
COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 8

1

Logistics

• Problem Set 2 is due next Wednesday.
• One page project proposal due Tuesday 3/12.
• No quiz this week – focus on the problem set/project
proposal.

2

Summary

Last Time:
• Graph connectivity with low communication

• Approach via Boruvka’s algorithm and sparse recovery/!0
sampling.

Today:
• Finish up !0 sampling analysis.

• Other approaches to sparse recovery and applications to data
processing in streams.

• The count-sketch algorithm.

3

Summary

Last Time:
• Graph connectivity with low communication

• Approach via Boruvka’s algorithm and sparse recovery/!0
sampling.

Today:
• Finish up !0 sampling analysis.

• Other approaches to sparse recovery and applications to data
processing in streams.

• The count-sketch algorithm.

3

!0 Sampling and Graph Sketching

3

A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want
to send messages to a central server, who will then determine if the
graph is connected.

Saw how this can be accomplished via !0 sampling using with
messages of size just O(log3 n).

4

I ↳

- nigh

Key Ingredient 1: !0 Sampling

Theorem: There exists a distribution over random matrices
A ∈ ZO(log2 n)×n such that for any fixed x ∈ Zn, with probability at least
1− 1/nc, we can learn (i, xi) for some xi #= 0 from Ax.

Key Property: Given sketches Ax1 and Ax2, can easily compute
A(x1 + x2) and recover a nonzero entry from x1 + x2 with high
probability.

5

:

Simulating Boruvka’s Algorithm via Sketches

• For independent !0 sampling matrices A1, . . . ,Alog2 n, each node
computes Ajvi and sends these sketches to the central server.
O(log3 n) bits in total.

• The central server uses A1v1, . . . ,A1vn to simulate the first step of
Boruvka’s – i.e., to identify one outgoing edge from each node.

• For each subsequent step j, let S1, S2, . . . Sc be the current
connected components. Observe that

∑
i∈Sk vi has non-zero

entries corresponding exactly to the outgoing edges of Sk.

• So, from Aj
∑

i∈Sk vi =
∑

i∈Sk Ajvi, the server can find an outgoing
edge from each connected component Sk. Thus, the server can
simulate the jth round of Boruvka’s algorithm.

• Overall, using the log2 n different sketches from each node, the
server can simulate the full algorithm and determine with high
probability if the graph is connected or not.

6

m a x degree w a s D : big;¥§,

*
* I s

Simulating Boruvka’s Algorithm via Sketches

• For independent !0 sampling matrices A1, . . . ,Alog2 n, each node
computes Ajvi and sends these sketches to the central server.
O(log3 n) bits in total.

• The central server uses A1v1, . . . ,A1vn to simulate the first step of
Boruvka’s – i.e., to identify one outgoing edge from each node.

• For each subsequent step j, let S1, S2, . . . Sc be the current
connected components. Observe that

∑
i∈Sk vi has non-zero

entries corresponding exactly to the outgoing edges of Sk.

• So, from Aj
∑

i∈Sk vi =
∑

i∈Sk Ajvi, the server can find an outgoing
edge from each connected component Sk. Thus, the server can
simulate the jth round of Boruvka’s algorithm.

• Overall, using the log2 n different sketches from each node, the
server can simulate the full algorithm and determine with high
probability if the graph is connected or not.

6

Implementing !0 Sampling

6

!0 Sampling Construction

Construction:

• Let S0, S1, . . . , Slog2 n be random subsets of [n]. Each element is
included in Sj independently with probability 1/2j.

• For each Sj, compute aj =
∑

i∈Sj xi, bj =
∑

i∈Sj xi · i and
cj =

∑
i∈Sj xi · r

i mod p, where r is a random value in [p] and p is
a prime with p ≥ nc for some large constant c.

• Observe: The vector [a1, . . . , alog2 n,b1, . . . ,blog2 n, c1, . . . , clog2 n]
can be written as Ax, where A ∈ Z3 log2 n×n is a random matrix.

7

-
h i . .-n)

- - -
r
" i . . .p }

- o o o

i l i l i l T t i i q;]
i o o i o i o i o ,"if:÷÷÷I÷÷÷÷f

÷I1÷i÷÷1
r o r i r '

Construction Intuition

We will recover a nonzero element from a sampling level when
there is exactly one nonzero element at that level.

With good probability, there is will exactly one element at
some level. Can improve success probability via repetition.

8

r a '

bajox i ,i"¥ : II.iii.i i i .
a

> 1/8

Recovering Unique Nonzeros

S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.
aj =

∑
i∈Sj xi, bj =

∑
i∈Sj xi · i and cj =

∑
i∈Sj xi · r

i mod p, where r is a
random value in [p] and p = nc for large enough constant c.

Claim 1: If there is a unique i ∈ Sj with xi #= 0, then aj = xi and
bj = xi · i. So, from these quantities we can exactly determine (i, xj).

Claim 2: cj lets us test if there is a unique such i. In particular, we
check that bj

aj
∈ [n] and that cj = aj · rbj/aj mod p.

• If there is a unique i ∈ Sj with xi #= 0, the test passes.

• If not, it fails with probability at most n
p = 1

nc−1 .

9

Sjµ

A j = §,g .X i
' X i Li,;§,;X i 'i s x i ."I

" '""

[A]fµ÷§
no isy

Recovering Unique Nonzeros

S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.
aj =

∑
i∈Sj xi, bj =

∑
i∈Sj xi · i and cj =

∑
i∈Sj xi · r

i mod p, where r is a
random value in [p] and p = nc for large enough constant c.

Claim 1: If there is a unique i ∈ Sj with xi #= 0, then aj = xi and
bj = xi · i. So, from these quantities we can exactly determine (i, xj).

Claim 2: cj lets us test if there is a unique such i. In particular, we
check that bj

aj
∈ [n] and that cj = aj · rbj/aj mod p.

• If there is a unique i ∈ Sj with xi #= 0, the test passes.

• If not, it fails with probability at most n
p = 1

nc−1 .

9

-

19

a s [" M bi:X.tk,

- baigsiecn)

- I
cjsx.ri.hr#,.
xir3cj=aj.r-
=xiriIE=xiri

Recovering Unique Nonzeros

Claim 2: cj lets us test if there is a unique such i. In particular, we
check that bj

aj
∈ [n] and that cj = aj · rbj/aj mod p.

• If there is a unique i ∈ Sj with xi #= 0, the test passes.

• If not, it fails with probability at most n
p ≤ 1

nc−1 .

Proof via polynomial identity testing: If |{i ∈ Sj : xi #= 0}| > 1, then

p(r) = cj − ajrbj/aj mod p =
∑

i∈Sj

xiri − ajrbj/aj mod p

is a non-zero polynomial of degree at most n over Zp.

• This polynomial has ≤ n roots, so for a random r ∈ [p],
Pr[p(r) = 0] ≤ n

p .

• Thus, cj = ajrbj/aj with probability ≤ n
p ≤ 1

nc−1 .

10

Recovering Unique Nonzeros

Claim 2: cj lets us test if there is a unique such i. In particular, we
check that bj

aj
∈ [n] and that cj = aj · rbj/aj mod p.

• If there is a unique i ∈ Sj with xi #= 0, the test passes.

• If not, it fails with probability at most n
p ≤ 1

nc−1 .

Proof via polynomial identity testing: If |{i ∈ Sj : xi #= 0}| > 1, then

p(r) = cj − ajrbj/aj mod p =
∑

i∈Sj

xiri − ajrbj/aj mod p

is a non-zero polynomial of degree at most n over Zp.

• This polynomial has ≤ n roots, so for a random r ∈ [p],
Pr[p(r) = 0] ≤ n

p .

• Thus, cj = ajrbj/aj with probability ≤ n
p ≤ 1

nc−1 .

10

=
0"onlyi f testpasses Tsr't.M - w ?
I

Recovering Unique Nonzeros

Claim 2: cj lets us test if there is a unique such i. In particular, we
check that bj

aj
∈ [n] and that cj = aj · rbj/aj mod p.

• If there is a unique i ∈ Sj with xi #= 0, the test passes.

• If not, it fails with probability at most n
p ≤ 1

nc−1 .

Proof via polynomial identity testing: If |{i ∈ Sj : xi #= 0}| > 1, then

p(r) = cj − ajrbj/aj mod p =
∑

i∈Sj

xiri − ajrbj/aj mod p

is a non-zero polynomial of degree at most n over Zp.

• This polynomial has ≤ n roots, so for a random r ∈ [p],
Pr[p(r) = 0] ≤ n

p .

• Thus, cj = ajrbj/aj with probability ≤ n
p ≤ 1

nc−1 .

10

-

E.

Completing The Analysis

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.

• If any Sj contains a unique i with xi #= 0, we will recover it.

• It remains to show that with good probability, at least one Sj
contains such an i.

Claim: For j with 2j−2 ≤ ‖x‖0 ≤ 2j−1, Pr[|{i ∈ Sj : xi #= 0}| = 1] ≥ 1/8.

Pr[|{i ∈ Sj : xi #= 0}| = 1] = ‖x‖0 ·
1
2j

·
(
1− 1

2j

)‖x‖0−1

≥ ‖x‖0
2j

(
1− ‖x‖0

2j

)

≥ 1
4
·
(
1− 1

2

)
=

1
8
.

If we repeat the whole process t = O(log n) times, with probability
≥ 1− 1/nc we will recover some nonzero element of x. In total, A is a
random matrix with t · log2 n = O(log2 n) rows.

11

f
s i

Completing The Analysis

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.

• If any Sj contains a unique i with xi #= 0, we will recover it.

• It remains to show that with good probability, at least one Sj
contains such an i.

Claim: For j with 2j−2 ≤ ‖x‖0 ≤ 2j−1, Pr[|{i ∈ Sj : xi #= 0}| = 1] ≥ 1/8.

Pr[|{i ∈ Sj : xi #= 0}| = 1] = ‖x‖0 ·
1
2j

·
(
1− 1

2j

)‖x‖0−1

≥ ‖x‖0
2j

(
1− ‖x‖0

2j

)

≥ 1
4
·
(
1− 1

2

)
=

1
8
.

If we repeat the whole process t = O(log n) times, with probability
≥ 1− 1/nc we will recover some nonzero element of x. In total, A is a
random matrix with t · log2 n = O(log2 n) rows.

11

-#nont w o
inlays
i nX

Completing The Analysis

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.

• If any Sj contains a unique i with xi #= 0, we will recover it.

• It remains to show that with good probability, at least one Sj
contains such an i.

Claim: For j with 2j−2 ≤ ‖x‖0 ≤ 2j−1, Pr[|{i ∈ Sj : xi #= 0}| = 1] ≥ 1/8.

Pr[|{i ∈ Sj : xi #= 0}| = 1] = ‖x‖0 ·
1
2j

·
(
1− 1

2j

)‖x‖0−1

≥ ‖x‖0
2j

(
1− ‖x‖0

2j

)

≥ 1
4
·
(
1− 1

2

)
=

1
8
.

If we repeat the whole process t = O(log n) times, with probability
≥ 1− 1/nc we will recover some nonzero element of x. In total, A is a
random matrix with t · log2 n = O(log2 n) rows.

11

Completing The Analysis

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.

• If any Sj contains a unique i with xi #= 0, we will recover it.

• It remains to show that with good probability, at least one Sj
contains such an i.

Claim: For j with 2j−2 ≤ ‖x‖0 ≤ 2j−1, Pr[|{i ∈ Sj : xi #= 0}| = 1] ≥ 1/8.

Pr[|{i ∈ Sj : xi #= 0}| = 1] = ‖x‖0 ·
1
2j

·
(
1− 1

2j

)‖x‖0−1

≥ ‖x‖0
2j

(
1− ‖x‖0

2j

)

≥ 1
4
·
(
1− 1

2

)
=

1
8
.

If we repeat the whole process t = O(log n) times, with probability
≥ 1− 1/nc we will recover some nonzero element of x. In total, A is a
random matrix with t · log2 n = O(log2 n) rows.

11

-

f-si)"!Y-f.)'" '"s.fIII)

Completing The Analysis

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.

• If any Sj contains a unique i with xi #= 0, we will recover it.

• It remains to show that with good probability, at least one Sj
contains such an i.

Claim: For j with 2j−2 ≤ ‖x‖0 ≤ 2j−1, Pr[|{i ∈ Sj : xi #= 0}| = 1] ≥ 1/8.

Pr[|{i ∈ Sj : xi #= 0}| = 1] = ‖x‖0 ·
1
2j

·
(
1− 1

2j

)‖x‖0−1

≥ ‖x‖0
2j

(
1− ‖x‖0

2j

)

≥ 1
4
·
(
1− 1

2

)
=

1
8
.

If we repeat the whole process t = O(log n) times, with probability
≥ 1− 1/nc we will recover some nonzero element of x. In total, A is a
random matrix with t · log2 n = O(log2 n) rows.

11

-

I ' sµ

⇐2¥ "1¥ -

Completing The Analysis

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.

• If any Sj contains a unique i with xi #= 0, we will recover it.

• It remains to show that with good probability, at least one Sj
contains such an i.

Claim: For j with 2j−2 ≤ ‖x‖0 ≤ 2j−1, Pr[|{i ∈ Sj : xi #= 0}| = 1] ≥ 1/8.

Pr[|{i ∈ Sj : xi #= 0}| = 1] = ‖x‖0 ·
1
2j

·
(
1− 1

2j

)‖x‖0−1

≥ ‖x‖0
2j

(
1− ‖x‖0

2j

)

≥ 1
4
·
(
1− 1

2

)
=

1
8
.

If we repeat the whole process t = O(log n) times, with probability
≥ 1− 1/nc we will recover some nonzero element of x. In total, A is a
random matrix with t · log2 n = O(log2 n) rows. 11

I
- Y , F ,8 ratays

7 j E {o, but} satisfy

- -

Ax ,1 -
A "

s
AIN'M

31-gh

-

- -

Application to Streaming Computation

11

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions?

12

"÷÷i
i"iii.
iii.a;÷÷
÷⇐.

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions?

12

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions?

12

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions?

12

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions?

12

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions?

12

- -

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions?

12

any

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions?

12

m o o - →

$÷⇒¥ - ÷

/ OI nY

-
l 01h)

Randomized Solution via !0 sampling

• The algorithm samples independent !0 sampling matrices
A1, . . . ,Alog2 n and maintains Ajvu for all j and all u ∈ [n], where
vu ∈ R(

n
2) is the incidence vector for node u.

• O(n log3 n) bits of storage in total.

• Key Idea: Linear Updates. When an edge (u, v) is inserted or
deleted, one entry is either incremented or decremented in
each of vu, vv. The algorithm can update Ajvu and Ajvv in
O(log2 n) time – simply set Ajvu = Ajvu ± Aj,k.

• At the end of the stream (or at any time during it) can use the
sketched neighborhoods to simulate Boruvka’s algorithm and
determine connectivity with high probability.

• Can think of the algorithm as computing AB ∈ Rlog3 n×n where
A ∈ Rlog3 n×(n2) is made up of the appended sketching matrices
and B ∈ R(

n
2)×n is the vertex-edge-incidence matrix.

13

0
AM :O(bin) space
i n nodes

login a n " A Aign

t a t space Olnlogh)

Randomized Solution via !0 sampling

• The algorithm samples independent !0 sampling matrices
A1, . . . ,Alog2 n and maintains Ajvu for all j and all u ∈ [n], where
vu ∈ R(

n
2) is the incidence vector for node u.

• O(n log3 n) bits of storage in total.

• Key Idea: Linear Updates. When an edge (u, v) is inserted or
deleted, one entry is either incremented or decremented in
each of vu, vv. The algorithm can update Ajvu and Ajvv in
O(log2 n) time – simply set Ajvu = Ajvu ± Aj,k.

• At the end of the stream (or at any time during it) can use the
sketched neighborhoods to simulate Boruvka’s algorithm and
determine connectivity with high probability.

• Can think of the algorithm as computing AB ∈ Rlog3 n×n where
A ∈ Rlog3 n×(n2) is made up of the appended sketching matrices
and B ∈ R(

n
2)×n is the vertex-edge-incidence matrix.

13

Randomized Solution via !0 sampling

• The algorithm samples independent !0 sampling matrices
A1, . . . ,Alog2 n and maintains Ajvu for all j and all u ∈ [n], where
vu ∈ R(

n
2) is the incidence vector for node u.

• O(n log3 n) bits of storage in total.

• Key Idea: Linear Updates. When an edge (u, v) is inserted or
deleted, one entry is either incremented or decremented in
each of vu, vv. The algorithm can update Ajvu and Ajvv in
O(log2 n) time – simply set Ajvu = Ajvu ± Aj,k.

• At the end of the stream (or at any time during it) can use the
sketched neighborhoods to simulate Boruvka’s algorithm and
determine connectivity with high probability.

• Can think of the algorithm as computing AB ∈ Rlog3 n×n where
A ∈ Rlog3 n×(n2) is made up of the appended sketching matrices
and B ∈ R(

n
2)×n is the vertex-edge-incidence matrix.

13

Randomized Solution via !0 sampling

• The algorithm samples independent !0 sampling matrices
A1, . . . ,Alog2 n and maintains Ajvu for all j and all u ∈ [n], where
vu ∈ R(

n
2) is the incidence vector for node u.

• O(n log3 n) bits of storage in total.

• Key Idea: Linear Updates. When an edge (u, v) is inserted or
deleted, one entry is either incremented or decremented in
each of vu, vv. The algorithm can update Ajvu and Ajvv in
O(log2 n) time – simply set Ajvu = Ajvu ± Aj,k.

• At the end of the stream (or at any time during it) can use the
sketched neighborhoods to simulate Boruvka’s algorithm and
determine connectivity with high probability.

• Can think of the algorithm as computing AB ∈ Rlog3 n×n where
A ∈ Rlog3 n×(n2) is made up of the appended sketching matrices
and B ∈ R(

n
2)×n is the vertex-edge-incidence matrix.

13

can

Randomized Solution via !0 sampling

• The algorithm samples independent !0 sampling matrices
A1, . . . ,Alog2 n and maintains Ajvu for all j and all u ∈ [n], where
vu ∈ R(

n
2) is the incidence vector for node u.

• O(n log3 n) bits of storage in total.

• Key Idea: Linear Updates. When an edge (u, v) is inserted or
deleted, one entry is either incremented or decremented in
each of vu, vv. The algorithm can update Ajvu and Ajvv in
O(log2 n) time – simply set Ajvu = Ajvu ± Aj,k.

• At the end of the stream (or at any time during it) can use the
sketched neighborhoods to simulate Boruvka’s algorithm and
determine connectivity with high probability.

• Can think of the algorithm as computing AB ∈ Rlog3 n×n where
A ∈ Rlog3 n×(n2) is made up of the appended sketching matrices
and B ∈ R(

n
2)×n is the vertex-edge-incidence matrix.

13

0

Randomized Solution via !0 sampling

• The algorithm samples independent !0 sampling matrices
A1, . . . ,Alog2 n and maintains Ajvu for all j and all u ∈ [n], where
vu ∈ R(

n
2) is the incidence vector for node u.

• O(n log3 n) bits of storage in total.

• Key Idea: Linear Updates. When an edge (u, v) is inserted or
deleted, one entry is either incremented or decremented in
each of vu, vv. The algorithm can update Ajvu and Ajvv in
O(log2 n) time – simply set Ajvu = Ajvu ± Aj,k.

• At the end of the stream (or at any time during it) can use the
sketched neighborhoods to simulate Boruvka’s algorithm and
determine connectivity with high probability.

• Can think of the algorithm as computing AB ∈ Rlog3 n×n where
A ∈ Rlog3 n×(n2) is made up of the appended sketching matrices
and B ∈ R(

n
2)×n is the vertex-edge-incidence matrix.

13

O

Randomized Solution via !0 sampling

• The algorithm samples independent !0 sampling matrices
A1, . . . ,Alog2 n and maintains Ajvu for all j and all u ∈ [n], where
vu ∈ R(

n
2) is the incidence vector for node u.

• O(n log3 n) bits of storage in total.

• Key Idea: Linear Updates. When an edge (u, v) is inserted or
deleted, one entry is either incremented or decremented in
each of vu, vv. The algorithm can update Ajvu and Ajvv in
O(log2 n) time – simply set Ajvu = Ajvu ± Aj,k.

• At the end of the stream (or at any time during it) can use the
sketched neighborhoods to simulate Boruvka’s algorithm and
determine connectivity with high probability.

• Can think of the algorithm as computing AB ∈ Rlog3 n×n where
A ∈ Rlog3 n×(n2) is made up of the appended sketching matrices
and B ∈ R(

n
2)×n is the vertex-edge-incidence matrix.

13

Bfi;i§

Other Applications of Linear Sketching

13

Linear Sketching

• !0 sampling is an example of a linear sketching algorithm. We
compress our data via a random linear function (i.e., the
random matrix A), and prove that we can still recover useful
information from the compression.

• Linearity is useful because it lets us easily aggregate sketches in
distributed settings and update sketches in streaming settings.

• Aside from recovering non-zero entries we might want to
estimate norms or other aggregate statistics of x, find large
magnitude entries, sample entries with probabilities according
to their magnitudes.

14

Linear Sketching

• !0 sampling is an example of a linear sketching algorithm. We
compress our data via a random linear function (i.e., the
random matrix A), and prove that we can still recover useful
information from the compression.

• Linearity is useful because it lets us easily aggregate sketches in
distributed settings and update sketches in streaming settings.

• Aside from recovering non-zero entries we might want to
estimate norms or other aggregate statistics of x, find large
magnitude entries, sample entries with probabilities according
to their magnitudes.

14

Linear Sketching for Heavy-Hitters Identification

Goal: For a vector x ∈ Rn we would like to find all entries of x
with magnitude at least ε‖x‖2 or ε‖x‖1.

Common Application:

• x is a vector of counts (e.g., views of videos, searches for
products, visits from IP addresses, etc.) and we would like
to identity all items with large counts.

• We often cannot store all of x in one place but must store
a small-space compression of x as counts are updated
over time, or must aggregate information about x across
multiple machines.

15

-
{ s o

Linear Sketching for Heavy-Hitters Identification

Goal: For a vector x ∈ Rn we would like to find all entries of x
with magnitude at least ε‖x‖2 or ε‖x‖1.

Common Application:

• x is a vector of counts (e.g., views of videos, searches for
products, visits from IP addresses, etc.) and we would like
to identity all items with large counts.

• We often cannot store all of x in one place but must store
a small-space compression of x as counts are updated
over time, or must aggregate information about x across
multiple machines.

15

frequent i t s estimation

- - cant-ininsketch
'contslutch

÷:#
in

Count Sketch

Set up: We would like to estimate all entries of a vector x ∈ Rn

up to error ε‖x‖2 with probability at least 1− δ, from a small
linear sketch, of size O

(
log(1/δ)

ε2

)
.

• Let m = O(1/ε2) and t = O(log(1/δ).
• Pick t random pairwise independent hash functions
h1, . . . ,ht : [n] → [m].

• Pick t random pairwise independent hash functions
s1, . . . , st : [n] → {−1, 1}.

• Compute t independent estimates of x(i) as
x̃j(i) = s(i) ·

∑
k:hj(k)=hj(i) x(k) · s(k).

• Output the median of {x̃1(i), . . . , x̃t(i)} as our estimate.

16

H I E A µ

Count Sketch

Set up: We would like to estimate all entries of a vector x ∈ Rn

up to error ε‖x‖2 with probability at least 1− δ, from a small
linear sketch, of size O

(
log(1/δ)

ε2

)
.

• Let m = O(1/ε2) and t = O(log(1/δ).
• Pick t random pairwise independent hash functions
h1, . . . ,ht : [n] → [m].

• Pick t random pairwise independent hash functions
s1, . . . , st : [n] → {−1, 1}.

• Compute t independent estimates of x(i) as
x̃j(i) = s(i) ·

∑
k:hj(k)=hj(i) x(k) · s(k).

• Output the median of {x̃1(i), . . . , x̃t(i)} as our estimate.

16

~ repetiti
on

t o set highprob.

T.jp#;jx.tx...x?
lhliiI'hli!

¥?

Count Sketch

Set up: We would like to estimate all entries of a vector x ∈ Rn

up to error ε‖x‖2 with probability at least 1− δ, from a small
linear sketch, of size O

(
log(1/δ)

ε2

)
.

• Let m = O(1/ε2) and t = O(log(1/δ).
• Pick t random pairwise independent hash functions
h1, . . . ,ht : [n] → [m].

• Pick t random pairwise independent hash functions
s1, . . . , st : [n] → {−1, 1}.

• Compute t independent estimates of x(i) as
x̃j(i) = s(i) ·

∑
k:hj(k)=hj(i) x(k) · s(k).

• Output the median of {x̃1(i), . . . , x̃t(i)} as our estimate.

16

