z}\mathbf{Z}^{T}+\lambda\mathbf{I}) \preceq \mathbf{K}+\lambda\mathbf{I} \preceq (1+\epsilon)(\mathbf{Z}\mathbf{Z}^{T}+\lambda\mathbf{I}).$$

where $s_{\lambda} = tr(\mathbf{K}(\mathbf{K} + \lambda \mathbf{I})^{-1})$ is the statistical dimension.

 Spectral approximation gives statistical guarantees for kernel ridge regression (this work), and approximation bounds for kernel PCA and k-means clustering (Cohen, Musco, Musco '16,'17) The ridge leverage score for frequency η is given by:

$$au_{\lambda}(oldsymbol{\eta}) = oldsymbol{ar{\Phi}}(oldsymbol{\eta})^{ au} (oldsymbol{\mathsf{K}} + \lambda oldsymbol{\mathsf{I}})^{-1} oldsymbol{ar{\Phi}}(oldsymbol{\eta}).$$

The ridge leverage score for frequency η is given by:

$$au_{\lambda}(\boldsymbol{\eta}) = \mathbf{\bar{\Phi}}(\boldsymbol{\eta})^{T} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{\bar{\Phi}}(\boldsymbol{\eta}).$$

 Expensive to invert K + λI. But even if you could do that efficiently, it is not at all clear you could efficiently sample from the leverage score distribution.

$$\tau_{\lambda}(\boldsymbol{\eta})$$

Main goal: Get a handle on the Fourier ridge leverage scores for common kernels by upper bounding them with simple distributions.

Main goal: Get a handle on the Fourier ridge leverage scores for common kernels by upper bounding them with simple distributions.

 $\bar{\tau}_{\lambda}(\boldsymbol{\eta})$ $\tau_{\lambda}(\boldsymbol{\eta})$

Main goal: Get a handle on the Fourier ridge leverage scores for common kernels by upper bounding them with simple distributions.

 $\bar{\tau}_{\lambda}(\boldsymbol{\eta})$ $\tau_{\lambda}(n)$

- 1. Improve random Fourier features.
- 2. Bound statistical dimension by the sum of leverage scores.
- 3. Connections with sparse Fourier transforms, Fourier interpolation, and other problems.

Ridge leverage score $\tau_{\lambda}(\boldsymbol{\eta}) = \mathbf{\bar{\Phi}}(\boldsymbol{\eta})^{T} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{\bar{\Phi}}(\boldsymbol{\eta})$ also equals:

$$\tau_{\lambda}(\boldsymbol{\eta}) = \min_{\mathbf{y}} \lambda^{-1} \| \bar{\boldsymbol{\Phi}} \mathbf{y} - \bar{\boldsymbol{\Phi}}(\boldsymbol{\eta}) \|_{2}^{2} + \| \mathbf{y} \|_{2}^{2}.$$

Ridge leverage score $\tau_{\lambda}(\boldsymbol{\eta}) = \mathbf{\bar{\Phi}}(\boldsymbol{\eta})^{T} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{\bar{\Phi}}(\boldsymbol{\eta})$ also equals:

$$\tau_{\lambda}(\boldsymbol{\eta}) = \min_{\mathbf{y}} \lambda^{-1} \| \mathbf{\bar{\Phi}} \mathbf{y} - \mathbf{\bar{\Phi}}(\boldsymbol{\eta}) \|_{2}^{2} + \| \mathbf{y} \|_{2}^{2}.$$

Intuition: $\tau_{\lambda}(\eta)$ is small iff there exists a function $\mathbf{y} : \mathbb{R}^{d} \to \mathbb{C}$ with low energy ($\|\mathbf{y}\|_{2}^{2}$ small) whose ($\sqrt{p(\eta)}$ weighted) Fourier transform is close to the frequency $e^{-2\pi i \mathbf{x}_{j}^{T} \eta}$ at each data point.

Ridge leverage score $\tau_{\lambda}(\boldsymbol{\eta}) = \mathbf{\bar{\Phi}}(\boldsymbol{\eta})^{T} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{\bar{\Phi}}(\boldsymbol{\eta})$ also equals:

$$\tau_{\lambda}(\boldsymbol{\eta}) = \min_{\mathbf{y}} \lambda^{-1} \| \mathbf{\bar{\Phi}} \mathbf{y} - \mathbf{\bar{\Phi}}(\boldsymbol{\eta}) \|_{2}^{2} + \| \mathbf{y} \|_{2}^{2}.$$

Intuition: $\tau_{\lambda}(\eta)$ is small iff there exists a function $\mathbf{y} : \mathbb{R}^{d} \to \mathbb{C}$ with low energy ($\|\mathbf{y}\|_{2}^{2}$ small) whose ($\sqrt{p(\eta)}$ weighted) Fourier transform is close to the frequency $e^{-2\pi i \mathbf{x}_{j}^{T} \eta}$ at each data point.

$$\mathbf{x}_{\mathbf{x}}$$

 y reconstructs frequency η from other frequencies. The easier it is to reconstruct, the less important it is to sample. Assume data points are 1-dimensional and bounded:

 $x_1, ..., x_n \in [-\delta, \delta]$. One possibility is to choose **y** with $(\sqrt{p(\eta)})$ weighted) Fourier transform equal to $e^{-2\pi i x \eta}$ for all $x \in [-\delta, \delta]$.

Assume data points are 1-dimensional and bounded:

 $x_1, ..., x_n \in [-\delta, \delta]$. One possibility is to choose **y** with $(\sqrt{p(\eta)})$ weighted) Fourier transform equal to $e^{-2\pi i x \eta}$ for all $x \in [-\delta, \delta]$.

• Achieved by the shifted sinc function weighted by $1/\sqrt{p(\eta)}$.

Assume data points are 1-dimensional and bounded:

 $x_1, ..., x_n \in [-\delta, \delta]$. One possibility is to choose **y** with $(\sqrt{p(\eta)})$ weighted) Fourier transform equal to $e^{-2\pi i x \eta}$ for all $x \in [-\delta, \delta]$.

• Achieved by the shifted sinc function weighted by $1/\sqrt{p(\eta)}$.

• For the Gaussian kernel, the $\frac{1}{\sqrt{p(\eta)}} \approx e^{\eta^2/4}$ weighting, will grow faster than $sinc(2\delta\eta) = \frac{\sin(2\delta\eta)}{\eta}$ falls off. So $\|\mathbf{y}\|_2$ is unbounded.

- For the Gaussian kernel, the $\frac{1}{\sqrt{p(\eta)}} \approx e^{\eta^2/4}$ weighting, will grow faster than $sinc(2\delta\eta) = \frac{\sin(2\delta\eta)}{\eta}$ falls off. So $\|\mathbf{y}\|_2$ is unbounded.
- **Solution:** Dampen the sinc by multiplying with a Gaussian, keeping Fourier transform nearly identical.

- For the Gaussian kernel, the $\frac{1}{\sqrt{\rho(\eta)}} \approx e^{\eta^2/4}$ weighting, will grow faster than $sinc(2\delta\eta) = \frac{\sin(2\delta\eta)}{\eta}$ falls off. So $\|\mathbf{y}\|_2$ is unbounded.
- **Solution:** Dampen the sinc by multiplying with a Gaussian, keeping Fourier transform nearly identical.

Upshot: easy to sample from approximate leverage distribution for the Gaussian kernel with $x_1, ..., x_n \in [-\delta, \delta]^d$:

$$ar{ au}_\lambda(oldsymbol{\eta}) egin{cases} ilde{O}(\delta^d) ext{ when } \|oldsymbol{\eta}\|_\infty \leq \sqrt{\log n/\lambda} \ p(oldsymbol{\eta}) = e^{-\|oldsymbol{\eta}\|_2^2/2} ext{ otherwise.} \end{cases}$$

Example of approximating a synthetic 'wiggly function':

 $\label{eq:CRF} CRF = classic \mbox{ random Fourier features `column norm' sampling,} \\ MRF = our \mbox{ modified sampling distribution.}$

Questions?