COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 9

Logistics

- Problem Set 2 is due Wednesday at 11:59pm.
- One page project proposal due Tuesday 3/12.

Summary

Last Time:

$$
[A]\left[\begin{array}{l}
0 \\
0
\end{array}\right.
$$

- Finish up ℓ_{0} sampling analysis and applications to distributed and streaming graph connectivity.
- Start on linear sketching for frequency estimation.
- Count-sketch algorithm.

Last Time:

- Finish up ℓ_{0} sampling analysis and applications to distributed and streaming graph connectivity.
- Start on linear sketching for frequency estimation.
- Count-sketch algorithm.

Today:

- Finish up Count-sketch analysis
- If the. stat on randumied nothods for matrix multiplication

Linear Sketching

- Linear Sketching: Compress data via a random linear function (ie., the random matrix A), and prove that we can still recover useful information from the compression.

Linear Sketching

- Linear Sketching: Compress data via a random linear function (i.e., the random matrix A), and prove that we can still recover useful information from the compression.

- Linearity is useful because it lets us easily aggregate sketches in distributed settings and update sketches in streaming settings.
- May want to recover non-zero entries of x, estimate norms or other aggregate statistics, find large magnitude entries, sample entries with probabilities according to their magnitudes, etc.

Linear Sketching for ℓ_{2} Heavy-Hitters
$x(i)=$ isth entry αf vector $\tilde{x}(i)=$ approximation give by Set up: We will show how to estimate each entry of a vector $x \in \mathbb{R}^{n}$ slafa up to error $\pm \epsilon \cdot\|x\|_{2}$ with probability at least $1-\delta$, from a small linear sketch, of size $\overline{\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)}$.
$\widetilde{x}(i) \geq 2 \varepsilon\|x\|_{2} \rightarrow x(i) \geqslant \varepsilon\|x\|_{2}$ $x(i) \geqslant 3 \varepsilon\|x\|_{2} \rightarrow \hat{x}(i) \geqslant 2 \varepsilon\|x\|_{2}$

- This error guarantee allows recovering the indices of all 'heavy-hitter' entries with magnitude $>\mathcal{B}_{\star}\|x\|_{2}$.
- What are some possible application of this primitive?

4 Frequent items estimation

- quickly fir l high wights, or high a rations -error log
- sparse Fourier detection -estmaim suadets

Count Sketch Algorithm - Visually

$$
x(1)=5 \quad x(2)=-3 \quad x(3)=1 \quad \ldots \quad x(n)=0
$$

random hash functions

$$
\begin{gathered}
\boldsymbol{h}: \underline{[n]} \rightarrow \underset{[m]}{ } \boldsymbol{s}:[n] \rightarrow\{-1,1\}
\end{gathered}
$$

m length array y	0	0	0	0	0	0	0	0	0	0

Count Sketch Algorithm - Visually

$$
\begin{aligned}
& x(1)=5 \quad x(2)=-3 \quad x(2)=1 \quad \ldots \quad x(n)=0 \\
& \text { random hash functions } \\
& \underline{\boldsymbol{h}:}:[n] \rightarrow[m] \\
& \boldsymbol{s}:[n] \rightarrow\{-1,1\} \\
& \text { m length array y } \\
& h(1)=1 \\
& S(1)=1
\end{aligned}
$$

Count Sketch Algorithm - Visually

$$
\begin{array}{l|l|l|lllll}
& x(1)=5 & x(2)=-3 & x(3)=1 & \cdots & x(n)=0 \\
\begin{array}{c}
\text { random hash functions } \\
\boldsymbol{h}:[n] \rightarrow[m] \\
s:[n] \rightarrow\{-1,1\}
\end{array} \\
\text { m length array } y & +1 & & -1 & & 5 & 0 & 3 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Count Sketch Algorithm - Visually

Count Sketch Algorithm - Visually
$n=$ length of original lector
m-length of compress $x(1)=5 \quad x(2)=-3 \quad x(3)=1 \quad \ldots \quad x(n)=0$
random hash functions
$\boldsymbol{h}:[n] \rightarrow[m] \quad \mathrm{S}(1)=1$

m length array \mathbf{y}
4

$$
\begin{aligned}
& m \ll n \\
& m=\frac{1}{s^{2}}
\end{aligned}
$$

Count Sketch Algorithm - Visually

Estimate: $\underline{x(i)} \approx \underline{\mathrm{s}(i)} \cdot y(\mathrm{~h}(i))$

$$
\begin{aligned}
& \widetilde{x}(1)=1 \times y=y \\
& \widetilde{x}(3)=-1 \cdot y=-y
\end{aligned}
$$

Count Sketch Algorithm - Visually

$$
\begin{aligned}
& x(1)=5 \quad x(2)=-3 \quad x(2)=1 \quad \ldots \quad x(n)=0 \\
& \text { random hash functions } \\
& \boldsymbol{h}:[n] \rightarrow[m] \\
& \boldsymbol{s}:[n] \rightarrow\{-1,1\} \\
& m \text { length array } y
\end{aligned}
$$

$$
\begin{aligned}
& =x(i)+\mathbb{E} \sum_{k \neq i: h_{\mathbf{o}}(k)=h_{\mathbf{h}}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i) \\
& \sum \mathbb{E} x(\alpha) \cdot s(k) \cdot s(i) \\
& \sum x(k) \cdot \text { 过 } \delta(k) \cdot:=(i)
\end{aligned}
$$

View as a Linear Sketch

$$
n \text { columns }
$$

Random sketching matrix A
$\left.\begin{array}{cc|c}\sigma_{0} \overrightarrow{0} & 1 & 0 \\ m & 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0\end{array}\right]$

Count Sketch Algorithm - Psuedocode

- Let $m=O\left(1 / \epsilon^{2}\right)$ and $t=O(\log (1 / \delta))$.
- Pick t random pairwise independent hash functions $h(y), h(t)\rangle$ $\mathbf{h}_{1}, \ldots, \mathbf{h}_{t}:[n] \rightarrow[m]$.
- Pick t random pairwise independent hash functions
- Pick t random pairwise independent hash functions
$\mathbf{s}_{1}, \ldots, \mathbf{s}_{t}:[n] \rightarrow\{-1,1\}$.

Count Sketch Algorithm - Psuedocode

- Let $m=O\left(1 / \epsilon^{2}\right)$ and $t=O(\log (1 / \delta))$.
- Pick t random pairwise independent hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{t}:[n] \rightarrow[m]$.
- Pick t random pairwise independent hash functions $\mathbf{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{t}}:[n] \rightarrow\{-1,1\}$.

Count Sketch Algorithm - Psuedocode

- Let $m=O\left(1 / \epsilon^{2}\right)$ and $t=O(\log (1 / \delta))$.
- Pick t random pairwise independent hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{t}:[n] \rightarrow[m]$.
- Pick t random pairwise independent hash functions $\mathbf{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{t}}:[n] \rightarrow\{-1,1\}$.
- Compute t independent estimates of $x(i)$ as

$$
\tilde{x}_{j}(i)=s_{j}(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot s_{j}(k) .
$$

Count Sketch Algorithm - Psuedocode

- Let $m=O\left(1 / \epsilon^{2}\right)$ and $t=O(\log (1 / \delta))$.
- Pick t random pairwise independent hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{\mathrm{t}}:[n] \rightarrow[m]$.
- Pick t random pairwise independent hash functions $s_{1}, \ldots, s_{t}:[n] \rightarrow\{-1,1\}$.
- Compute t independent estimates of $x(i)$ as $\tilde{x}_{j}(i)=s(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot s(k)$.
- Output the median of $\left\{\tilde{x}_{1}(i), \ldots, \tilde{x}_{t}(i)\right\}$ as our final estimate of $x(i)$.

Concentration Analysis

Recall: $\tilde{x}_{j}(i)=s_{j}(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot s_{j}(k)$.
What is $\mathbb{E}\left[\tilde{x}_{j}(i)\right]$? $=x(i)$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is $\mathbb{E}\left[\tilde{x}_{j}(i)\right]$?

$$
\begin{aligned}
& \mathbb{E}\left[\tilde{x}_{j}(i)\right]=x(i)+\mathbb{E}\left[\sum_{k \neq: \mathrm{h}_{\mathrm{h}}(k)=\mathrm{h}_{\mathrm{j}}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right]
\end{aligned}
$$

$$
\begin{aligned}
& -1 \text { ip. } 1 / 2 \\
& \mathbb{E}[s(k) \cdot s(i)]=0
\end{aligned}
$$

Concentration Analysis

$$
\begin{aligned}
& \text { Recall: } \tilde{x}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot s(k) . \\
& \text { What is } \operatorname{Var}\left[\tilde{x}_{j}(i)\right] ?=\underset{ }{x}(i)+\sum_{k \neq i}^{k \neq} x(k) \cdot s(k) \cdot s(i) \\
& \mathbb{E}[\tilde{x}(i)] \quad h(k)=h(i)
\end{aligned}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is $\operatorname{Var}\left[\tilde{\mathrm{x}}_{j}(i)\right]$?

$$
\operatorname{Var}\left[\tilde{\mathbf{x}}_{j}(i)\right]=\operatorname{Var}\left[\sum_{k \neq: \mathrm{h}_{\mathrm{h}}(k)=\mathrm{h}_{j}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right]
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is $\operatorname{Var}\left[\tilde{\mathrm{x}}_{j}(i)\right]$?

$$
\begin{aligned}
& \operatorname{Var}\left[\tilde{x}_{\mathrm{j}}(i)\right]=\operatorname{Var}\left[\left(\sum_{\left[z \neq: \ln (k)=n_{i}\right)} x(k) \cdot s(k) \cdot s(i)\right]\right. \\
& =\operatorname{Var}\left[\sum_{k \neq i} \mathbb{I}_{h_{h}(k)=h_{f}(i)} \cdot x(k) \cdot s(k) \cdot s(i)\right] \quad \text { if } h_{j}(k)=h_{i}(i) \\
& \text { O utvarice. }
\end{aligned}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is $\operatorname{Var}\left[\tilde{\mathrm{x}}_{j}(i)\right]$?

$$
\begin{aligned}
& \operatorname{Var}\left[\tilde{\mathbf{x}}_{j}(i)\right]=\operatorname{Var}\left[\sum_{k \neq: \mathrm{h}_{j}(k)=\mathrm{h}_{j}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =\operatorname{Var}\left[\sum_{k \neq i} \mathbb{I}_{\mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} \cdot x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =\sum_{k \neq i} \operatorname{Var}[\underbrace{\mathbb{I}_{h_{j}(k)=h_{j}(i) \cdot x(k)} \cdot \mathbf{s}(k) \cdot s(i)}_{\downarrow}] \\
& \operatorname{Var}(z)=\frac{x(k)^{2}}{m} \quad z=\left\{\begin{array}{lll}
0 & \text { w.p. } & 1-\frac{1}{m} \\
x(k) & \text { w.p. } & \frac{1}{2 m} \\
-x(k) & \text { w.p } & \frac{1}{2 m}
\end{array}\right.
\end{aligned}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is $\operatorname{Var}\left[\tilde{\mathrm{x}}_{j}(i)\right]$?

$$
\begin{aligned}
\operatorname{Var}\left[\tilde{\mathbf{x}}_{j}(i)\right] & =\operatorname{Var}\left[\sum_{k \neq i: \mathbf{h}_{j}(k)=\mathrm{h}_{j}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =\operatorname{Var}\left[\sum_{k \neq i} \mathbb{I}_{\mathbf{h}_{j}(k)=\mathrm{h}_{j}(i)} \cdot x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =\sum_{k \neq i} \operatorname{Var}\left[\mathbb{I}_{\mathbf{h}_{j}(k)=\mathrm{h}_{j}(i)} \cdot x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right] \\
& =\sum_{k \neq i} \frac{1}{m} \cdot x(k)^{2}
\end{aligned}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=\mathbf{h}_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is $\operatorname{Var}\left[\tilde{\mathrm{x}}_{j}(i)\right]$?

$$
\begin{aligned}
& \operatorname{Var}\left[\tilde{\mathbf{x}}_{j}(i)\right]=\operatorname{Var}\left[\sum_{k \neq: \mathrm{h}_{\mathrm{h}}(k)=\mathrm{h}_{j}(i)} x(k) \cdot \mathbf{s}(k) \cdot \mathbf{s}(i)\right]
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{1}{\varepsilon^{2}} \text { elldn }=\sum_{k \neq i} \frac{1}{m} \cdot x(k)^{2} \leq \frac{\|x\|_{2}^{2}}{m} \text {. }
\end{aligned}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is an upper bound on $\operatorname{Pr}\left[\left|\tilde{\mathrm{x}}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right]$?

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is an upper bound on $\operatorname{Pr}\left[\left|\tilde{x}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right]$? By Chebyshev's inequality:

$$
\operatorname{Pr}\left[\left|\tilde{x}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right] \leq{\frac{\operatorname{Var}\left[\tilde{x}_{j}(i)\right]}{\epsilon^{2}\|x\|_{2}^{2}}}_{m}^{m} \frac{1}{m \varepsilon^{2}}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is an upper bound on $\operatorname{Pr}\left[\left|\tilde{x}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right]$?
By Chebyshev's inequality:

$$
\operatorname{Pr}\left[\left|\tilde{x}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right] \leq \frac{\operatorname{Var}\left[\tilde{x}_{j}(i)\right]}{\epsilon^{2}\|x\|_{2}^{2}} \leq \frac{1}{\epsilon^{2} \cdot m}
$$

Concentration Analysis

Recall: $\tilde{\mathbf{x}}_{j}(i)=\mathbf{s}(i) \cdot \sum_{k: \mathbf{h}_{j}(k)=h_{j}(i)} x(k) \cdot \mathbf{s}(k)$.
What is an upper bound on $\operatorname{Pr}\left[\left|\tilde{\mathrm{x}}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right]$?
By Chebyshev's inequality:

$$
\operatorname{Pr}\left[\left|\tilde{x}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right] \leq \frac{\operatorname{Var}\left[\tilde{x}_{j}(i)\right]}{\epsilon^{2}\|x\|_{2}^{2}} \leq \frac{1}{\epsilon^{2} \cdot m} \leq \frac{1}{3}
$$

If we set $m=\frac{3}{\epsilon^{2}}$, then our estimate is good with probability $\geq 2 / 3$.

Concentration Analysis

$$
\begin{aligned}
& \quad \operatorname{Var}\left(\frac{1}{+} \sum_{j=1}^{+} \widehat{x}_{j}(i)\right)=\frac{1}{t} \cdot \operatorname{Var}\left(\widehat{x}_{(i}(i)\right)=\frac{\|x\|_{2}^{2}}{t \cdot m} \\
& \text { Recall: } \tilde{x}_{j}(i)=s(i) \cdot \sum_{k: h_{j}(k)=h_{j}(i)} x(k) \cdot s(k) . \\
& \text { What is an upper bound on } \operatorname{Pr}\left[\left|\tilde{x}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right] \text { ? } \quad \frac{1, l^{\frac{3}{2}}}{c^{2}}
\end{aligned}
$$

By Chebyshev's inequality:

$$
\operatorname{Pr}\left[\left|\tilde{x}_{j}(i)-x(i)\right| \geq \epsilon\|x\|_{2}\right] \leq \frac{\operatorname{Var}\left[\tilde{x}_{j}(i)\right]}{\epsilon^{2}\|x\|_{2}^{2}} \leq \frac{1}{\epsilon^{2} \cdot m}
$$

If we set $m=\frac{3}{\epsilon^{2}}$, then our estimate is good with probability $\geq 2 / 3$.
How large must we set m to increase our success probability to $\geq 1-\delta$? $\quad m=\frac{1}{\varepsilon^{2} \delta}$ - deperdua on δ is bud imp ore to $\log (1 / \varepsilon)$
well imp

Median Trick for Count Sketch

To achieve $O(\log (1 / \delta))$ dependence, Count Sketch uses the 'median trick'.

Median Trick for Count Sketch

To achieve $O(\log (1 / \delta))$ dependence, Count Sketch uses the 'median trick'.

- Set $m=3 / \epsilon^{2}$ so each estimate $\tilde{x}_{j}(i)$ is a $\pm \epsilon\|x\|_{2}$ approximation to $x(i)$ with probability at least $2 / 3$.

Median Trick for Count Sketch

To achieve $O(\log (1 / \delta))$ dependence, Count Sketch uses the 'median trick'.

- Set $m=3 / \epsilon^{2}$ so each estimate $\tilde{x}_{j}(i)$ is a $\pm \epsilon\|x\|_{2}$ approximation to $x(i)$ with probability at least $2 / 3$.

$$
t=0(\log (1(\partial))
$$

- If we make t such estimates independently, we expect $2 / 3 \cdot t$ of them to be correct.

Median Trick for Count Sketch

To achieve $O(\log (1 / \delta))$ dependence, Count Sketch uses the 'median trick'.

- Set $m=3 / \epsilon^{2}$ so each estimate $\tilde{x}_{j}(i)$ is a $\pm \epsilon\|x\|_{2}$ approximation to $x(i)$ with probability at least $2 / 3$.
- If we make t such estimates independently, we expect $2 / 3 \cdot t$ of them to be correct. $\tilde{X}_{1}(i), \bar{x}_{2}(i) \cdots \cdot \tilde{x}_{7}(i)$
- By a Chernoff bound, for $t=O(\log (1 / \delta)),>1 / 2$ will be correct with probability at least $1-\delta$.

Median Trick for Count Sketch

$$
m=\frac{3}{\varepsilon^{2}} \quad \begin{aligned}
& t=\log \left(1 (d) \rightarrow \left(S \text { jotuns } \pm \varepsilon\|x\|_{2}\right.\right. \\
& \text { "rooting }
\end{aligned} \rightarrow \text { esinetes of frearencios } w
$$ esinetes of fregrencios w P

To achieve $O(\log (1 / \delta))$ dependence, Count Sketch uses the median $\geqslant \boldsymbol{\imath}-\delta$. trick'.

- Set $m=3 / \epsilon^{2}$ so each estimate $\tilde{x}_{j}(i)$ is a $\pm \epsilon\|x\|_{2}$ approximation to $x(i)$ with probability at least $2 / 3$.
- If we make t such estimates independently, we expect $2 / 3 \cdot t$ of them to be correct.
- By a Chernoff bound, for $t=O(\log (1 / \delta)),>1 / 2$ will be correct with probability at least $1-\delta$.
- Thus, the median estimate will be correct with probability at least $1-\delta$.

Approximate Matrix Multiplication

Matrix Multiplication Problem

$$
\left.\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right]_{\Gamma}| | x \right\rvert\,=\sqrt{n} \quad \widetilde{x}=A A^{\top} x
$$

Given $A, B \in \mathbb{R}^{n \times n}$ would like to compute $C=A B$. Requires n^{ω} time where $\omega \approx 2.373$ in theory.

Matrix Multiplication Problem

$$
\because\left[A /\left[\begin{array}{ll}
d & B
\end{array}\right]\right.
$$

$\times 氏\|A A\|_{F}\|B\|_{F}$

$$
\frac{1}{2^{2^{1 / t}}} \cdot n^{2+\kappa} \quad n^{2+\varepsilon}{ }^{\infty} \varepsilon
$$

Given $A, B \in \mathbb{R}^{n \times n}$ would like to compute $C=A B$. Requires n^{ω} time where $\omega \approx 2.373$ in theory.

Today: We'll see how to compute an approximation in $O\left(n^{2}\right)$ time via a simple sampling approach.

- One of the most fundamental algorithms in randomized numerical linear algebra. Forms the building block for many other algorithms.
Cregression
- low rank approx.
- clustrig

Outer Product View of Matrix Multiplication

Inner Product View: $[A B]_{i j}=\left\langle A_{i,,}, B_{j,:}\right\rangle=\sum_{k=1}^{n} A_{i k} \cdot B_{k j}$.

Outer Product View of Matrix Multiplication

Inner Product View: $[A B]_{i j}=\left\langle A_{i,,}, B_{j,:}\right\rangle=\sum_{k=1}^{n} A_{i k} \cdot B_{k j}$.

Outer Product View: Observe that $C_{k}=A_{;, k} B_{k,:}$ is an $n \times n$ matrix with $\left[C_{k}\right]_{i j}=A_{j k} \cdot B_{k j}$. So $A B=\sum_{k=1}^{n} A_{:, k} B_{k, ;}$

$B_{n,}$

Outer Product View of Matrix Multiplication

Inner Product View: $[A B]_{i j}=\left\langle A_{i,,}, B_{j,:}\right\rangle=\sum_{k=1}^{n} A_{i k} \cdot B_{k j}$.

Outer Product View: Observe that $C_{k}=A_{i, k} B_{k,:}$ is an $n \times n$ matrix with $\left[C_{k}\right]_{i j}=A_{j k} \cdot B_{k j}$. So $A B=\sum_{k=1}^{n} A_{:, k} B_{k,:}$

Basic Idea: Approximate AB by sampling terms of this sum.

Canonical AMM Algorithm
Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i} \geq 0$ and $\sum_{[n]} p_{i}=1$.
- Select $\mathbf{i}_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[\mathrm{i}_{\mathrm{j}}=k\right]=p_{k}$.
 importance sampliy

