COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 9

Logistics

- Problem Set 2 is due Wednesday at 11:59pm.
- One page project proposal due Tuesday 3/12.

Summary

Last Time:

- Finish up ℓ_{0} sampling analysis and applications to distributed and streaming graph connectivity.
- Start on linear sketching for frequency estimation.
- Count-sketch algorithm.

Today:

- Finish up Count-sketch analysis
- ?

Linear Sketching

- Linear Sketching: Compress data via a random linear function (i.e., the random matrix A), and prove that we can still recover useful information from the compression.

- Linearity is useful because it lets us easily aggregate sketches in distributed settings and update sketches in streaming settings.
- May want to recover non-zero entries of x, estimate norms or other aggregate statistics, find large magnitude entries, sample entries with probabilities according to their magnitudes, etc.

Linear Sketching for ℓ_{2} Heavy-Hitters

Set up: We will show how to estimate each entry of a vector $x \in \mathbb{R}^{n}$ up to error $\pm \epsilon \cdot\|x\|_{2}$ with probability at least $1-\delta$, from a small linear sketch, of size $O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$.

- This error guarantee allows recovering the indices of all 'heavy-hitter' entries with magnitude $>2 \epsilon\|x\|_{2}$.
-What are some possible application of this primitive?

Count Sketch Algorithm - Visually

$$
x(1)=5 \quad x(2)=-3 \quad x(2)=1 \quad \ldots \quad x(n)=0
$$

random hash functions

$$
\begin{gathered}
\boldsymbol{h}:[n] \rightarrow[m] \\
\boldsymbol{s}:[n] \rightarrow\{-1,1\}
\end{gathered}
$$

m length array y	0	0	0	0	0	0	0	0	0	0

Estimate: $x(i) \approx \mathbf{s}(i) \cdot y(\mathrm{~h}(i))=\mathbf{s}(i) \cdot \sum_{k: \mathrm{h}_{j}(k)=\mathrm{h}_{j}(i)} x(k) \cdot \mathbf{s}(k)$

$$
=x(i)+\sum_{k \neq i: \mathrm{h}_{j}(k)=\mathrm{h}_{j}(i)} x(k) \cdot \mathrm{s}(k) \cdot \mathrm{s}(i)
$$

View as a Linear Sketch

Count Sketch Algorithm - Psuedocode

- Let $m=O\left(1 / \epsilon^{2}\right)$ and $t=O(\log (1 / \delta))$.
- Pick t random pairwise independent hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{t}:[n] \rightarrow[m]$.
- Pick t random pairwise independent hash functions

$$
\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathrm{t}}:[n] \rightarrow\{-1,1\} .
$$

- Compute t independent estimates of $x(i)$ as $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot s(k)$.
- Output the median of $\left\{\tilde{x}_{1}(i), \ldots, \tilde{x}_{t}(i)\right\}$ as our final estimate of $x(i)$.

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is $\mathbb{E}\left[\tilde{x}_{j}(i)\right]$?

$$
\begin{aligned}
\mathbb{E}\left[\tilde{x}_{j}(i)\right] & =x(i)+\mathbb{E}\left[\sum_{k \neq i: h_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =x(i)+\sum_{k \neq i: h_{j}(k)=h_{j}(i)} x(k) \cdot \mathbb{E}[\mathbf{s}(k) \cdot \mathbf{s}(i)] \\
& =x(i) .
\end{aligned}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is $\operatorname{Var}\left[\tilde{\mathrm{x}}_{j}(i)\right]$?

$$
\begin{aligned}
\operatorname{Var}\left[\tilde{\mathbf{x}}_{j}(i)\right] & =\operatorname{Var}\left[\sum_{k \neq i \mathbf{h}_{j}(k)=\mathrm{h}_{j}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =\operatorname{Var}\left[\sum_{k \neq i} \mathbb{I}_{\mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} \cdot x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =\sum_{k \neq i} \operatorname{Var}\left[\mathbb{I}_{\mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} \cdot x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =\sum_{k \neq i} \frac{1}{m} \cdot x(k)^{2} \leq \frac{\|x\|_{2}^{2}}{m} .
\end{aligned}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \boldsymbol{h}_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is an upper bound on $\operatorname{Pr}\left[\left|\tilde{\mathrm{x}}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right.$?
By Chebyshev's inequality:

$$
\operatorname{Pr}\left[\left|\tilde{x}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right] \leq \frac{\operatorname{Var}\left[\tilde{x}_{j}(i)\right]}{\epsilon^{2}\|x\|_{2}^{2}} \leq \frac{1}{\epsilon^{2} \cdot m}
$$

If we set $m=\frac{3}{\epsilon^{2}}$, then our estimate is good with probability $\geq 2 / 3$.
How large must we set m to increase our success probability to
$\geq 1-\delta$?

Median Trick for Count Sketch

To achieve $O(\log (1 / \delta))$ dependence, Count Sketch uses the 'median trick'.

- Set $m=3 / \epsilon^{2}$ so each estimate $\tilde{x}_{j}(i)$ is a $\pm \epsilon\|x\|_{2}$ approximation to $x(i)$ with probability at least $2 / 3$.
- If we make t such estimates independently, we expect $2 / 3 \cdot t$ of them to be correct.
- By a Chernoff bound, for $t=O(\log (1 / \delta)),>1 / 2$ will be correct with probability at least $1-\delta$.
- Thus, the median estimate will be correct with probability at least 1 - δ.

Approximate Matrix Multiplication

Matrix Multiplication Problem

Given $A, B \in \mathbb{R}^{n \times n}$ would like to compute $C=A B$. Requires n^{ω} time where $\omega \approx 2.373$ in theory.

Today: We'll see how to compute an approximation in $O\left(n^{2}\right)$ time via a simple sampling approach.

- One of the most fundamental algorithms in randomized numerical linear algebra. Forms the building block for many other algorithms.

Outer Product View of Matrix Multiplication

Inner Product View: $[A B]_{i j}=\left\langle A_{i,:}, B_{j,:}\right\rangle=\sum_{k=1}^{n} A_{i k} \cdot B_{k j}$.

Outer Product View: Observe that $C_{k}=A_{:, k} B_{k,:}$ is an $n \times n$ matrix with $\left[C_{k}\right]_{i j}=A_{j k} \cdot B_{k j}$. So $A B=\sum_{k=1}^{n} A_{:, k} B_{k,:}$

Basic Idea: Approximate AB by sampling terms of this sum.

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{t}} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathbf{j}}=k\right]=p_{k}$.
- Let $\overline{\mathrm{C}}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathrm{i}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{i}},:}$.

Claim 1: $\mathbb{E}[\overline{\mathrm{C}}]=A B$
$\mathbb{E}[\overline{\mathrm{C}}]=\frac{1}{t} \sum_{j=1}^{t} \mathbb{E}\left[\frac{1}{p_{\mathrm{i}_{\mathrm{j}}}} \cdot A_{:, \mathrm{i}_{\mathrm{j}}} B_{\mathrm{i}_{\mathrm{j}},:}\right]=\frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_{k} \cdot \frac{1}{p_{k}} \cdot A_{:, k} B_{k,:}=\frac{1}{t} \sum_{j=1}^{t} A B=A B$

Weighting by $\frac{1}{p_{i_{j}}}$ keeps the expectation correct. Key idea behind importance sampling based methods.

