COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024. Lecture 9

- Problem Set 2 is due Wednesday at 11:59pm.
- One page project proposal due Tuesday 3/12.

Last Time:

- Finish up ℓ_0 sampling analysis and applications to distributed and streaming graph connectivity.
- Start on linear sketching for frequency estimation.
- Count-sketch algorithm.

Today:

- Finish up Count-sketch analysis
- ?

Linear Sketching

• Linear Sketching: Compress data via a random linear function (i.e., the random matrix A), and prove that we can still recover useful information from the compression.

- Linearity is useful because it lets us easily aggregate sketches in distributed settings and update sketches in streaming settings.
- May want to recover non-zero entries of *x*, estimate norms or other aggregate statistics, find large magnitude entries, sample entries with probabilities according to their magnitudes, etc.

Set up: We will show how to estimate each entry of a vector $x \in \mathbb{R}^n$ up to error $\pm \epsilon \cdot ||x||_2$ with probability at least $1 - \delta$, from a small linear sketch, of size $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$.

- This error guarantee allows recovering the indices of all 'heavy-hitter' entries with magnitude $> 2\epsilon ||x||_2$.
- What are some possible application of this primitive?

Count Sketch Algorithm – Visually

$$\begin{aligned} \mathbf{x}(1) = \mathbf{5} \quad \mathbf{x}(2) = -\mathbf{3} \quad \mathbf{x}(2) = \mathbf{1} \quad \dots \quad \mathbf{x}(n) = \mathbf{0} \\ \text{random hash functions} \\ h: [n] \to [m] \\ s: [n] \to \{-1, 1\} \\ \text{m length array } \mathbf{y} \quad \boxed{\mathbf{0} \quad \mathbf{0} \\ \text{m length array } \mathbf{y} \quad \boxed{\mathbf{0} \quad \mathbf{0} \\ \text{Estimate: } \mathbf{x}(i) \approx \mathbf{s}(i) \cdot \mathbf{y}(\mathbf{h}(i)) = \mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_j(k) = \mathbf{h}_j(i)} \mathbf{x}(k) \cdot \mathbf{s}(k) \\ &= \mathbf{x}(i) + \sum_{k \neq i: \mathbf{h}_j(k) = \mathbf{h}_j(i)} \mathbf{x}(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i) \end{aligned}$$

View as a Linear Sketch

Random sketching matrix A	х		у	
	5		4	
	-3	=	0	
	1		3	
	-2		1	
	0			
	0			
	3			
	0			

Count Sketch Algorithm - Psuedocode

- Let $m = O(1/\epsilon^2)$ and $t = O(\log(1/\delta))$.
- Pick *t* random pairwise independent hash functions $h_1, \ldots, h_t : [n] \rightarrow [m]$.
- Pick t random pairwise independent hash functions $\mathbf{s}_1, \ldots, \mathbf{s}_t : [n] \to \{-1, 1\}.$
- Compute t independent estimates of x(i) as $\tilde{\mathbf{x}}_{j}(i) = \mathbf{s}(i) \cdot \sum_{k:\mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} x(k) \cdot \mathbf{s}(k).$
- Output the median of $\{\tilde{\mathbf{x}}_1(i), \dots, \tilde{\mathbf{x}}_t(i)\}$ as our final estimate of x(i).

Concentration Analysis

Recall:
$$\tilde{\mathbf{x}}_{j}(i) = \mathbf{s}(i) \cdot \sum_{k:\mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} \mathbf{x}(k) \cdot \mathbf{s}(k).$$

What is $\mathbb{E}[\tilde{\mathbf{x}}_{j}(i)]$?

$$\mathbb{E}[\tilde{\mathbf{x}}_{j}(i)] = \mathbf{x}(i) + \mathbb{E}\left[\sum_{\substack{k \neq i: \mathbf{h}_{j}(k) = \mathbf{h}_{j}(i)}} \mathbf{x}(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right]$$
$$= \mathbf{x}(i) + \sum_{\substack{k \neq i: \mathbf{h}_{j}(k) = \mathbf{h}_{j}(i)}} \mathbf{x}(k) \cdot \mathbb{E}[\mathbf{s}(k) \cdot \mathbf{s}(i)]$$
$$= \mathbf{x}(i).$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i) = \mathbf{s}(i) \cdot \sum_{k:h_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$. What is $\operatorname{Var}[\tilde{\mathbf{x}}_{j}(i)]$?

$$\begin{aligned} \operatorname{Var}[\tilde{\mathbf{x}}_{j}(i)] &= \operatorname{Var}\left[\sum_{k \neq i: h_{j}(k) = h_{j}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\ &= \operatorname{Var}\left[\sum_{k \neq i} \mathbb{I}_{h_{j}(k) = h_{j}(i)} \cdot x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\ &= \sum_{k \neq i} \operatorname{Var}\left[\mathbb{I}_{h_{j}(k) = h_{j}(i)} \cdot x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\ &= \sum_{k \neq i} \frac{1}{m} \cdot x(k)^{2} \leq \frac{||\mathbf{x}||_{2}^{2}}{m}.\end{aligned}$$

Recall: $\tilde{\mathbf{x}}_{j}(i) = \mathbf{s}(i) \cdot \sum_{k:h_{j}(k)=h_{j}(i)} \mathbf{x}(k) \cdot \mathbf{s}(k).$

What is an upper bound on $\Pr[|\tilde{\mathbf{x}}_j(i) - x(i)| \ge \epsilon ||x||_2]$?

By Chebyshev's inequality:

$$\Pr[|\tilde{\mathbf{x}}_{j}(i) - x(i)| \ge \epsilon ||x||_{2}] \le \frac{\operatorname{Var}[\tilde{\mathbf{x}}_{j}(i)]}{\epsilon^{2} ||x||_{2}^{2}} \le \frac{1}{\epsilon^{2} \cdot m}$$

If we set $m = \frac{3}{\epsilon^2}$, then our estimate is good with probability $\ge 2/3$. How large must we set *m* to increase our success probability to $\ge 1 - \delta$? To achieve $O(\log(1/\delta))$ dependence, Count Sketch uses the 'median trick'.

- Set $m = 3/\epsilon^2$ so each estimate $\tilde{\mathbf{x}}_j(i)$ is a $\pm \epsilon \|\mathbf{x}\|_2$ approximation to x(i) with probability at least 2/3.
- If we make t such estimates independently, we expect $2/3 \cdot t$ of them to be correct.
- By a Chernoff bound, for $t = O(\log(1/\delta))$, > 1/2 will be correct with probability at least 1δ .
- Thus, the median estimate will be correct with probability at least 1δ .

Approximate Matrix Multiplication

Given $A, B \in \mathbb{R}^{n \times n}$ would like to compute C = AB. Requires n^{ω} time where $\omega \approx 2.373$ in theory.

Today: We'll see how to compute an approximation in $O(n^2)$ time via a simple sampling approach.

• One of the most fundamental algorithms in randomized numerical linear algebra. Forms the building block for many other algorithms.

Outer Product View of Matrix Multiplication

Inner Product View: $[AB]_{ij} = \langle A_{i,:}, B_{j,:} \rangle = \sum_{k=1}^{n} A_{ik} \cdot B_{kj}.$

Outer Product View: Observe that $C_k = A_{:,k}B_{k,:}$ is an $n \times n$ matrix with $[C_k]_{ij} = A_{jk} \cdot B_{kj}$. So $AB = \sum_{k=1}^n A_{:,k}B_{k,:}$

Basic Idea: Approximate AB by sampling terms of this sum.

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_1, \ldots, p_n with $p_i \ge 0$ and $\sum_{[n]} p_i = 1$.
- Select $i_1, \ldots, i_t \in [n]$ independently, according to the distribution $\Pr[i_j = k] = p_k$.

• Let
$$\overline{\mathbf{C}} = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{p_{\mathbf{i}_j}} \cdot A_{:,\mathbf{i}_j} B_{\mathbf{i}_j,:}$$

Claim 1:
$$\mathbb{E}[\overline{C}] = AB$$

$$\mathbb{E}[\overline{\mathbf{C}}] = \frac{1}{t} \sum_{j=1}^{t} \mathbb{E}\left[\frac{1}{p_{\mathbf{i}_{j}}} \cdot A_{:,\mathbf{i}_{j}} B_{\mathbf{i}_{j},:}\right] = \frac{1}{t} \sum_{j=1}^{t} \sum_{k=1}^{n} p_{k} \cdot \frac{1}{p_{k}} \cdot A_{:,k} B_{k,:} = \frac{1}{t} \sum_{j=1}^{t} AB = AB$$

Weighting by $\frac{1}{p_{i_j}}$ keeps the expectation correct. Key idea behind **importance sampling** based methods.