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Logistics

• Problem Set 2 is due next Wednesday 2/21 at 11:59pm.
• Most people think the lectures are ’just right’ or ’a bit too
fast’. I’ll try to slow down a bit. If you feel that you are
really falling behind, let me know.

• If you are confused on something please ask about it –
certainly you are not the only one!
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Summary

Last Time:
• Concentration bounds – Markov’s and Chebyshev’s inequalities.

• The union bound.

• Coupon collecting, statistical estimation.

• Randomized load balancing and ball-into-bins

Today:
• Stronger concentration bounds for sums of independent
random variables. I.e., exponential concentration bounds.

• Applications to balls-into-bins and linear probing analysis.
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Quiz Questions
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Quiz Questions
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Balls Into Bins
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Balls Into Bins

I throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

• Applications to randomized load balancing
• Analysis of hash tables using chaining.

• Direct Proof: For any bin i, Pr[bi ≥ c ln n
ln ln n ] ≤

1
nc−o(1) . Thus,

via union bound, the maximum load is exceeds c ln n
ln ln n with

probability at most 1
nc−1−o(1) .
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Balls Into Bins Via Chebyshev’s Inequality

In our balls into bins analysis we directly bound
Pr [bi ≥ k] ≤

( e
k
)k · 1

1−e/k .

Think Pair Share: Give an upper bound on this probability
using Chebyshev’s inequality. Hint: write bi as a sum of n
indicator random variables and compute Var[bi] and/or E[b2

i ].
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Balls Into Bins Via Chebyshev’s Inequality

By Chebyshev’s Inequality: Pr [bi ≥ k] ≤ 2
k2 .

Setting k = c
√
n, Pr

[
bi ≥ c

√
n
]
≤ 2

c2n . So via a union bound:

Pr

[
max

i=1,...,n
bi ≥ c

√
n
]
≤ n · 2

c2n
≤ 2

c2
.

Upshot: Chebyshev’s inequality bounds the maximum load by
O(

√
n) with good probability, as compared to O

(
log n

log log n

)
for

the direct proof. It is quite loose here.

Chebyshev’s and Markov’s inequalities are extremely valuable
because they are very general – require few assumptions on
the underlying random variable. But by using assumptions, we
can often get tighter analysis.
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Exponential Concentration Bounds
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Higher Moments

Markov’s Inequality: Pr[X ≥ t] ≤ E[X]
t . First moment.

Chebyshev’s Inequality: Pr[X ≥ t] ≤ E[X2]
t2 . Second moment.

Often (not always!) we can obtain tighter bounds by looking to
higher moments of the random variable.

Moment Generating Function: Consider for any z > 0:

Mz(X) = ez·X

=
∞∑

k=0

zkXk

k!

ez·t is non-negative, and monotonic for any z > 0. So can bound via
Markov’s inequality, Pr[X ≥ t] = Pr[Mz(X) ≥ ezt] ≤ E[Mz(X)]

ezt .

By appropriately picking z and bounding E[Mz(X)], we can obtain a
variety of exponential tail bounds. Typically require that X is a sum
of bounded and independent random variables
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The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1} and let X =∑n

i=1 Xi. Let µ = E[X] = E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr (X ≥ (1+ δ)µ) ≤ eδµ

(1+ δ)(1+δ)µ

Chernoff Bound (alternate version): Consider independent
random variables X1, . . . , Xn taking values in {0, 1} and let X =∑n

i=1 Xi. Let µ = E[X] = E[
∑n

i=1 Xi]. For any δ ≥ 0

Pr

(∣∣∣∣∣

n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ δµ

)
≤ 2 exp

(
− δ2µ

2+ δ

)
.

As δ gets larger and larger, the bound falls off exponentially fast.
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Balls Into Bins Via Chernoff Bound

Recall that bi is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

• bi =
∑n

i=1 Ii,j where Ii,j = 1 with probability 1/n and 0
otherwise. Ii,1, . . . Ii,n are independent.

• Apply Chernoff bound with µ = E[bi] = 1:

Pr[bi ≥ k] ≤ ek

(1+ k)(1+k) .

• For k ≥ c log n
log log n we have:

Pr[bi ≥ k] ≤ e
c log n
log log n

(
c log n
log log n

) c log n
log log n

=

1
nc−o(1)

Upshot: We recover the right bound for balls into bins.
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