COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024. Lecture 8

- Problem Set 2 is due next Wednesday.
- One page project proposal due Tuesday 3/12.
- No quiz this week focus on the problem set/project proposal.

Summary

Last Time:

- Graph connectivity with low communication
- Approach via Boruvka's algorithm and sparse recovery/ ℓ_0 sampling.

Last Time:

- Graph connectivity with low communication
- Approach via Boruvka's algorithm and sparse recovery/ ℓ_0 sampling.

Today:

- Finish up ℓ_0 sampling analysis.
- Other approaches to sparse recovery and applications to data processing in streams.
- The count-sketch algorithm.

ℓ_0 Sampling and Graph Sketching

A Graph Communication Problem

Consider *n* nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.

Key Ingredient 1: ℓ_0 Sampling

Theorem: There exists a distribution over random matrices $\mathbf{A} \in \mathbb{Z}^{O(\log^2 n) \times n}$ such that for any fixed $x \in \mathbb{Z}^n$, with probability at least $1 - 1/n^c$, we can learn (i, x_i) for some $x_i \neq 0$ from $\mathbf{A}x$.

Key Property: Given sketches Ax_1 and Ax_2 , can easily compute $A(x_1 + x_2)$ and recover a nonzero entry from $x_1 + x_2$ with high probability.

Simulating Boruvka's Algorithm via Sketches

- For independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$, each node computes $A_j v_i$ and sends these sketches to the central server. $O(\log^3 n)$ bits in total.
- The central server uses A_1v_1, \ldots, A_1v_n to simulate the first step of Boruvka's i.e., to identify one outgoing edge from each node.
- For each subsequent step j, let $S_1, S_2, \ldots S_c$ be the current connected components. Observe that $\sum_{i \in S_k} v_i$ has non-zero entries corresponding exactly to the outgoing edges of S_k .

Simulating Boruvka's Algorithm via Sketches

- For independent l₀ sampling matrices A₁,..., A_{log₂}, each node computes A_jv_i and sends these sketches to the central server.
 O(log³ n) bits in total.
- The central server uses A₁v₁,..., A₁v_n to simulate the first step of Boruvka's – i.e., to identify one outgoing edge from each node.
- For each subsequent step j, let S_1, S_2, \ldots, S_c be the current connected components. Observe that $\sum_{i \in S_k} v_i$ has non-zero entries corresponding exactly to the outgoing edges of S_k .
- So, from $A_j \sum_{i \in S_k} v_i = \sum_{i \in S_k} A_j v_i$, the server can find an outgoing edge from each connected component S_k . Thus, the server can simulate the j^{th} round of Boruvka's algorithm.
- Overall, using the $\log_2 n$ different sketches from each node, the server can simulate the full algorithm and determine with high probability if the graph is connected or not.

Implementing ℓ_0 Sampling

ℓ_0 Sampling Construction

Construction:

- Let $S_0, S_1, \ldots, S_{\log_2 n}$ be random subsets of [n]. Each element is included in S_j independently with probability $1/2^j$.
- For each S_j , compute $a_j = \sum_{i \in S_j} x_i$, $b_j = \sum_{i \in S_j} x_i \cdot i$ and $(1, \dots, p)$ $c_j = \sum_{i \in S_j} x_i \cdot r^i \mod p$, where r is a random value in [p] and p is a prime with $p \ge n^c$ for some large constant c.
- **Observe:** The vector $[a_{\mathfrak{p}}, \ldots, a_{\log_2 n}, b_{\mathfrak{p}}, \ldots, b_{\log_2 n}, c_{\mathfrak{p}}, \ldots, c_{\log_2 n}]$ can be written as Ax, where $A \in \mathbb{Z}^{3 \log_2 n \times n}$ is a random matrix.

$$3/05 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0$$

Construction Intuition

We will recover a nonzero element from a sampling level when there is exactly one nonzero element at that level.

With good probability, there is will exactly one element at some level. Can improve success probability via repetition.

 $S_0, \ldots, S_{\log_2 n}$ are random subsets of [n], sampled at rates $1/2^j$. $a_j = \sum_{i \in S_j} x_i, b_j = \sum_{i \in S_j} x_i \cdot i$ and $c_j = \sum_{i \in S_j} x_i \cdot r^i \mod p$, where r is a random value in [p] and $p = n^c$ for large enough constant c.

Claim 1: If there is a unique $i \in S_j$ with $x_i \neq 0$, then $a_j = x_i$ and $b_j = x_i \cdot i$. So, from these quantities we can exactly determine (i, x_j) .

9

 $S_0, \ldots, S_{\log_2 n}$ are random subsets of [n], sampled at rates $1/2^{j}$. $a_j = \sum_{i \in S_i} x_i, b_j = \sum_{i \in S_i} x_i \cdot i \text{ and } c_j = \sum_{i \in S_i} x_i \cdot r^i \mod p$, where r is b_{i-1} random value in [p] and $p = n^c$ for large enough constant c. 6;=X1+1x1 X1+X2 **Claim 1:** If there is a unique $i \in S_i$ with $x_i \neq 0$, then $a_j = x_i$ and $b_i = x_i \cdot i$. So, from these quantities we can exactly determine (i, x_j) . **Claim 2:** c_i lets us test if there is a unique such i. In particular, we $c_{j} = X_{1} \gamma + X_{2} \gamma^{3} + X_{1} \gamma^{3}$ check that $\frac{b_i}{a_i} \in [n]$ and that $c_i = a_i \cdot r^{\underline{b_j}/a_j} \mod p$. cj=aj·r

• If there is a unique $i \in S_i$ with $x_i \neq 0$, the test passes.

• If not, it fails with probability at most $\frac{n}{n} = \frac{1}{n^{c-1}}$.

= x; r'

= 7 Xiri iesj

Recovering Unique Nonzeros

Claim 2: c_j lets us test if there is a unique such *i*. In particular, we check that $\frac{b_j}{a_i} \in [n]$ and that $c_j = a_j \cdot r^{b_j/a_j} \mod p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} \leq \frac{1}{n^{c-1}}$.

Recovering Unique Nonzeros

is

Claim 2: c_j lets us test if there is a unique such *i*. In particular, we check that $\frac{b_j}{a_i} \in [n]$ and that $c_j = a_j \cdot r^{b_j/a_j} \mod p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} \leq \frac{1}{n^{c-1}}$.

Proof via polynomial identity testing: If $|\{i \in S_j : x_i \neq 0\}| > 1$, then

$$p(r) = c_j - a_j r^{b_j/a_j} \mod p = \sum_{i \in S_j} x_i r^i - a_j r^{b_j/a_j} \mod p$$

$$\int_{0}^{11} a_j r^{b_j/a_j} r^{b_j/a_j} \log p$$
a non-zero polynomial of degree at most *n* over \mathbb{Z}_p .

Recovering Unique Nonzeros

Claim 2: c_j lets us test if there is a unique such *i*. In particular, we check that $\frac{b_j}{a_i} \in [n]$ and that $c_j = a_j \cdot r^{b_j/a_j} \mod p$.

- If there is a unique $i \in S_j$ with $x_i \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} \leq \frac{1}{n^{c-1}}$.

Proof via polynomial identity testing: If $|\{i \in S_j : x_i \neq 0\}| > 1$, then

$$p(r) = c_j - a_j r^{b_j/a_j} \mod p = \sum_{i \in S_j} x_i r^i - a_j r^{b_j/a_j} \mod p$$

is a non-zero polynomial of degree at most *n* over \mathbb{Z}_p .

• This polynomial has $\leq n$ roots, so for a random $r \in [p]$, $\Pr[p(r) = 0] \leq \frac{n}{p}$.

• Thus, $c_j = a_j r^{b_j/a_j}$ with probability $\leq \frac{n}{p} \leq \frac{1}{n^{c-1}}$.

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of [n], sampled at rates $1/2^j$.

- If any S_j contains a unique *i* with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one S_j contains such an *i*.

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of [n], sampled at rates $1/2^j$.

- If any S_j contains a unique *i* with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one S_j contains such an *i*.

Claim: For *j* with $2^{j-2} \le ||x||_0 \le 2^{j-1}$, $\Pr[|\{i \in S_j : x_i \ne 0\}| = 1] \ge 1/8$.

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of [n], sampled at rates $1/2^j$.

- If any S_j contains a unique *i* with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one S_j contains such an *i*.

Claim: For j with $2^{j-2} \le ||x||_0 \le 2^{j-1}$, $\Pr[|\{i \in S_j : x_i \ne 0\}| = 1] \ge 1/8$. $\Pr[|\{i \in S_j : x_i \ne 0\}| = 1] = ||x||_0 \cdot \frac{1}{2^j} \cdot \left(1 - \frac{1}{2^j}\right)^{||x||_0 - 1}$

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of [n], sampled at rates $1/2^j$.

- If any S_j contains a unique *i* with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one S_j contains such an *i*.

Claim: For *j* with $2^{j-2} \le ||x||_0 \le 2^{j-1}$, $\Pr[|\{i \in S_j : x_i \ne 0\}| = 1] \ge 1/8$.

$$\Pr[|\{i \in S_j : x_i \neq 0\}| = 1] = ||x||_0 \cdot \frac{1}{2^j} \cdot \left(1 - \frac{1}{2^j}\right)^{||x||_0 - 1}$$

$$\geq \frac{||x||_0}{2^j} \left(1 - \frac{||x||_0}{2^j}\right)$$

$$\left(\left(-\frac{1}{2^j}\right)^{||x||_0} \cdot \left(\left(-\frac{1}{2^j}\right)^{||x||_0}\right) \cdot \left(\left(-\frac{||x||_0}{2^j}\right)^{||x||_0}\right)$$

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of [n], sampled at rates $1/2^j$.

- If any S_j contains a unique *i* with $x_i \neq 0$, we will recover it.
- It remains to show that with good probability, at least one S_j contains such an *i*.

Claim: For j with
$$2^{j-2} \le ||x||_0 \le 2^{j-1}$$
, $\Pr[|\{i \in S_j : x_i \ne 0\}| = 1] \ge 1/8$.
 $\Pr[|\{i \in S_j : x_i \ne 0\}| = 1] = ||x||_0 \cdot \frac{1}{2^j} \cdot \left(1 - \frac{1}{2^j}\right)^{||x||_0 - 1}$
 $2^{j-2} \le ||x||_0 \ge \frac{||x||_0}{2^j} \left(1 - \frac{||x||_0}{2^j}\right)$
 $\ge \frac{1}{4} \cdot \left(1 - \frac{1}{2}\right) = \frac{1}{8}$.

Recall: $S_0, \ldots, S_{\log_2 n}$ are random subsets of [*n*], sampled at rates $1/2^j$.

- If any S_j contains a unique *i* with $x_i \neq 0$, we will recover it.

$$\begin{array}{l} ||X_{i}r|^{hx_{1}} \Pr[|\{i \in S_{j} : x_{i} \neq 0\}| = 1] = ||x||_{0} \cdot \frac{1}{2^{j}} \cdot \left(1 - \frac{1}{2^{j}}\right)^{||x||_{0}} \\ \geq \frac{||x||_{0}}{2^{j}} \left(1 - \frac{||x||_{0}}{2^{j}}\right) \\ \geq \frac{1}{4} \cdot \left(1 - \frac{1}{2}\right) = \frac{1}{8}. \end{array}$$

If we repeat the whole process $t = O(\log n)$ times, with probability $\ge 1 - 1/n^c$ we will recover some nonzero element of x. In total, **A** is a random matrix with $t \cdot \log_2 n = O(\log^2 n)$ rows.

Application to Streaming Computation

Consider a setting where an algorithm must process a stream of edge insertions or deletions, which define a graph. At the end of the stream, the algorithm should output whether that graph is connected or not.

Algorithmic Question: How much memory must an algorithm use to solve this problem with high probability? $O(\gamma^{2})$

Consider a setting where an algorithm must process a stream of edge insertions or deletions, which define a graph. At the end of the stream, the algorithm should output whether that graph is

connected or not.

Algorithmic Question: How much memory must an algorithm use to solve this problem with high probability? (n^{1})

What is the worst-case memory required by a naive deterministic algorithm that just stores the current state of the graph? How can you improve on this when there are no edge deletions?

• The algorithm samples independent ℓ_0 sampling matrices $\mathbf{A}_1, \ldots, \mathbf{A}_{\log_2 n}$ and maintains $\mathbf{A}_j v_u$ for all j and all $u \in [n]$, where $v_u \in \mathbb{R}^{\binom{n}{2}}$ is the incidence vector for node u.

• $O(n \log^3 n)$ bits of storage in total.

- The algorithm samples independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$ and maintains $A_j v_u$ for all j and all $u \in [n]$, where $v_u \in \mathbb{R}^{\binom{n}{2}}$ is the incidence vector for node u.
- $O(n \log^3 n)$ bits of storage in total.
- Key Idea: Linear Updates. When an edge (u, v) is inserted or deleted, one entry is either incremented or decremented in each of v_u, v_v . The algorithm can update $A_j v_u$ and $A_j v_v$ in $O(\log^2 n)$ time – simply set $A_j v_u = A_j v_u \pm A_{j,k}$.

- The algorithm samples independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$ and maintains $A_j v_u$ for all j and all $u \in [n]$, where $v_u \in \mathbb{R}^{\binom{n}{2}}$ is the incidence vector for node u.
- $O(n \log^3 n)$ bits of storage in total.
- Key Idea: Linear Updates. When an edge (u, v) is inserted or deleted, one entry is either incremented or decremented in each of v_u, v_v . The algorithm can update $A_j v_u$ and $A_j v_v$ in $O(\log^2 n)$ time – simply set $A_j v_u = A_j v_u \pm A_{j,k}$.

- The algorithm samples independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$ and maintains $A_j v_u$ for all j and all $u \in [n]$, where $v_u \in \mathbb{R}^{\binom{n}{2}}$ is the incidence vector for node u.
- $O(n \log^3 n)$ bits of storage in total.
- Key Idea: Linear Updates. When an edge (u, v) is inserted or deleted, one entry is either incremented or decremented in each of v_u, v_v . The algorithm can update $A_j v_u$ and $A_j v_v$ in $O(\log^2 n)$ time – simply set $A_j v_u = A_j v_u \pm A_{j,k}$.

- The algorithm samples independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$ and maintains $A_j v_u$ for all j and all $u \in [n]$, where $v_u \in \mathbb{R}^{\binom{n}{2}}$ is the incidence vector for node u.
- $O(n \log^3 n)$ bits of storage in total.
- Key Idea: Linear Updates. When an edge (u, v) is inserted or deleted, one entry is either incremented or decremented in each of v_u, v_v . The algorithm can update $A_j v_u$ and $A_j v_v$ in $O(\log^2 n)$ time – simply set $A_j v_u = A_j v_u \pm A_{j,k}$.

- The algorithm samples independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$ and maintains $A_j v_u$ for all j and all $u \in [n]$, where $v_u \in \mathbb{R}^{\binom{n}{2}}$ is the incidence vector for node u.
- $O(n \log^3 n)$, bits of storage in total.
- Key Idea: Linear Updates. When an edge (u, v) is inserted or deleted, one entry is either incremented or decremented in each of v_u, v_v . The algorithm can update $A_j v_u$ and $A_j v_v$ in $O(\log^2 n)$ time simply set $A_j v_u = A_j v_u \pm A_{j,k}$.
- At the end of the stream (or at any time during it) can use the sketched neighborhoods to simulate Boruvka's algorithm and determine connectivity with high probability.

- The algorithm samples independent ℓ_0 sampling matrices $A_1, \ldots, A_{\log_2 n}$ and maintains $A_j v_u$ for all j and all $u \in [n]$, where $v_u \in \mathbb{R}^{\binom{n}{2}}$ is the incidence vector for node u.
- $O(n \log^3 n)$ bits of storage in total.
- Key Idea: Linear Updates. When an edge (u, v) is inserted or deleted, one entry is either incremented or decremented in each of v_u, v_v . The algorithm can update $A_j v_u$ and $A_j v_v$ in $O(\log^2 n)$ time – simply set $A_j v_u = A_j v_u \pm A_{j,k}$.
- At the end of the stream (or at any time during it) can use the sketched neighborhoods to simulate Boruvka's algorithm and determine connectivity with high probability.
- Can think of the algorithm as computing $AB \in \mathbb{R}^{\log^3 n \times n}$ where $I \in A \in \mathbb{R}^{\log^3 n \times \binom{n}{2}}$ is made up of the appended sketching matrices and $B \in \mathbb{R}^{\binom{n}{2} \times n}$ is the vertex-edge-incidence matrix.

Other Applications of Linear Sketching

Linear Sketching

 \$\ell_0\$ sampling is an example of a linear sketching algorithm. We compress our data via a random linear function (i.e., the random matrix A), and prove that we can still recover useful information from the compression.

Linear Sketching

 \$\ell_0\$ sampling is an example of a linear sketching algorithm. We compress our data via a random linear function (i.e., the random matrix A), and prove that we can still recover useful information from the compression.

- Linearity is useful because it lets us easily aggregate sketches in distributed settings and update sketches in streaming settings.
- Aside from recovering non-zero entries we might want to estimate norms or other aggregate statistics of **x**, find large magnitude entries, sample entries with probabilities according to their magnitudes.

Goal: For a vector $\mathbf{x} \in \mathbb{R}^n$ we would like to find all entries of \mathbf{x} with magnitude at least $\epsilon \|\mathbf{x}\|_2$ or $\epsilon \|\mathbf{x}\|_1$. $\xi > O$

Linear Sketching for Heavy-Hitters Identification

Goal: For a vector $\mathbf{x} \in \mathbb{R}^n$ we would like to find all entries of \mathbf{x} with magnitude at least $\epsilon ||\mathbf{x}||_2$ or $\epsilon ||\mathbf{x}||_1$. Common Application:

- **x** is a vector of counts (e.g., views of videos, searches for products, visits from IP addresses, etc.) and we would like to identity all items with large counts.
- We often cannot store all of x in one place but must store a small-space compression of x as counts are updated over time, or must aggregate information about x across multiple machines.

Count Sketch

Set up: We would like to estimate all entries of a vector $\mathbf{x} \in \mathbb{R}^n$ up to error $\epsilon \|\mathbf{x}\|_2$ with probability at least $1 - \delta$, from a small linear sketch, of size $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$.

Count Sketch

Set up: We would like to estimate all entries of a vector $\mathbf{x} \in \mathbb{R}^n$ up to error $\epsilon ||\mathbf{x}||_2$ with probability at least $1 - \delta$, from a small linear sketch, of size $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$. repetitive to get high prob.

- Let $m = O(1/\epsilon^2)$ and $t = O(\log(1/\delta))$
- Pick *t* random pairwise independent hash functions $h_1, \ldots, h_t : [n] \rightarrow [m]$.
- Pick *t* random pairwise independent hash functions

Count Sketch

Set up: We would like to estimate all entries of a vector $\mathbf{x} \in \mathbb{R}^n$ up to error $\epsilon \|\mathbf{x}\|_2$ with probability at least $1 - \delta$, from a small linear sketch, of size $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$.

- Let $m = O(1/\epsilon^2)$ and $t = O(\log(1/\delta))$.
- Pick *t* random pairwise independent hash functions $\mathbf{h}_1, \ldots, \mathbf{h}_t : [n] \to [m]$.
- Pick *t* random pairwise independent hash functions $\mathbf{s}_1, \ldots, \mathbf{s}_t : [n] \to \{-1, 1\}.$
- Compute t independent estimates of $\mathbf{x}(i)$ as $\tilde{\mathbf{x}}_{j}(i) = \mathbf{s}(i) \cdot \sum_{k:h_{j}(k)=h_{j}(i)} \mathbf{x}(k) \cdot \mathbf{s}(k).$ $\gamma \begin{bmatrix} \mathbf{x}_{10} \\ \mathbf{x}_{10} \end{bmatrix} + \mathbf{x}_{10} + \mathbf{x}_{10} + \mathbf{x}_{10} \end{bmatrix}$ $\chi \begin{bmatrix} \mathbf{x}_{10} \\ \mathbf{x}_{10} \end{bmatrix} + \mathbf{x}_{10} + \mathbf{x}_{10} + \mathbf{x}_{10} \end{bmatrix}$ 16