
COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 9

1

Logistics

• Problem Set 2 is due Wednesday at 11:59pm.
• One page project proposal due Tuesday 3/12.

2

Summary

Last Time:

• Finish up ℓ0 sampling analysis and applications to distributed
and streaming graph connectivity.

• Start on linear sketching for frequency estimation.

• Count-sketch algorithm.

Today:

• Finish up Count-sketch analysis

• ?

3

Linear Sketching

• Linear Sketching: Compress data via a random linear function
(i.e., the random matrix A), and prove that we can still recover
useful information from the compression.

• Linearity is useful because it lets us easily aggregate sketches in
distributed settings and update sketches in streaming settings.

• May want to recover non-zero entries of x, estimate norms or
other aggregate statistics, find large magnitude entries, sample
entries with probabilities according to their magnitudes, etc.

4

Linear Sketching for ℓ2 Heavy-Hitters

Set up: We will show how to estimate each entry of a vector x ∈ Rn

up to error ±ϵ · ∥x∥2 with probability at least 1− δ, from a small linear
sketch, of size O

(
log(1/δ)

ϵ2

)
.

• This error guarantee allows recovering the indices of all
‘heavy-hitter’ entries with magnitude > 2ϵ∥x∥2.

• What are some possible application of this primitive?

5

Count Sketch Algorithm – Visually

Estimate: x(i) ≈ s(i) · y(h(i)) = s(i) ·
∑

k:hj(k)=hj(i)
x(k) · s(k)

= x(i) +
∑

k̸=i:hj(k)=hj(i)
x(k) · s(k) · s(i)

6

View as a Linear Sketch

7

Count Sketch Algorithm – Psuedocode

• Let m = O(1/ϵ2) and t = O(log(1/δ)).

• Pick t random pairwise independent hash functions
h1, . . . ,ht : [n] → [m].

• Pick t random pairwise independent hash functions
s1, . . . , st : [n] → {−1, 1}.

• Compute t independent estimates of x(i) as
x̃j(i) = s(i) ·

∑
k:hj(k)=hj(i) x(k) · s(k).

• Output the median of {x̃1(i), . . . , x̃t(i)} as our final estimate of
x(i).

8

Concentration Analysis

Recall: x̃j(i) = s(i) ·
∑

k:hj(k)=hj(i) x(k) · s(k).

What is E[x̃j(i)]?

E[x̃j(i)] = x(i) + E

 ∑
k̸=i:hj(k)=hj(i)

x(k) · s(k) · s(i)

= x(i) +

∑
k̸=i:hj(k)=hj(i)

x(k) · E[s(k) · s(i)]

= x(i).

9

Concentration Analysis

Recall: x̃j(i) = s(i) ·
∑

k:hj(k)=hj(i) x(k) · s(k).

What is Var[x̃j(i)]?

Var[x̃j(i)] = Var

 ∑
k ̸=i:hj(k)=hj(i)

x(k) · s(k) · s(i)

= Var

∑
k̸=i

Ihj(k)=hj(i) · x(k) · s(k) · s(i)

=

∑
k̸=i

Var
[
Ihj(k)=hj(i) · x(k) · s(k) · s(i)

]
=

∑
k̸=i

1
m · x(k)2 ≤ ∥x∥22

m .

10

Concentration Analysis

Recall: x̃j(i) = s(i) ·
∑

k:hj(k)=hj(i) x(k) · s(k).

What is an upper bound on Pr[|x̃j(i)− x(i)| ≥ ϵ∥x∥2]?

By Chebyshev’s inequality:

Pr[|x̃j(i)− x(i)| ≥ ϵ∥x∥2] ≤
Var[x̃j(i)]
ϵ2∥x∥22

≤ 1
ϵ2 ·m

If we set m = 3
ϵ2 , then our estimate is good with probability ≥ 2/3.

How large must we set m to increase our success probability to
≥ 1− δ?

11

Median Trick for Count Sketch

To achieve O(log(1/δ)) dependence, Count Sketch uses the ‘median
trick’.

• Set m = 3/ϵ2 so each estimate x̃j(i) is a ±ϵ∥x∥2 approximation to
x(i) with probability at least 2/3.

• If we make t such estimates independently, we expect 2/3 · t of
them to be correct.

• By a Chernoff bound, for t = O(log(1/δ)), > 1/2 will be correct
with probability at least 1− δ.

• Thus, the median estimate will be correct with probability at
least 1− δ.

12

Approximate Matrix Multiplication

12

Matrix Multiplication Problem

Given A,B ∈ Rn×n would like to compute C = AB. Requires nω

time where ω ≈ 2.373 in theory.

Today: We’ll see how to compute an approximation in O(n2)
time via a simple sampling approach.

• One of the most fundamental algorithms in randomized
numerical linear algebra. Forms the building block for
many other algorithms.

13

Outer Product View of Matrix Multiplication

Inner Product View: [AB]ij = ⟨Ai,:,Bj,:⟩ =
∑n

k=1 Aik · Bkj.

Outer Product View: Observe that Ck = A:,kBk,: is an n× n matrix with
[Ck]ij = Ajk · Bkj. So AB =

∑n
k=1 A:,kBk,:

Basic Idea: Approximate AB by sampling terms of this sum.
14

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

• Fix sampling probabilities p1, . . . ,pn with pi ≥ 0 and
∑

[n] pi = 1.

• Select i1, . . . , it ∈ [n] independently, according to the
distribution Pr[ij = k] = pk.

• Let C = 1
t ·

∑t
j=1

1
pij

· A:,ijBij,:.

Claim 1: E[C] = AB

E[C] = 1
t

t∑
j=1

E

[
1
pij

· A:,ijBij,:

]
=

1
t

t∑
j=1

n∑
k=1

pk·
1
pk

·A:,kBk,: =
1
t

t∑
j=1

AB = AB

Weighting by 1
pij

keeps the expectation correct. Key idea behind
importance sampling based methods.

15

