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overview

Our Contributions:

• Analyze the random Fourier features method (Rahimi Recht ‘07)

for kernel approximation using leverage score-based techniques.

• Concrete: Introduce new sampling distribution that gives

statistical guarantees for kernel ridge regression when used to

approximate the Gaussian kernel.

• High Level: Hope that Fourier leverage scores will have further

applications in kernel approximation, function approximation,

and sparse Fourier transform methods.
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kernel approximation

Kernel methods are expensive.

• Even writing down K requires Ω(n2) time.

• Other operations require even more. A single iteration of a linear

system solver takes Ω(n2) time.

• For n = 100, 000, K has 10 billion entries. Takes 80 GB of

storage if each is a double.
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solution: low-rank approximation.

Employ classic solution: low-rank approximation

• Storing Z uses O(ns) space and computing ZZTx takes O(ns)

time. Orthogonalization, eigendecomposition, and

pseudo-inversion of ZZT all take just O(ns2) time.
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efficient low-rank approximation?

Low-rank approximation is itself an expensive task.

• Optimal low-rank approximation via a direct eigendecomposition,

or even approximation via Krylov subspace methods are out of

the question since they at least require fully forming K.

• Many faster methods have been studied: incomplete Cholesky

factorization (Fine & Scheinberg ‘02, Bach & Jordan ‘02),

entrywise sampling (Achlioptas, McSherry, & Schölkopf ‘01),

Nyström approximation (Williams & Seeger ‘01), random

Fourier features (Rahimi & Recht ‘07)
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random fourier features

Rahimi & Recht NIPS ‘07:

• For any shift-invariant k(xi , xj) = k(xi − xj) let p(·) be the

Fourier transform of k(·). By Bochner’s theorem, p(η) ≥ 0 for

all η.

• Sample η1, ...,ηs ∈ Rd with probabilities proportional to p(η).

• Set zi = 1√
s

[
e−2πiη

T
1 xi , ..., e−2πiη

T
s xi
]
.
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view as matrix sampling method

Fourier transform k(z) =
∫
η∈Rd p(η)e−2πiη

T zdη gives:

•
∫
η

Φi (η)p(η)Φj(η)∗dη =
∫
η
e−2πiηT (xi−xj )p(η)dη = k(xi−xj) = Ki,j .

• Set Φ̄ = ΦP1/2. So K = Φ̄Φ̄
T

.
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view as matrix sampling method

• Z(j) = 1√
sp(η)

Φ̄(η) with probability p(η). So E[ZZT ] = K.

• zi = 1√
s

[
e−2πiη

T
1 xi , ..., e−2πiη

T
s xi
]

for η1, ...,ηs sampled

according to p(η).
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view as matrix sampling method

• Z is a sample of Φ̄ = ΦP1/2. Columns are sampled with

probability ∝ p(η), i.e., their squared column norms.

• It is well known from work on randomized methods in linear

algebra that there are better sampling probabilities (in both

theory and practice): the column leverage scores.

• Also noted by Bach ‘17, implicit in Rudi et al. ‘16.
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comparision of approximation guarantees

Column Norm Sampling: s = Õ(d/ε2) samples ensure that(
ZZT

)
i ,j

= Ki ,j ± ε for all i , j with high probability [RR07].

Ridge Leverage Score Sampling: s = Õ(sλ/ε
2) samples gives

spectral approximation:

(1− ε)(ZZT + λI) � K + λI � (1 + ε)(ZZT + λI).

where sλ = tr(K(K + λI)−1) is the statistical dimension.

• Spectral approximation gives statistical guarantees for kernel

ridge regression (this work), and approximation bounds for kernel

PCA and k-means clustering (Cohen, Musco, Musco ‘16,‘17)
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how to leverage score sample

The ridge leverage score for frequency η is given by:

τλ(η) = Φ̄(η)T (K + λI)−1Φ̄(η).

• Expensive to invert K + λI. But even if you could do that

efficiently, it is not at all clear you could efficiently sample from

the leverage score distribution.
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bounding the fourier leverage scores

Main goal: Get a handle on the Fourier ridge leverage scores for

common kernels by upper bounding them with simple distributions.

1. Improve random Fourier features.

2. Bound statistical dimension by the sum of leverage scores.

3. Connections with sparse Fourier transforms, Fourier

interpolation, and other problems.
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alternative leverage score characterization

Ridge leverage score τλ(η) = Φ̄(η)T (K + λI)−1Φ̄(η) also equals:

τλ(η) = min
y
λ−1‖Φ̄y − Φ̄(η)‖22 + ‖y‖22.

Intuition: τλ(η) is small iff there exists a function y : Rd → C
with low energy (‖y‖22 small) whose (

√
p(η) weighted) Fourier

transform is close to the frequency e−2πix
T
j η at each data point.

• y reconstructs frequency η from other frequencies. The easier it

is to reconstruct, the less important it is to sample.
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frequency reconstruction for bounded data

Assume data points are 1-dimensional and bounded:

x1, ..., xn ∈ [−δ, δ]. One possibility is to choose y with (
√

p(η)

weighted) Fourier transform equal to e−2πixη for all x ∈ [−δ, δ].

• Achieved by the shifted sinc function weighted by 1/
√

p(η).
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improved test function

Unfortunately the sinc function falls off too slowly.

• For the Gaussian kernel, the 1√
p(η)
≈ eη

2/4 weighting, will grow

faster than sinc(2δη) = sin(2δη)
η falls off. So ‖y‖2 is unbounded.

• Solution: Dampen the sinc by multiplying with a Gaussian,

keeping Fourier transform nearly identical.
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ultimate gaussian kernel leverage score bound

Upshot: easy to sample from approximate leverage distribution for

the Gaussian kernel with x1, ..., xn ∈ [−δ, δ]d :

τ̄λ(η)

Õ(δd) when ‖η‖∞ ≤
√

log n/λ

p(η) = e−‖η‖
2
2/2 otherwise.
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experimental results

Example of approximating a synthetic ‘wiggly function’:
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Data
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CRF = classic random Fourier features ‘column norm’ sampling,

MRF = our modified sampling distribution.
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Questions?
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