COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024 Lecture 5

- Problem Set 🖠 is due next Wednesday 2/21 at 11:59pm.
- Next week we do not have class on Thursday, so I will move my office hours to **Tuesday at 11:30am**.

Summary

Last Time:

- Practice questions on applications of linearity of expectation and variance from quiz.
 カ かんしょ の がっく
- Balls-into-bins analysis showing max load of $O(\sqrt{n})$ with Chebyshev's inequality. $\frac{\log n}{\log n}$
- Start on exponential concentration bounds for sums of bounded independent random variables.

Summary

Last Time:

- Practice questions on applications of linearity of expectation and variance from quiz.
- Balls-into-bins analysis showing max load of $O(\sqrt{n})$ with Chebyshev's inequality.
- Start on exponential concentration bounds for sums of bounded independent random variables.

Today:

- Finish up exponential concentration bounds.
- Applications to balls-into-bins and linear probing analysis.
- Maybe start on hashing/finger printing?

Exponential Concentration Bounds

The Chernoff Bound

Chernoff Bound (simplified version): Consider independent random variables X_1, \ldots, X_n taking values in $\{0, 1\}$ and let $X = \sum_{i=1}^{n} X_i$. Let $\mu = \mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} X_i]$. For any $\delta \ge 0$

$$\Pr\left(\mathsf{X} \ge (1+\delta)\mu\right) \le \frac{e^{\delta\mu}}{(1+\delta)^{(1+\delta)\mu}}$$

The Chernoff Bound

Chernoff Bound (simplified version): Consider independent random variables X_1, \ldots, X_n taking values in $\{0, 1\}$ and let $X = \sum_{i=1}^{n} X_i$. Let $\mu = \mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} X_i]$. For any $\delta \ge 0$ Pr $(X \ge (1 + \delta)\mu) \le \frac{e^{\delta\mu}}{(1 + \delta)^{(1 + \delta)\mu}} \quad (1 + \delta) \stackrel{\circ}{=} |C|$

Chernoff Bound (alternate version): Consider independent random variables X_1, \ldots, X_n taking values in $\{0, 1\}$ and let $X = \sum_{i=1}^n X_i$. Let $\mu = \mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^n X_i]$. For any $\delta \ge 0$ of $\neg \circ \circ$ $\mathbb{P}_{\mathcal{F}}(X > 2|5\mu)$ of $\mathbb{P}_{\mathcal{F}}(X > 2|5\mu)$ o

As δ gets larger and larger, the bound falls off exponentially fast.

Recall that **b**_{*i*} is the number of balls landing in bin *i*, when we randomly throw *n* balls into *n* bins.

• $\mathbf{b}_i = \sum_{i=1}^n \mathbf{I}_{i,j}$ where $\mathbf{I}_{i,j} = 1$ with probability 1/n and 0 otherwise. $\mathbf{I}_{i,1}, \dots, \mathbf{I}_{i,n}$ are independent.

Recall that \mathbf{b}_i is the number of balls landing in bin *i*, when we randomly throw *n* balls into *n* bins. $\mathbb{F}[\mathbf{b}_i] = [$

- $\mathbf{b}_i = \sum_{j=1}^{n} \mathbf{I}_{i,j}$ where $\mathbf{I}_{i,j} = 1$ with probability 1/n and 0 otherwise. $\mathbf{I}_{i,1}, \dots, \mathbf{I}_{i,n}$ are independent.
- Apply Chernoff bound with $\mu = \mathbb{E}[\mathbf{b}_i] = 1$:

$$\Pr[\mathbf{b}_{i} \ge k] \le \frac{e^{k-1}}{(\mathsf{W}, k)(\mathsf{Q}, k)}. \qquad \qquad \mathsf{M}^{-1}$$
$$\le \frac{e^{k}}{\mathsf{K}^{k}} \le \left(\frac{e}{\mathsf{K}}\right)^{\mathsf{K}}$$

Recall that \mathbf{b}_i is the number of balls landing in bin *i*, when we randomly throw *n* balls into *n* bins.

- $\mathbf{b}_i = \sum_{i=1}^n \mathbf{I}_{i,j}$ where $\mathbf{I}_{i,j} = 1$ with probability 1/n and 0 otherwise. $\mathbf{I}_{i,1}, \dots, \mathbf{I}_{i,n}$ are independent.
- Apply Chernoff bound with $\mu = \mathbb{E}[\mathbf{b}_i] = 1$:

$$\Pr[\mathbf{b}_i \ge k] \le \frac{e^k}{(1+k)^{(1+k)}}, \quad \boldsymbol{\varsigma} \quad \frac{\mathbf{e}_i}{\mathbf{k}_i}$$

Recall that **b**_{*i*} is the number of balls landing in bin *i*, when we randomly throw *n* balls into *n* bins.

- $\mathbf{b}_i = \sum_{i=1}^n \mathbf{I}_{i,j}$ where $\mathbf{I}_{i,j} = 1$ with probability 1/n and 0 otherwise. $\mathbf{I}_{i,1}, \dots, \mathbf{I}_{i,n}$ are independent.
- Apply Chernoff bound with $\mu = \mathbb{E}[\mathbf{b}_i] = 1$:

$$\Pr[\mathbf{b}_i \geq k] \leq \frac{e^k}{(1+k)^{(1+k)}}.$$

• For
$$k \ge \frac{c \log n}{\log \log n}$$
 we have:

$$\Pr[\mathbf{b}_{i} \ge k] \le \frac{e^{\frac{c \log n}{\log \log n}}}{\left(\frac{c \log n}{\log \log n}\right)^{\frac{c \log n}{\log \log n}}} = \frac{1}{n^{c-o(1)}}$$

Recall that **b**_{*i*} is the number of balls landing in bin *i*, when we randomly throw *n* balls into *n* bins.

- $\mathbf{b}_i = \sum_{i=1}^n \mathbf{I}_{i,j}$ where $\mathbf{I}_{i,j} = 1$ with probability 1/n and 0 otherwise. $\mathbf{I}_{i,1}, \dots, \mathbf{I}_{i,n}$ are independent.
- Apply Chernoff bound with $\mu = \mathbb{E}[\mathbf{b}_i] = 1$:

$$\Pr[\mathbf{b}_i \geq k] \leq \frac{e^k}{(1+k)^{(1+k)}}.$$

• For
$$k \ge \frac{c \log n}{\log \log n}$$
 we have:

$$\Pr[\mathbf{b}_{i} \ge k] \le \frac{e^{\frac{c \log n}{\log \log n}}}{\left(\frac{c \log n}{\log \log n}\right)^{\frac{c \log n}{\log \log n}}} = \frac{1}{n^{c-o(1)}}$$

Upshot: We recover the right bound for balls into bins.

Bernstein Inequality

Bernstein Inequality: Consider independent random variables X_1, \ldots, X_n each with magnitude bounded by \underline{M} and let $\mathbf{X} = \sum_{i=1}^n X_i$. Let $\mu = \mathbb{E}[\mathbf{X}]$ and $\sigma^2 = \operatorname{Var}[\mathbf{X}] = \sum_{i=1}^n \operatorname{Var}[\mathbf{X}_i]$. For any $t \ge 0$: $\Pr\left(\left| \underbrace{\sum_{i=1}^n W_i}_{i=1} - \mu \right| \ge t\right) \le 2 \exp\left(-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}\right)$. **Bernstein Inequality:** Consider independent random variables X_1, \ldots, X_n each with magnitude bounded by M and let $X = \sum_{i=1}^{n} X_i$. Let $\mu = \mathbb{E}[X]$ and $\sigma^2 = Var[X] = \sum_{i=1}^{n} Var[X_i]$. For any $t \ge 0$:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq t\right) \leq 2 \exp\left(-\frac{t^{2}}{2\sigma^{2} + \frac{4}{3}Mt}\right).$$

Assume that M = 1 and plug in $t = s \cdot \sigma$ for $s \leq \sigma$.

Bernstein Inequality: Consider independent random variables X_1, \ldots, X_n each with magnitude bounded by 1 and let $X = \sum_{i=1}^{n} X_i$. Let $\mu = \mathbb{E}[X]$ and $\sigma^2 = Var[X] = \sum_{i=1}^{n} Var[X_i]$. For any $s \ge 0$:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \ge s\sigma\right) \le 2\exp\left(-\frac{s^{2}}{4}\right)$$

Assume that M = 1 and plug in $t = s \cdot \sigma$ for $s \leq \sigma$.

Bernstein Inequality

Bernstein Inequality: Consider independent random variables X_1, \dots, X_n each with magnitude bounded by 1 and let $X = \sum_{i=1}^n X_i$. Let $\mu = \mathbb{E}[X]$ and $\sigma^2 = \operatorname{Var}[X] = \sum_{i=1}^n \operatorname{Var}[X_i]$. For any $s \ge 0$: $\operatorname{Pr}\left(\left|\sum_{i=1}^n X_i - \mu\right| \ge s\sigma\right) \le 2\exp\left(-\frac{s^2}{4}\right)$.

Assume that M = 1 and plug in $t = s \cdot \sigma$ for $s \le \sigma$. **Compare to Chebyshev's:** $\Pr\left(\left|\sum_{i=1}^{n} X_{i} - \mu\right| \ge s\sigma\right) \le \frac{1}{s^{2}}$. $\frac{\sqrt{w-(X)}}{\sqrt{s^{2}}b^{2}} = \frac{1}{\sqrt{s^{2}}b^{2}} = \frac{1}{\sqrt{s^{2}}b^{2}}$

• An exponentially stronger dependence on s!

Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded random variables lying $\geq s$ standard deviations from its mean is $\approx \exp\left(-\frac{s^2}{4}\right)$. Can plot this bound for different s:

Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded random variables lying $\geq s$ standard deviations from its mean is $\approx \exp\left(-\frac{s^2}{4}\right)$. Can plot this bound for different s:

- Looks like a Gaussian (normal) distribution can think of Bernstein's inequality as giving a quantitative version of the central limit theorem.
- The distribution of the sum of bounded independent random variables can be upper bounded with a Gaussian distribution.

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of *n bounded* independent random variables converges to a Gaussian (normal) distribution as *n* goes to infinity.

• The Gaussian distribution is so important since many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.

Sampling for Approximation

I have an $n \times n$ matrix with entries in [0, 1]. I want to estimate the sum of entries. I sample s entries uniformly at random with replacement, take their sum, and multiply it by n^2/s . How large must s be so that this method returns the correct answer, up to error $\pm \epsilon \cdot n^2$ with probability at least 1 - 1/n?

(a) $O(n^2)$ (b) $O(n/\epsilon)$ (c) $O(\log n/\epsilon)$ (d) $O(\log n/\epsilon^2)$

Sampling for Approximation

I have an $n \times n$ matrix with entries in [0, 1]. I want to estimate the sum of entries. I sample s entries uniformly at random with replacement, take their sum, and multiply it by n^2/s . How large must s be so that this method returns the correct answer, up to error $\pm \epsilon \cdot n^2$ with probability at least 1 - 1/n?

(a)
$$O(n^2)$$
 (b) $O(n/\epsilon)$ (c) $O(\log n/\epsilon)$ (d) $O(\log n/\epsilon^2)$

Bernstein Inequality: Consider independent random variables X_1, \ldots, X_n each with magnitude bounded by M and let $X = \sum_{i=1}^n X_i$. Let $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X] = \sum_{i=1}^n \text{Var}[X_i]$. For any $t \ge 0$:

$$X_{i} = i \text{th entry surpled} X_{i} - \mu \Big| \ge t \Big) \le 2 \exp\left(-\frac{t^{2}}{2\sigma^{2} + \frac{4}{3}Mt}\right).$$

$$X_{i} = i \text{th entry surpled} X = SM \text{ extricts}$$

$$P_{\mathcal{F}}\left(|X - \mu_{i}| > \xi_{S}\right) \le \exp\left(\frac{-\xi^{2}\xi^{2}}{2S + \frac{4}{3}\xi_{S}}\right)$$

Sampling for Approximation

I have an $n \times n$ matrix with entries in [0, 1]. I want to estimate the sum of entries. I sample s entries uniformly at random with replacement, take their sum, and multiply it by n^2/s . How large must s be so that this method returns the correct answer, up to error $\pm \epsilon \cdot n^2$ with probability at least 1 - 1/n?

(a) $O(n^2)$ (b) $O(n/\epsilon)$ (c) $O(\log n/\epsilon)$ (d) $O(\log n/\epsilon^2)$

Application: Linear Probing

172.16.254.1	1
	2
	3
	<i>L</i>
	5
	e
	7
	5

Linear probing is the simplest form of open addressing for hash tables. If an item is hashed into a full bucket, keep trying buckets until you find an empty one.

Simple and potentially very efficient – but performance can degrade as the hash table fills up.

Linear Probing Expected Runtime

Theorem: If the hash table has *n* inserted items and $m \ge 2n$ buckets, then linear probing requires O(1) expected time per insertion/query.

Linear Probing Expected Runtime

Theorem: If the hash table has *n* inserted items and $m \ge 2n$ buckets, then linear probing requires O(1) expected time per insertion/query.

Definition: For any interval $I \subset [m]$, let $L(I) = |\{x : h(x) \in I\}|$ be the number of items hashed to the interval. We say I is full if $L(I) \ge |I|$.

Linear Probing Expected Runtime

Theorem: If the hash table has *n* inserted items and $m \ge 2n$ buckets, then linear probing requires O(1) expected time per insertion/query.

Definition: For any interval $I \subset [m]$, let $L(I) = |\{x : h(x) \in I\}|$ be the number of items hashed to the interval. We say I is full if $L(I) \ge |I|$.

Which intervals in this table are full?

Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an insertion/query operation for item x. If T(x) > k, there are at least k full intervals of different lengths containing h(x).

Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an insertion/query operation for item x. If T(x) > k, there are at least k full intervals of different lengths containing h(x).

Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an insertion/query operation for item x. If T(x) > k, there are at least k full intervals of different lengths containing h(x).

Let $I_j = 1$ if h(x) lies in some length-*j* full interval, $I_j = 0$ otherwise. Operation time for *x* is can be bounded as $T(x) \le \sum_{j=1}^{n} I_j$.

 $I_j = 1$ if h(x) lies in some length-*j* full interval, $I_j = 0$ otherwise. Expected operation time for any *x* is:

$$\mathbb{E}[\mathsf{T}(\mathsf{x})] \leq \sum_{j=1}^{n} \mathbb{E}[\mathsf{I}_{j}].$$

 $I_j = 1$ if h(x) lies in some length-*j* full interval, $I_j = 0$ otherwise. Expected operation time for any *x* is:

$$\mathbb{E}[\mathsf{T}(x)] \leq \sum_{j=1}^{n} \mathbb{E}[\underline{\mathsf{I}}_{j}].$$

Observe that h(x) lies in at most 1 length-1 interval, 2 length-2 intervals, etc. So we can upper bound this expectation by:

 $I_j = 1$ if h(x) lies in some length-*j* full interval, $I_j = 0$ otherwise. Expected operation time for any *x* is:

$$\mathbb{E}[\mathsf{T}(x)] \leq \sum_{j=1}^{n} \mathbb{E}[\mathsf{I}_{j}].$$

Observe that h(x) lies in at most 1 length-1 interval, 2 length-2 intervals, etc. So we can upper bound this expectation by:

$$\mathbb{E}[\mathsf{T}(x)] \leq \sum_{j=1}^{n} j \cdot \mathsf{Pr}[\mathsf{any length} - j \text{ interval is full}].$$

A length-*j* interval is full if the number of items hashed into it, L(I) is at least *j*. Note that when $m \ge 2n$, $\mathbb{E}[L(I)] = j/2$.

 $I_j = 1$ if h(x) lies in some length-*j* full interval, $I_j = 0$ otherwise. Expected operation time for any x is:

$$\mathbb{E}[\mathsf{T}(x)] \leq \sum_{j=1}^{n} \mathbb{E}[\mathsf{I}_{j}].$$

Observe that h(x) lies in at most 1 length-1 interval, 2 length-2 intervals, etc. So we can upper bound this expectation by:

$$\mathbb{E}[\mathbf{T}(x)] \leq \sum_{j=1}^{n} j \cdot \Pr[\text{any length-}j \text{ interval is full}].$$

A length-*j* interval is full if the number of items hashed into it, L(*I*) is at least *j*. Note that when $m \ge 2n$, $\mathbb{E}[L(I)] = j/2$. Applying a Chernoff bound with $\delta = 1/\mu$, $\mu = \mathbb{E}[L(I)] = j/2$:

13

 $I_j = 1$ if h(x) lies in some length-*j* full interval, $I_j = 0$ otherwise. Expected operation time for any x is:

$$\mathbb{E}[\mathsf{T}(x)] \leq \sum_{j=1}^{n} \mathbb{E}[\mathsf{I}_{j}].$$

Observe that h(x) lies in at most 1 length-1 interval, 2 length-2 intervals, etc. So we can upper bound this expectation by:

$$\mathbb{E}[\mathsf{T}(x)] \leq \sum_{j=1}^{n} j \cdot \mathsf{Pr}[\mathsf{any length}-j \text{ interval is full}].$$

A length-*j* interval is full if the number of items hashed into it, L(I) is at least *j*. Note that when $m \ge 2n$, $\mathbb{E}[L(I)] = j/2$. Applying a Chernoff bound with $\delta = 1/2$, $\mu = \mathbb{E}[L(I)] = j/2$:

$$\Pr[\mathsf{L}(l) \ge j] \le \Pr[|\mathsf{L}(l) - \mu| \ge \delta \cdot \mu]$$

$$\le 2e^{-\frac{(1/2)^2 \cdot j/2}{2 + 1/2}} = 2e^{-c \cdot j}.$$

Expected operation time for any x is:

$$\mathbb{E}[\mathsf{T}(\mathsf{x})] \leq \sum_{j=1}^{n} j \cdot \mathsf{Pr}[\mathsf{any length} - j \text{ interval is full}]$$

Expected operation time for any x is:

$$\mathbb{E}[\mathsf{T}(x)] \leq \sum_{\substack{j=1 \\ n}}^{n} j \cdot \Pr[\text{any length-}j \text{ interval is full}]$$
$$\leq \sum_{\substack{j=1 \\ j=1}}^{n} j \cdot 2e^{-c \cdot j}$$

Finishing the Analysis

Expected operation time for any x is:

$$M^{\circ} C \cap O(1)$$

$$\mathbb{E}[T(x)] \leq \sum_{j=1}^{n} j \cdot \Pr[\text{any length-}j \text{ interval is full}]$$

$$\leq \sum_{j=1}^{n} j \cdot 2e^{-c \cdot j}$$

$$= O(1).$$

- -

Expected operation time for any x is:

$$\mathbb{E}[\mathsf{T}(x)] \le \sum_{j=1}^{n} j \cdot \Pr[\text{any length-}j \text{ interval is full}]$$
$$\le \sum_{j=1}^{n} j \cdot 2e^{-c \cdot j}$$
$$= O(1).$$

This matches the expected operation cost of chaining when $m \ge 2n$. In practice, linear probing is typically much faster.