COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 7

Logistics

- Problem Set 2 is posted and due next Wednesday.
- One page project proposal due Tuesday 3/12.
- If you have emailed me about project ideas and I haven't replied I will shortly.

Summary

Last Time:

- Random hashing and the Rabin fingerprint.
- Applications to low communication protocol for equality testing (testing equality of n-bit strings using $O(\log n)$ bits), and to pattern matching (Rabin-Karp algorithm).

Today:

- Sparse recovery/ ℓ_{0} sampling via linear sketching.
- Application to a low-communication protocol for graph connectivity.

Quiz Review

Question 1

Not complete
Points out of
1.00

Flag
question
*) Edit
question

Consider a hash table that uses linear probing to resolve collisions. Assume that item x is stored in position $h(x)+k$. True or False: The interval $[h(x), h(x+1), \ldots, h(x+k)]$ is always a length- $(k+1)$ full interval.TrueFalse

Check

Quiz Review

Question 2

Not complete
Points out of 1.00

P Flag question

* Edit question

Alice and Bob both have n -bit strings, $a, b \in\{0,1\}^{n}$. For any $\delta>0$, how many bits of communication do they need to determine, with probability at least $1-\delta$ whether or not $a=b$?a. $O(\log (n) \cdot \log (1 / \delta))$b. $O(\log (n / \delta))$c. $O\left(\frac{\log (n)}{\delta}\right)$d. $O(1 / \delta)$e. $O(\log (n))$

Check

Rabin-Karp for Multiple Pattern Matching

The Rabin-Karp algorithm can be extended to search for k patterns in just $O(n+k m)$ expected time.

- Significantly better than the naive $O((n+m) k)$ that would follow from repeating single pattern matching k times.
- Key Idea: Compute fingerprints for all k patterns in $O(m k)$ time and store them in a hash table.
- Compute the fingerprints of $X_{1}, X_{2}, \ldots, X_{n-m+1}$ iteratively in $O(n)$ time via the rolling hash trick.
- At each iteration, check X_{j} against all patterns by doing a hash table look-up in $O(1)$ expected time.

Other Topics in Hashing

There are a ton of interesting topics related to random hashing that I am not covering.

- Constructions of universal hash functions.
- Constructions of k-wise independent hash functions.
- Concentration bounds and hash table analysis using k-wise independent hash functions. See Lectures 3-4 of Jelani Nelson's course notes for some material on this (link on schedule page).
- Connections to pseudorandom number generators (PRGs).
ℓ_{0} Sampling and Graph Sketching

A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want to send messages to a central server, who will then determine if the graph is connected.

Central Server

How large of messages (\# bits) are needed to determine

A Hard Case

- Surprisingly, for any input graph, the problem can be solved with high probability using just $O\left(\log ^{c} n\right)$ bits per message!
- Solution will be based on a random linear sketch.

Key Ingredient 1: ℓ_{0} Sampling

Theorem: There exists a distribution over random matrices $A \in \mathbb{Z}^{O\left(\log ^{2} n\right) \times n}$ such that for any fixed $x \in \mathbb{Z}^{n}$, with probability at least $1-1 / n^{c}$, we can learn $\left(i, x_{i}\right)$ for some $x_{i} \neq 0$ from $\mathbf{A x}$.

Useful Property 1: Given t vectors $x_{1}, \ldots, x_{t} \in \mathbb{Z}^{n}$, can recover a nonzero entry from each with probability $\geq 1-t / n^{c}$.

Useful Property 2: Given sketches $\mathbf{A} x_{1}$ and $A x_{2}$, can easily compute $\mathrm{A}\left(x_{1}+x_{2}\right)$ and recover a nonzero entry from $x_{1}+x_{2}$ with high probability.

Key Ingredient 2: Boruvka's Algorithm

1. Initialize each node as its own connected component.
2. For each connected component, select an outgoing edge. Merge any newly connected components.
3. Repeat until no connected component has an outgoing edge. If at this point, all nodes are in the same component, then the graph is connected.

Converges in $\leq \log _{2} n$ rounds.

Key Ingredient 3: Neighborhood Sketches

Each node i, can compute a vector $v_{i} \in \mathbb{Z}^{\binom{n}{2} . ~} v_{i}$ has a ± 1 for every edge in the graph and incident to node $i .+1$ is used for edges (i, j) and -1 for edges (j, i).

- Given an ℓ_{0} sampling matrix $\mathbf{A} \in \mathbb{Z}^{O\left(\log ^{2} n\right) \times\binom{ n}{2} \text {, each node can }}$ compute $A v_{i} \in \mathbb{Z}^{O\left(\log ^{2} n\right)}$ and send it to the central server.
- Using these sketches, with probability $\geq 1-1 / n^{c}$, the central server can identify one edge incident to each node - i.e., they can simulate the first iteration of Boruvka's algorithm.

Simulating Boruvka's Algorithm via Sketches

- For independent ℓ_{0} sampling matrices $A_{1}, \ldots, A_{\log _{2} n}$, each node computes $\mathrm{A}_{j} \mathrm{v}_{i}$ and sends these sketches to the central server. $O\left(\log ^{c} n\right)$ bits in total.
- The central server uses $\mathrm{A}_{1} \mathrm{v}_{1}, \ldots, \mathrm{~A}_{1} \mathrm{v}_{n}$ to simulate the first step of Boruvka's algorithm.
- For each subsequent step j, let $S_{1}, S_{2}, \ldots S_{c}$ be the current connected components. Observe that $\sum_{i \in S_{k}} v_{i}$ has non-zero entries corresponding exactly to the outgoing edges of S_{k}.

- So, from $\mathrm{A}_{i} \sum_{i-\varepsilon} v_{i}=\sum_{i-\varepsilon_{k}} A_{i} v_{i}$, the server can find an outgoing

Implementing ℓ_{0} Sampling

ℓ_{0} Sampling Construction

Theorem: There exists a distribution over random matrices
$A \in \mathbb{Z}^{0\left(\log ^{2} n\right) \times n}$ such that for any fixed $x \in \mathbb{Z}^{n}$, with probability at least $1-1 / n^{c}$, we can learn (i, x_{i}) for some $x_{i} \neq 0$ from $A x$.

Construction:

- Let $S_{0}, S_{1}, \ldots, S_{\log _{2} n}$ be random subsets of [n]. Each element is included in S_{j} independently with probability $1 / 2^{j}$.
- For each S_{j}, compute $a_{j}=\sum_{i \in S_{j}} x_{i}, b_{j}=\sum_{i \in S_{j}} x_{i} \cdot i$ and $c_{j}=\sum_{i \in S_{j}} x_{i} \cdot r^{i} \bmod p$, where r is a random value in $[p]$ and p is a prime with $p \geq n^{c}$ for some large constant c.
- Exercise: Show that the vector $\left[a_{1}, \ldots, a_{\log _{2} n}, b_{1}, \ldots, b_{\log _{2} n}, c_{1}, \ldots, c_{\log _{2} n}\right]$ can be written as $A x$, where $\mathrm{A} \in \mathbb{Z}^{3 \log _{2} n \times n}$ is a random matrix.

Construction Intuition

We will recover a nonzero element from a sampling level when there is exactly one nonzero element at that level.

With good probability, there is will exactly one element at some level. Can improve success probability via repetition.

Recovering Unique Nonzeros

Recall: $S_{0}, \ldots, S_{\log _{2} n}$ are random subsets of $[n]$, sampled at rates $1 / 2^{j}$. $a_{j}=\sum_{i \in S_{j}} x_{i}, b_{j}=\sum_{i \in S_{j}} x_{i} \cdot i$ and $c_{j}=\sum_{i \in S_{j}} x_{i} \cdot r^{i} \bmod p$, where r is a random value in $[p]$ and $p=n^{c}$ for large enough constant c.

Claim 1: If there is a unique $i \in S_{j}$ with $x_{i} \neq 0$, then $a_{j}=x_{i}$ and $b_{j}=x_{i} \cdot i$. So, from these quantities we can exactly determine $\left(i, x_{j}\right)$.

Claim 2: c_{j} lets us test if there is a unique such i. In particular, we check that $\frac{b_{j}}{a_{j}} \in[n]$ and that $c_{j}=a_{j} \cdot r^{b_{j}} / a_{j} \bmod p$.

- If there is a unique $i \in S_{j}$ with $x_{i} \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p}=\frac{1}{n^{c-1}}$.

The problem of recovering a unique $i \in S_{j}$ with $x_{i} \neq 0$ is called 1 -sparse recovery.

Recovering Unique Nonzeros

Claim 2: c_{j} lets us test if there is a unique such i. In particular, we check that $\frac{b_{j}}{a_{j}} \in[n]$ and that $c_{j}=a_{j} \cdot r^{b_{j} / a_{j}} \bmod p$.

- If there is a unique $i \in S_{j}$ with $x_{i} \neq 0$, the test passes.
- If not, it fails with probability at most $\frac{n}{p} \leq \frac{1}{n^{c-1}}$.

Proof via polynomial identity testing: If $\left|\left\{i \in S_{j}: x_{i} \neq 0\right\}\right|>1$, then

$$
p(r)=c_{j}-a_{j} r^{b_{j} / a_{j}} \bmod p=\sum_{i \in S_{j}} x_{i} r^{i}-a_{j} r^{b_{j} / a_{j}} \bmod p
$$

is a non-zero polynomial of degree at most n over \mathbb{Z}_{p}.

- This polynomial has $\leq n$ roots, so for a random $r \in[p]$,

$$
\operatorname{Pr}[p(r)=0] \leq \frac{n}{p} .
$$

- Thus, $c_{j}=a_{j} r^{b_{j}} / a_{j}$ with probability $\leq \frac{n}{p} \leq \frac{1}{n^{c-1}}$.

Completing The Analysis

Recall: $S_{0}, \ldots, S_{\log _{2} n}$ are random subsets of $[n]$, sampled at rates $1 / 2^{j}$.

- If any S_{j} contains a unique i with $x_{i} \neq 0$, we will recover it.
- It remains to show that with good probability, at least one S_{j} contains such an i.

S_{0}	S_{1}	S_{2}
0	0	0
2	2	2
1	1	1
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
-1	-1	-1
0	0	0

Claim: For j with $2^{j-2} \leq\|x\|_{0} \leq 2^{j-1}, \operatorname{Pr}\left[\left|\left\{i \in S_{j}: x_{i} \neq 0\right\}\right|=1\right] \geq 1 / 8$.

$$
\operatorname{Pr}\left[\|\left\{i \in S_{i} \cdot x_{i} \neq 0\right\} \mid=1\right]=\|x\|_{0} \cdot \frac{1}{-} \cdot(1-1)^{\|x\|_{0}-1}
$$

