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Logistics

• Problem Set 2 is due next Wednesday 2/21 at 11:59pm.
• Next week we do not have class on Thursday, so I will
move my office hours to Tuesday at 11:30am.
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Summary

Last Time:
• Practice questions on applications of linearity of expectation
and variance from quiz.

• Balls-into-bins analysis showing max load of O(
√
n) with

Chebyshev’s inequality.

• Start on exponential concentration bounds for sums of
bounded independent random variables.

Today:
• Finish up exponential concentration bounds.

• Applications to balls-into-bins and linear probing analysis.

• Maybe start on hashing/finger printing?
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Exponential Concentration Bounds
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The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1} and let X =∑n

i=1 Xi. Let µ = E[X] = E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr (X ≥ (1+ δ)µ) ≤ eδµ

(1+ δ)(1+δ)µ

Chernoff Bound (alternate version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1} and let X =∑n

i=1 Xi. Let µ = E[X] = E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls off exponentially fast.
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Balls Into Bins Via Chernoff Bound

Recall that bi is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

• bi =
∑n

i=1 Ii,j where Ii,j = 1 with probability 1/n and 0
otherwise. Ii,1, . . . Ii,n are independent.

• Apply Chernoff bound with µ = E[bi] = 1:

Pr[bi ≥ k] ≤ ek

(1+ k)(1+k) .

• For k ≥ c log n
log log n we have:

Pr[bi ≥ k] ≤ e
c log n
log log n

(
c log n
log log n

) c log n
log log n

=

1
nc−o(1)

Upshot: We recover the right bound for balls into bins.
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Bernstein Inequality

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn each with magnitude bounded by M and let X =∑n

i=1 Xi. Let µ = E[X] and σ2 = Var[X] =
∑n

i=1 Var[Xi]. For any
t ≥ 0:

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ t
)

≤ 2 exp
(
− t2

2σ2 + 4
3Mt

)
.

Assume that M = 1 and plug in t = s · σ for s ≤ σ.

Compare to Chebyshev’s: Pr
(∣∣∑n

i=1 Xi − µ
∣∣ ≥ sσ

)
≤ 1

s2 .

• An exponentially stronger dependence on s!
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Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded
random variables lying ≥ s standard deviations from its mean is
≈ exp

(
− s2

4

)
. Can plot this bound for different s:

• Looks like a Gaussian (normal) distribution – can think of
Bernstein’s inequality as giving a quantitative version of the
central limit theorem.

• The distribution of the sum of bounded independent random
variables can be upper bounded with a Gaussian distribution.

7



Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded
random variables lying ≥ s standard deviations from its mean is
≈ exp

(
− s2

4

)
. Can plot this bound for different s:

• Looks like a Gaussian (normal) distribution – can think of
Bernstein’s inequality as giving a quantitative version of the
central limit theorem.

• The distribution of the sum of bounded independent random
variables can be upper bounded with a Gaussian distribution.

7



Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

• The Gaussian distribution is so important since many
random variables can be approximated as the sum of a
large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.
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Sampling for Approximation

I have an n× n matrix with entries in [0, 1]. I want to estimate
the sum of entries. I sample s entries uniformly at random
with replacement, take their sum, and multiply it by n2/s. How
large must s be so that this method returns the correct answer,
up to error ±ε · n2 with probability at least 1− 1/n?

(a) O(n2) (b) O(n/ε) (c) O(log n/ε) (d) O(log n/ε2)

Bernstein Inequality: Consider independent random variables
X1, . . . , Xn each with magnitude bounded by M and let X =

∑n
i=1 Xi.
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Application: Linear Probing
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Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying
buckets until you find an empty one.

Simple and potentially very efficient – but performance can
degrade as the hash table fills up.
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Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and m ≥ 2n buckets,
then linear probing requires O(1) expected time per insertion/query.

Definition: For any interval I ⊂ [m], let L(I) = |{x : h(x) ∈ I}| be the
number of items hashed to the interval. We say I is full if L(I) ≥ |I|.

Which intervals in this table are full?
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Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an
insertion/query operation for item x. If T(x) > k, there are at least k
full intervals of different lengths containing h(x).

Let Ij = 1 if h(x) lies in some length-j full interval, Ij = 0 otherwise.
Operation time for x is can be bounded as T(x) ≤

∑n
j=1 Ij.

12
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Expectation Analysis

Ij = 1 if h(x) lies in some length-j full interval, Ij = 0 otherwise.
Expected operation time for any x is:

E[T(x)] ≤
n∑

j=1

E[Ij].

Observe that h(x) lies in at most 1 length-1 interval, 2 length-2
intervals, etc. So we can upper bound this expectation by:

E[T(x)] ≤
n∑

j=1

j · Pr[any length-j interval is full].

A length-j interval is full if the number of items hashed into it, L(I) is
at least j. Note that when m ≥ 2n, E[L(I)] = j/2.

Applying a Chernoff
bound with δ = 1/2, µ = E[L(I)] = j/2:

Pr[L(I) ≥ j] ≤ Pr[|L(I)− µ| ≥ δ · µ]

≤ 2e−
(1/2)2·j/2

2+1/2 = 2e−c·j.

13
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Finishing the Analysis

Expected operation time for any x is:

E[T(x)] ≤
n∑

j=1

j · Pr[any length-j interval is full]

≤
n∑

j=1

j · 2e−c·j

= O(1).

This matches the expected operation cost of chaining when m ≥ 2n.
In practice, linear probing is typically much faster.

14



Finishing the Analysis

Expected operation time for any x is:

E[T(x)] ≤
n∑

j=1

j · Pr[any length-j interval is full]

≤
n∑

j=1

j · 2e−c·j

= O(1).

This matches the expected operation cost of chaining when m ≥ 2n.
In practice, linear probing is typically much faster.

14

✓durnoff



Finishing the Analysis

Expected operation time for any x is:

E[T(x)] ≤
n∑

j=1

j · Pr[any length-j interval is full]

≤
n∑

j=1

j · 2e−c·j

= O(1).

This matches the expected operation cost of chaining when m ≥ 2n.
In practice, linear probing is typically much faster.

14

m ' C n C i

÷



Finishing the Analysis

Expected operation time for any x is:

E[T(x)] ≤
n∑

j=1

j · Pr[any length-j interval is full]

≤
n∑

j=1

j · 2e−c·j

= O(1).

This matches the expected operation cost of chaining when m ≥ 2n.
In practice, linear probing is typically much faster.

14


