COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024
Lecture 5

Logistics

- Problem Set $\mathbf{1}$ is due next Wednesday $2 / 21$ at 11:59pm.
- Next week we do not have class on Thursday, so I will move my office hours to Tuesday at 11:30am.

Summary

Last Time:

- Practice questions on applications of linearity of expectation and variance from quiz.

$$
n \text { balls } n \text { bins }
$$

- Balls-into-bins analysis showing max load of $O(\sqrt{n})$ with Chebyshev's inequality.

$$
\frac{\lg n}{\lg n \lg n}
$$

- Start on exponential concentration bounds for sums of bounded independent random variables.

Summary

Last Time:

- Practice questions on applications of linearity of expectation and variance from quiz.
- Balls-into-bins analysis showing max load of $O(\sqrt{n})$ with Chebyshev's inequality.
- Start on exponential concentration bounds for sums of bounded independent random variables.

Today:

- Finish up exponential concentration bounds.
- Applications to balls-into-bins and linear probing analysis.
- Maybe start on hashing/finger printing?

Exponential Concentration Bounds

The Chernoff Bound

Chernoff Bound (simplified version): Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ taking values in $\{0,1\}$ and let $\mathrm{X}=$ $\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}$. Let $\mu=\mathbb{E}[\mathrm{X}]=\mathbb{E}\left[\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}\right]$. For any $\delta \geq 0$

$$
\operatorname{Pr}\left(\mathrm{X} \underline{\underline{(1+\delta) \mu}) \leq \frac{e^{\delta \mu}}{(1+\delta)^{(1+\delta) \mu}}}\right.
$$

The Chernoff Bound

Chernoff Bound (simplified version): Consider independent random variables X_{1}, \ldots, X_{n} taking values in $\{0,1\}$ and let $X=$ $\sum_{i=1}^{n} \mathrm{X}_{i}$. Let $\mu=\mathbb{E}[\mathrm{X}]=\mathbb{E}\left[\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}\right]$. For any $\delta \geq 0$

$$
\operatorname{Pr}(\mathrm{X} \geq(1+\delta) \mu) \leq \frac{e^{\delta \mu}}{(1+\delta)^{(1+\delta) \mu}} \quad(1+\delta)=K
$$

Chernoff Bound (alternate version): Consider independent random variables X_{1}, \ldots, X_{n} taking values in $\{0,1\}$ and let $X=$ $\sum_{i=1}^{n} \mathrm{X}_{i}$. Let $\mu=\mathbb{E}[\mathrm{X}]=\mathbb{E}\left[\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}\right]$. For any $\delta \geq 0$

$$
\left.\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{X}_{i}-\mu\right| \geq \delta \mu\right) \leq 2 \exp \left(-\frac{\delta^{2} \underline{\mu}}{2+\delta}\right)\right)
$$

$\geqslant \operatorname{Rr}(|x-\mu| \leq 1 / 3 \mu)^{i=1}$

As δ gets larger and larger, the bound falls off exponentially fast.

Balls Into Bins Via Chernoff Bound

Recall that \mathbf{b}_{i} is the number of balls landing in bin i, when we randomly throw n balls into n bins.

- $\mathrm{b}_{i}=\sum_{i=1}^{n} \mathrm{I}_{i, j}$ where $\mathbf{I}_{i, j}=1$ with probability $1 / n$ and 0 otherwise. $\mathbf{I}_{i, 1}, \ldots \mathbf{l}_{i, n}$ are independent.

Balls Into Bins Via Chernoff Bound

Recall that \mathbf{b}_{i} is the number of balls landing in bin i, when we randomly throw n balls into n bins.

$$
\left.\mathbb{E}\left[b_{1}\right]_{1}\right]=1
$$

- $b_{i}=\sum_{j=1}^{n} l_{i, j}$ where $\mathbf{I}_{i, j}=1$ with probability $1 / n$ and 0 otherwise. $\boldsymbol{I}_{i, 1}, \ldots \boldsymbol{I}_{i, n}$ are independent.
- Apply Chernoff bound with $\mu=\mathbb{E}\left[b_{i}\right]=1$:

$$
1+d=k \quad \delta=k-1
$$

$$
\begin{aligned}
\operatorname{Pr}\left[b_{i} \geq k\right] & \leq \frac{e^{k-1}}{\left.(4 k)^{k}\right)} . \\
& \leq \frac{e^{k}}{k^{k}} \leqslant\left(\frac{e}{k}\right)^{k}
\end{aligned}
$$

$$
\mu=1
$$

Balls Into Bins Via Chernoff Bound

Recall that \mathbf{b}_{i} is the number of balls landing in bin i, when we randomly throw n balls into n bins.

- $\mathbf{b}_{i}=\sum_{i=1}^{n} \mathbf{I}_{i, j}$ where $\mathbf{I}_{i, j}=1$ with probability $1 / n$ and 0 otherwise. $\boldsymbol{I}_{i, 1}, \ldots \boldsymbol{I}_{i, n}$ are independent.
- Apply Chernoff bound with $\mu=\mathbb{E}\left[b_{i}\right]=1$:

$$
\operatorname{Pr}\left[\mathrm{b}_{i} \geq k\right] \leq \frac{e^{k}}{(1+k)^{(1+k)}} . \leq \frac{e^{k}}{k^{k}}
$$

$$
\begin{aligned}
& \text { - For } k \geq \frac{c \log n}{\log \log n} \text { we have: }
\end{aligned}
$$

Balls Into Bins Via Chernoff Bound

Recall that \mathbf{b}_{i} is the number of balls landing in bin i, when we randomly throw n balls into n bins.

- $\mathbf{b}_{i}=\sum_{i=1}^{n} \mathbf{l}_{i, j}$ where $\mathbf{I}_{i, j}=1$ with probability $1 / n$ and 0 otherwise. $\mathbf{I}_{i, 1}, \ldots \mathbf{I}_{i, n}$ are independent.
- Apply Chernoff bound with $\mu=\mathbb{E}\left[\mathrm{b}_{i}\right]=1$:

$$
\operatorname{Pr}\left[\mathbf{b}_{i} \geq k\right] \leq \frac{e^{k}}{(1+k)^{(1+k)}}
$$

- For $k \geq \frac{c \log n}{\log \log n}$ we have:

$$
\operatorname{Pr}\left[\mathrm{b}_{i} \geq k\right] \leq \frac{e^{\frac{c \log n}{\log \log n}}}{\left(\frac{c \log n}{\log \log n}\right)^{\frac{c \log n}{\log \log n}}}=\frac{1}{n^{c-o(1)}}
$$

Balls Into Bins Via Chernoff Bound

Recall that \mathbf{b}_{i} is the number of balls landing in bin i, when we randomly throw n balls into n bins.

- $\mathbf{b}_{i}=\sum_{i=1}^{n} \mathbf{l}_{i, j}$ where $\mathbf{I}_{i, j}=1$ with probability $1 / n$ and 0 otherwise. $\mathbf{I}_{i, 1}, \ldots \mathbf{I}_{i, n}$ are independent.
- Apply Chernoff bound with $\mu=\mathbb{E}\left[\mathrm{b}_{i}\right]=1$:

$$
\operatorname{Pr}\left[\mathrm{b}_{i} \geq k\right] \leq \frac{e^{k}}{(1+k)^{(1+k)}}
$$

- For $k \geq \frac{c \log n}{\log \log n}$ we have:

$$
\operatorname{Pr}\left[\mathrm{b}_{i} \geq k\right] \leq \frac{e^{\frac{c \log n}{\log \log n}}}{\left(\frac{c \log n}{\log \log n}\right)^{\frac{c \log n}{\log \log n}}}=\frac{1}{n^{c-o(1)}}
$$

Upshot: We recover the right bound for balls into bins.

Bernstein Inequality

Bernstein Inequality: Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ each with magnitude bounded by \underline{M} and let $\mathrm{X}=$ $\sum_{i=1}^{n} \mathrm{X}_{i}$. Let $\mu=\mathbb{E}[\mathrm{X}]$ and $\sigma^{2}=\operatorname{Var}[\mathrm{X}]=\sum_{i=1}^{n} \operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]$. For any $t \geq 0$:

$$
\leq m^{2} \cdot n
$$

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n}\right| N_{j}\left|X_{i}-\mu\right| \geq t\right) \leq 2 \exp (-\frac{t^{2}}{2 \sigma^{2}+\underbrace{\frac{4}{3} M t}}) .
$$

Bernstein Inequality

Bernstein Inequality: Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ each with magnitude bounded by M and let $\mathrm{X}=$ $\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}$. Let $\mu=\mathbb{E}[\mathrm{X}]$ and $\sigma^{2}=\operatorname{Var}[\mathrm{X}]=\sum_{i=1}^{n} \operatorname{Var}\left[\mathrm{X}_{i}\right]$. For any $t \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{X}_{i}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}\right)
$$

Assume that $M=1$ and plug in $t=s \cdot \sigma$ for $s \leq \sigma$.

Bernstein Inequality

Bernstein Inequality: Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ each with magnitude bounded by 1 and let $\mathrm{X}=$ $\sum_{i=1}^{n} \mathrm{X}_{i}$. Let $\mu=\mathbb{E}[\mathrm{X}]$ and $\sigma^{2}=\operatorname{Var}[\mathrm{X}]=\sum_{i=1}^{n} \operatorname{Var}\left[\mathrm{X}_{i}\right]$. For any $s \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right) .
$$

Assume that $M=1$ and plug in $t=s \cdot \sigma$ for $s \leq \sigma$.

Bernstein Inequality

Sb-gausskn conbrtafion

Bernstein Inequality: Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ each with magnitude bounded by 1 and let $\mathrm{X}=$ $\sum_{i=1}^{n} \mathrm{X}_{i}$. Let $\mu=\mathbb{E}[\mathrm{X}]$ and $\sigma^{2}=\operatorname{Var}[\mathrm{X}]=\sum_{i=1}^{n} \operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]$. For any $s \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} x_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right)
$$

Assume that $M=1$ and plug in $t=s \cdot \sigma$ for $s \leq \sigma$.
Compare to Chebyshev's: $\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathrm{X}_{i}-\mu\right| \geq \delta \sigma\right) \leq \frac{1}{s^{2}}$.

$$
\frac{V}{V_{a}(x)}=\frac{6^{2}}{s^{2} b^{2}}=\frac{1}{s^{2}}
$$

- An exponentially stronger dependence on s!

Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded random variables lying $\geq s$ standard deviations from its mean is $\approx \exp \left(-\frac{s^{2}}{4}\right)$. Can plot this bound for different s :

Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded random variables lying $\geq s$ standard deviations from its mean is $\approx \exp \left(-\frac{s^{2}}{4}\right)$. Can plot this bound for different s :

- Looks like a Gaussian (normal) distribution - can think of Bernstein's inequality as giving a quantitative version of the central limit theorem.
- The distribution of the sum of bounded independent random variables can be upper bounded with a Gaussian distribution.

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

- The Gaussian distribution is so important since many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.

Sampling for Approximation

I have an $n \times n$ matrix with entries in $[0,1]$. I want to estimate the sum of entries. I sample s entries uniformly at random with replacement, take their sum, and multiply it by n^{2} / s. How large must s be so that this method returns the correct answer, up to error $\pm \epsilon \cdot n^{2}$ with probability at least $1-1 / n$?
(a) $O\left(n^{2}\right)$
(b) $O(n / \epsilon)$
(c) $O(\log n / \epsilon)$
(d) $O\left(\log n / \epsilon^{2}\right)$

Sampling for Approximation

I have an $n \times n$ matrix with entries in $[0,1]$. I want to estimate the sum of entries. I sample s entries uniformly at random with replacement, take their sum, and multiply it by n^{2} / s. How large must s be so that this method returns the correct answer, up to error $\pm \epsilon \cdot n^{2}$ with probability at least $1-1 / n$?
(a) $O\left(n^{2}\right)$
(b) $O(n / \epsilon)$
(c) $O(\log n / \epsilon)$
(d) $O\left(\log n / \epsilon^{2}\right)$

Bernstein Inequality: Consider independent random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ each with magnitude bounded by M and let $\mathrm{X}=\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}$. Let $\mu=\mathbb{E}[\mathrm{X}]$ and $\sigma^{2}=\operatorname{Var}[\mathrm{X}]=\sum_{i=1}^{n} \operatorname{Var}[\mathrm{X}]$. For any $t \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} x_{i}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}\right) .
$$

$x_{i}=i^{\text {th }}$
$6^{2} \leqslant S$

$$
\operatorname{Pr}(|x-\mu|>\varepsilon S) \leqslant \exp \left(\overline{25+\frac{4}{3} \varepsilon s}\right)
$$

Sampling for Approximation
I have an $n \times n$ matrix with entries in $[0,1]$. I want to estimate the sum of entries. I sample s entries uniformly at random with replacement, take their sum, and multiply it by n^{2} / s. How large must s be so that this method returns the correct answer, up to error $\pm \epsilon \cdot n^{2}$ with probability at least $1-1 / n$?
(a) $O\left(n^{2}\right)$
(b) $O(n / \epsilon)$
(c) $O(\log n / \epsilon)$
(d) $O\left(\log n / \epsilon^{2}\right)$

$$
\begin{aligned}
\exp \left(\frac{-\varepsilon^{2} s^{2}}{2 s+\frac{4}{3} \varepsilon s}\right) \underline{s} \exp \left(-\frac{\varepsilon^{2} s^{2}}{10 s}\right) & =\exp \left(-\frac{\varepsilon^{2} s}{10}\right) \leq \frac{1}{n} \\
s=\frac{\ln n 910}{\varepsilon^{2}} & =\exp (-\ln n)
\end{aligned}
$$

Application: Linear Probing

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.
172.16.254.1

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Linear Probing

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Simple and potentially very efficient - but performance can degrade as the hash table fills up.

Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and $m \geq 2 n$ buckets, then linear probing requires $O(1)$ expected time per insertion /query.

Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and $m \geq 2 n$ buckets, then linear probing requires $O(1)$ expected time per insertion /query.

Definition: For any interval $I \subset[m]$, let $\mathrm{L}(I)=|\{x: \mathrm{h}(x) \in I\}|$ be the number of items hashed to the interval. We say 1 is full if $\mathrm{L}(I) \geq|| |$.

Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and $m \geq 2 n$ buckets, then linear probing requires $O(1)$ expected time per insertion /query.

Definition: For any interval $I \subset[m]$, let $\mathrm{L}(I)=|\{x: \mathrm{h}(x) \in I\}|$ be the number of items hashed to the interval. We say I is full if $L(I) \geq|I|$.

Analysis via Full Intervals

Claim Let $\mathrm{T}(x)$ denote the number of steps required for an insertion/query operation for item x. If $\mathrm{T}(x)>k$, there are at least k full intervals of different lengths containing $h(x)$.

Analysis via Full Intervals

Claim Let $\mathrm{T}(x)$ denote the number of steps required for an insertion/query operation for item x. If $\mathrm{T}(x)>k$, there are at least k full intervals of different lengths containing $\mathrm{h}(x)$.

Analysis via Full Intervals

Claim Let $\mathrm{T}(x)$ denote the number of steps required for an insertion/query operation for item x. If $\mathrm{T}(x)>k$, there are at least k full intervals of different lengths containing $\mathrm{h}(x)$.

Let $\mathbf{I}_{j}=1$ if $\mathbf{h}(x)$ lies in some length- j full interval, $\mathbf{I}_{j}=0$ otherwise. Operation time for x is can be bounded as $\mathrm{T}(x) \leq \sum_{j=1}^{n} \mathrm{I}_{\mathrm{j}}$.

Expectation Analysis

$\mathbf{I}_{j}=1$ if $\mathbf{h}(x)$ lies in some length- j full interval, $\mathbf{I}_{j}=0$ otherwise.
Expected operation time for any x is:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} \mathbb{E}\left[\mathrm{I}_{j}\right] .
$$

Expectation Analysis

$\mathbf{I}_{j}=1$ if $\mathbf{h}(x)$ lies in some length- j full interval, $\mathbf{I}_{j}=0$ otherwise.
Expected operation time for any x is:

$$
\mathbb{E}[\mathbf{T}(x)] \leq \sum_{j=1}^{n} \underline{\mathbb{E}}[\underline{\mathrm{~L}}] .
$$

Observe that $\mathrm{h}(\mathrm{x})$ lies in at most 1 length-1 interval, 2 length -2 intervals, etc. So we can upper bound this expectation by:

$$
\mathbb{E}[\mathrm{T}(x)] \leq \sum_{j=1}^{n} j \cdot \operatorname{Pr}[\text { any length- } j \text { interval is full }] \text {. }
$$

Expectation Analysis

$\mathbf{I}_{j}=1$ if $h(x)$ lies in some length- j full interval, $\mathbf{I}_{j}=0$ otherwise.
Expected operation time for any x is:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} \mathbb{E}\left[\mathrm{I}_{j}\right] .
$$

Observe that $\mathrm{h}(\mathrm{x})$ lies in at most 1 length-1 interval, 2 length-2 intervals, etc. So we can upper bound this expectation by:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} j \cdot \operatorname{Pr}[\text { any length- } j \text { interval is full }] .
$$

A length- j interval is full if the number of items hashed into it, $\mathrm{L}(I)$ is at least j. Note that when $m \geq 2 n, \mathbb{E}[L(I)]=j / 2$.

Expectation Analysis

$\mathbf{I}_{j}=1$ if $h(x)$ lies in some length- j full interval, $\mathbf{I}_{j}=0$ otherwise.
Expected operation time for any x is:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} \mathbb{E}\left[I_{j}\right] .
$$

Observe that $\mathrm{h}(x)$ lies in at most 1 length -1 interval, 2 length -2 intervals, etc. So we can upper bound this expectation by:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} j \cdot \operatorname{Pr}[\text { any length- } j \text { interval is full }] .
$$

A length- j interval is full if the number of items hashed into it, $\mathrm{L}(I)$ is at least j. Note that when $m \geq 2 n, \mathbb{E}[L(I)]=j / 2$. Applying a Chernoff bound with $\delta=1 / 1, \mu=\mathbb{E}[L(I)]=j / 2$:

$$
\begin{aligned}
\operatorname{Pr}[\mathrm{L}(1) \geq j] & \leq \operatorname{Pr}[|\mathrm{L}(1)-\mu| \geq 0 \cdot \mu] \\
& \leq 2 \pi \sqrt{2 / 4 / 2 / 2} \quad 2 e^{-\frac{j^{2} \mu}{2+\sigma}}=2 e^{-\frac{j / 2}{3}} 2 e^{-j / 6}
\end{aligned}
$$

Expectation Analysis

$\mathbf{I}_{j}=1$ if $h(x)$ lies in some length- j full interval, $\mathbf{I}_{j}=0$ otherwise.
Expected operation time for any x is:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} \mathbb{E}\left[I_{j}\right] .
$$

Observe that $\mathrm{h}(\mathrm{x})$ lies in at most 1 length-1 interval, 2 length-2 intervals, etc. So we can upper bound this expectation by:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} j \cdot \operatorname{Pr}[\text { any length- } j \text { interval is full }] .
$$

A length- j interval is full if the number of items hashed into it, $\mathrm{L}(I)$ is at least j. Note that when $m \geq 2 n, \mathbb{E}[L(I)]=j / 2$. Applying a Chernoff bound with $\delta=1 / 2, \mu=\mathbb{E}[L(I)]=j / 2$:

$$
\begin{aligned}
\operatorname{Pr}[L(I) \geq j] & \leq \operatorname{Pr}[|L(I)-\mu| \geq \delta \cdot \mu] \\
& \leq 2 e^{-\frac{(1 / 2) \cdot)^{2} / 2 / 2}{2+1 / 2}}=2 e^{-c \cdot j} .
\end{aligned}
$$

Finishing the Analysis

Expected operation time for any x is:

$$
\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} j \cdot \operatorname{Pr}[\text { any length-j interval is full }]
$$

Finishing the Analysis

Expected operation time for any x is:

$$
\begin{aligned}
\mathbb{E}[T(x)] & \leq \sum_{j=1}^{n} j \cdot \operatorname{Pr}[\text { any length }-j \text { interval is full }] \\
& \leq \sum_{j=1}^{n} j \cdot 2 e^{-c \cdot j} \text { clurnofl }
\end{aligned}
$$

Finishing the Analysis

Expected operation time for any x is:

$$
\begin{equation*}
m^{\circ} \mathrm{C} n \tag{C 1}
\end{equation*}
$$

$$
\begin{aligned}
\mathbb{E}[T(x)] & \leq \sum_{j=1}^{n} j \cdot \operatorname{Pr}[\text { any length- } j \text { interval is full }] \\
& \leq \sum_{j=1}^{n} j \cdot 2 e^{-c \cdot j} \\
& =O(1) .
\end{aligned}
$$

Finishing the Analysis

Expected operation time for any x is:

$$
\begin{aligned}
\mathbb{E}[T(x)] & \leq \sum_{j=1}^{n} j \cdot \operatorname{Pr}[\text { any length-j interval is full }] \\
& \leq \sum_{j=1}^{n} j \cdot 2 e^{-c \cdot j} \\
& =O(1) .
\end{aligned}
$$

This matches the expected operation cost of chaining when $m \geq 2 n$.
In practice, linear probing is typically much faster.

