COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024. Lecture 3

Logistics

- Reminder that there is a weekly quiz, released after class today and due next Monday 8pm.
- Problem Set 1 will be released shortly hopefully by the end of the week. Sorry for the delay.
- · See Piazza for a post to organize homework groups.

Summary

Last Time:

- Review of conditional probability, independence, linearity of expectation and variance.
- Polynomial identity testing and proof of the Schwartz-Zippel Lemma. P(1, 1, ..., 2n) $7'_1 \in S$
- Application of linearity of expectation to randomized Quicksort analysis.

Summary

Last Time:

- Review of conditional probability, independence, linearity of expectation and variance.
- Polynomial identity testing and proof of the Schwartz-Zippel Lemma.
- Application of linearity of expectation to randomized Quicksort analysis.

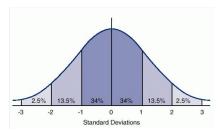
Today:

- Concentation bounds Markov's and Chebyshev's inequalities.
- The union bound.
- · Applications to coupon collecting and statistical estimation.

Concentration Inequalities

Concentration Inequalities

Concentration inequalities are bounds showing that a random variable lies close to it's expectation with good probability. Key tools in the analysis of randomized algorithms.

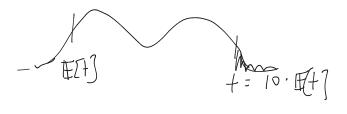


The most fundamental concentration bound: Markov's inequality.

The most fundamental concentration bound: Markov's inequality.

For any non-negative random variable X and any t > 0:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$



The most fundamental concentration bound: **Markov's** inequality.

For any non-negative random variable X and any t > 0:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

Proof:

$$\mathbb{E}[X] = \sum_{\mathbf{O} \, \mathbf{0}} \Pr(X = u) \cdot u$$

The most fundamental concentration bound: **Markov's** inequality.

For any non-negative random variable X and any t > 0:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

Proof:

$$\mathbb{E}[X] = \sum_{\mathbf{SL}} \Pr(X = u) \cdot u \ge \sum_{u \ge t} \Pr(X = u) \cdot u$$

The most fundamental concentration bound: **Markov's** inequality.

For any non-negative random variable X and any t > 0:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

$$\mathbb{E}[X] = \sum_{s} \Pr(X = u) \cdot u \ge \sum_{u \ge t} \Pr(X = u) \cdot u$$

$$\ge \sum_{u \ge t} \Pr(X = u) \cdot t$$

$$= + \cdot \sum_{u \ge t} \Pr(X = u)$$

$$= + \cdot \Pr(X = u)$$

The most fundamental concentration bound: **Markov's** inequality.

For any non-negative random variable X and any t > 0:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

$$\mathbb{E}[X] = \sum_{s} \Pr(X = u) \cdot u \ge \sum_{u \ge t} \Pr(X = u) \cdot u$$
$$\ge \sum_{u \ge t} \Pr(X = u) \cdot t$$
$$= t \cdot \Pr(X \ge t).$$

5

The most fundamental concentration bound: **Markov's** inequality.

For any non-negative random variable X and any t > 0:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$$

Proof:

$$\mathbb{E}[X] = \sum_{s} \Pr(X = u) \cdot u \ge \sum_{u \ge t} \Pr(X = u) \cdot u$$
$$\ge \sum_{u \ge t} \Pr(X = u) \cdot t$$
$$= t \cdot \Pr(X > t).$$

Plugging in $t = \mathbb{E}[X] \cdot s$, $\Pr[X \ge s \cdot \mathbb{E}[X]] \le 1/s$. The larger the deviation s, the smaller the probability.

7PP (BPP

Think-Pair-Share: You have a Las Vegas algorithm that solves some decision problem in expected running time *T*. Show how to turn this into a Monte-Carlo algorithm with worst case running time 3*T* and success probability 2/3.

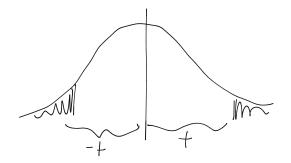
After 3T Steps: terminate + geoss Lovireds at least 2/3 of to fine.

6

With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable X and any value t > 0:

$$\Pr(|X| \ge t) = \Pr(X^2 \ge t^2).$$



With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable X and any value t > 0:

$$\Pr(|X| \ge t) = \Pr(X^2 \ge t^2).$$

X² is a nonnegative random variable. So can apply Markov's:

With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable X and any value t > 0:

$$\Pr(|X| \ge t) = \Pr(X^2 \ge t^2).$$

X² is a nonnegative random variable. So can apply Markov's:

$$\Pr(|\mathsf{X}| \geq t) = \Pr(\mathsf{X}^2 \geq t^2) \leq \frac{\mathbb{E}[\mathsf{X}^2]}{t^2}.$$

With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable X and any value t > 0:

$$\Pr(|X| \ge t) = \Pr(X^2 \ge t^2).$$

X² is a nonnegative random variable. So can apply Markov's:

$$\Pr(|\mathsf{X}| \geq t) = \Pr(\mathsf{X}^2 \geq t^2) \leq \frac{\mathbb{E}[\mathsf{X}^2]}{t^2}.$$

Plugging in the random variable $X - \mathbb{E}[X]$, gives the standard form of Chebyshev's inequality:

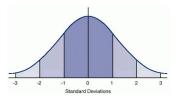
$$\Pr(|X - \underbrace{\mathbb{E}[X]| \ge t}) \le \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2} = \frac{V\underline{ar}(X)}{t^2}.$$

7

$$\Pr(|X - \mathbb{E}[X]| \ge t) \le \frac{\mathsf{Var}[X]}{t^2}$$

$$\Pr(|X - \mathbb{E}[X]| \ge t) \le \frac{\mathsf{Var}[X]}{t^2}$$

What is the probability that **X** falls s standard deviations from it's mean?



$$\Pr(|X - \mathbb{E}[X]| \ge s \cdot \underbrace{\sqrt{\mathsf{Var}[X]}}_{\mathsf{S}^2 \cdot \mathsf{Var}[X]} = \underbrace{\frac{1}{s^2}}_{\mathsf{S}^2}.$$

Application 2: Statistical Estimation + Law of

Large Numbers

Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i^{\bullet}$ be their sample average.

For any
$$\epsilon > 0$$
, $\Pr[|\overline{X} - \mu| \ge \epsilon \sigma] \le \frac{1}{n\epsilon^2}$.

Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ be their sample average.

For any $\epsilon > 0$, $\Pr[|\overline{X} - \mu| \ge \epsilon \sigma] \le \frac{1}{n\epsilon^2}$.

- By linearity of expectation, $\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \mu$. By linearity of variance, $\mathbb{E}[\overline{X}] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i] = \frac{\sigma^2}{n}$.

Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_n$ be their sample average.

For any $\epsilon > 0$, $\Pr[|\overline{X} - \mu| \ge \epsilon \sigma] \le \frac{1}{n\epsilon^2}$.

- By linearity of expectation, $\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \mu$.
- By linearity of variance, $\mathbb{E}[\overline{X}] = \frac{1}{n^2} \sum_{i=1}^n \mathsf{Var}[X_i] = \frac{\sigma^2}{n}$.
- Plugging into Chebyshev's inequality: $\frac{\mathcal{G}^2}{2} \sim \Pr[|\overline{\mathbf{X}} \mu| \geq \epsilon \sigma] \leq \frac{\mathrm{Var}[\overline{\mathbf{X}}]}{\epsilon^2 \sigma^2} = \frac{1}{n\epsilon^2}.$

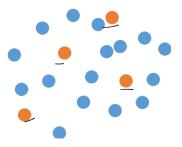
Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_n$ be their sample average.

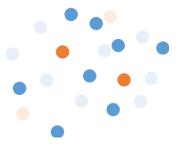
For any $\epsilon > 0$, $\Pr[|\overline{X} - \mu| \ge \epsilon \sigma] \le \frac{1}{n\epsilon^2}$.

- By linearity of expectation, $\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \mu$.
- By linearity of variance, $\mathbb{E}[\overline{X}] = \frac{1}{n^2} \sum_{i=1}^n \text{Var}[X_i] = \frac{\sigma^2}{n}$.
- · Plugging into Chebyshev's inequality:

$$\Pr[|\overline{X} - \mu| \ge \epsilon \sigma] \le \frac{\mathsf{Var}[\overline{X}]}{\epsilon^2 \sigma^2} = \frac{1}{n\epsilon^2}.$$

This is the weak law of large numbers.





- · Sample *n* individuals uniformly at random, with replacement.
- Let $X_i = 1$ if the i^{th} individual has the property, and 0 otherwise. X_1, \dots, X_n are i.i.d. draws from Bern(p) each is 1 with probability p and 0 with probability 1 p.

- Sample n individuals uniformly at random, with replacement.
- Let $X_i = 1$ if the i^{th} individual has the property, and 0 otherwise. X_1, \ldots, X_n are i.i.d. draws from Bern(p) each is 1 with probability p and 0 with probability 1 p.
- $\mathbb{E}[X_i] = p$ and $Var[X_i] = p(1-p)$.
- Thus, letting $\bar{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $\mathbb{E}[\bar{p}] = p$ and $\operatorname{Var}[\bar{p}] = \frac{p(1-p)}{n} \leq \frac{p}{n}$.

- · Sample *n* individuals uniformly at random, with replacement.
- Let $X_i = 1$ if the i^{th} individual has the property, and 0 otherwise. X_1, \ldots, X_n are i.i.d. draws from Bern(p) each is 1 with probability p and 0 with probability 1 p.
- $\mathbb{E}[X_i] = p$ and $Var[X_i] = p(1-p)$.
- Thus, letting $\bar{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $\mathbb{E}[\bar{p}] = p$ and $Var[\bar{p}] = \frac{p(1-p)}{n} \leq \frac{p}{n}$.
- By Chebyshev's inequality $\Pr[|\underline{p} \underline{\bar{p}}| \ge \epsilon] \le \frac{p}{\epsilon^2 n}$.

Application to statistical estimation: There is a large population of individuals. A p fraction of them have a certain property (e.g., 55% of people support decreased taxation, 10% of people are greater than 6' tall, etc.). Want to estimate p from a small sample of individuals.

- · Sample *n* individuals uniformly at random, with replacement.
- Let $X_i = 1$ if the i^{th} individual has the property, and 0 otherwise. X_1, \ldots, X_n are i.i.d. draws from Bern(p) – each is 1 with probability p and 0 with probability 1 - p.
- $\mathbb{E}[X_i] = p$ and $Var[X_i] = p(1-p)$.
- Thus, letting $\bar{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $\mathbb{E}[\bar{p}] = p$ and $\text{Var}[\bar{p}] = \frac{p(1-p)}{n} \leq \frac{p}{n}$. By Chebyshev's inequality $\Pr[|p \bar{p}| \geq \epsilon] \leq \frac{p}{\epsilon^{2n}}$.

Upshot: If we take $n = \frac{p}{c^2 \hbar}$ samples, then with probability at least $1-\delta$, \bar{p} will be a $\pm\epsilon$ estimate to the true proportion p. A prototypical sublinear time algorithm.

Application to Success Boosting

worst case running time T and success probability 2/3. Show how to obtain, for any $\delta \in (0,1)$, a Monte-Carlo algorithm with worse case running time $O(T/\delta)$ and success probability $1-\delta$.

return rejority

$$X_1 \dots X_n = 1$$
 if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$
 $\sum X_1 \dots X_n = 1$ if correct $\frac{1}{n} \sum X_i > \frac{1}{2}$

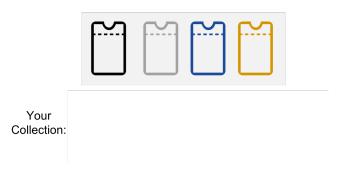
Application 3: Coupon Collecting

Coupon Collector Problem

There is a set of *n* unique coupons. At each step you draw a random coupon from this set. How many steps does it take you to collect all the coupons?

Coupon Collector Problem

There is a set of *n* unique coupons. At each step you draw a random coupon from this set. How many steps does it take you to collect all the coupons?



There is a set of *n* unique coupons. At each step you draw a random coupon from this set. How many steps does it take you to collect all the coupons?

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{p}$. I.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. I.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=0}^{n-1} \mathbb{E}[\mathsf{T}_i]$$

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. I.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is:

$$\mathbb{E}[T] = \sum_{i=0}^{n-1} \mathbb{E}[T_i] = \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{2} + \dots + \frac{n}{1}$$

$$= \bigcap \cdot \left(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{n}{2} + \dots + \frac{n}{1} \right)$$

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. I.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is:

$$\mathbb{E}[T] = \sum_{i=0}^{n-1} \mathbb{E}[T_i] = \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{2} + \dots + \frac{n}{1}$$
$$= n \cdot H_n. \quad \widehat{} \qquad \bigcirc \left(n \mid \gamma \right)$$

Think-Pair-Share: Say you have collected i coupons so far. Let T_{i+1} denote the number of draws needed to collect the $(i+1)^{st}$ coupon. What is $\mathbb{E}[T_i]$?

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. i.e., $Pr[T_i = j] = p_i(1-p_i)^{j-1}$.
- Exercise: verify that $\mathbb{E}[T_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=0}^{n-1} \mathbb{E}[\mathsf{T}_i] = \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{2} + \dots + \frac{n}{1}$$
$$= n \cdot H_n.$$

• By Markov's inequality, $Pr[T \ge cn \cdot H_n] \le$

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.
- Putting these together:

$$Var[T] = \sum_{i=0}^{n} \frac{1 - p_i}{p_i^2} = \sum_{i=0}^{n} \frac{1}{p_i^2} - \sum_{i=0}^{n} \frac{1}{p_i}$$

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.
- Putting these together:

$$Var[T] = \sum_{i=0}^{n-1} \frac{1-p_i}{p_i^2} = \sum_{i=0}^{n-1} \frac{1}{p_i^2} - \sum_{i=0}^{n-1} \frac{1}{p_i}$$

$$\leq n^2 \cdot \frac{\pi^2}{6} - n \cdot H_n$$

$$\begin{cases} & \leq n^2 \cdot \frac{\pi^2}{6} - n \cdot H_n \\ & \leq n^2 \cdot \frac{\pi^2}{6} - n \cdot H_n \end{cases}$$

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.
- Putting these together:

$$Var[T] = \sum_{i=0}^{n} \frac{1 - p_i}{p_i^2} = \sum_{i=0}^{n} \frac{1}{p_i^2} - \sum_{i=0}^{n} \frac{1}{p_i}$$
$$\leq n^2 \cdot \frac{\pi^2}{6} - n \cdot H_n \leq n^2 \cdot \frac{\pi^2}{6}.$$

- We wrote $T = \sum_{i=0}^{n-1} T_i$, which let us compute $\mathbb{E}[T] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- Exercise: show that $Var[T_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.
- · Putting these together:

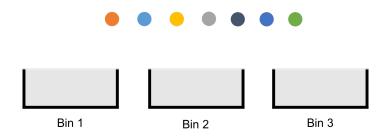
$$\operatorname{Var}[\mathsf{T}] = \sum_{i=0}^{n} \frac{1-p_i}{p_i^2} = \sum_{i=0}^{n} \frac{1}{p_i^2} - \sum_{i=0}^{n} \frac{1}{p_i}$$

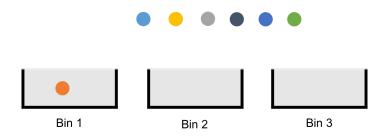
$$\mathbb{E}[\mathsf{T}] \qquad \qquad \leq n^2 \cdot \frac{\pi^2}{6} - n \cdot H_n \leq n^2 \cdot \frac{\pi^2}{6}.$$

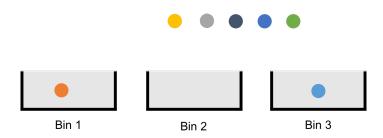
$$\cdot \text{ Via Chebyshev's inequality, } \Pr[|\mathsf{T} - n \cdot H_n| \geq cn] \leq \frac{\pi^2 h}{6}.$$

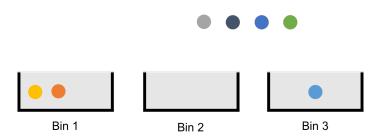
Application 4: Randomized Load Balancing and

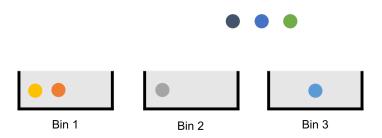
Hashing, and 'Ball Into Bins'

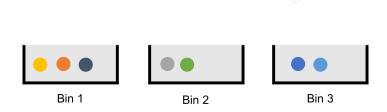




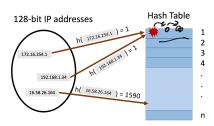






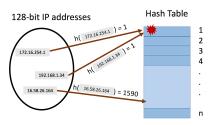


Application: Hash Tables



- hash function $h: U \to [n]$ maps elements to indices of an array.
- Repeated elements in the same bucket are stored as a linked list – 'chaining'.
- Worse-case look up time is proportional to the maximum list length i.e., the maximum number of 'balls' in a 'bin'.

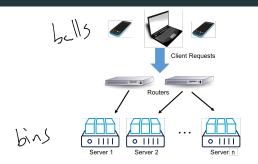
Application: Hash Tables



- hash function $h: U \to [n]$ maps elements to indices of an array.
- Repeated elements in the same bucket are stored as a linked list – 'chaining'.
- Worse-case look up time is proportional to the maximum list length i.e., the maximum number of 'balls' in a 'bin'.

Note: A 'fully random hash function' maps items independently and uniformly at random to buckets. This is a theoretical idealization of practical hash functions.

Application: Randomized Load Balancing



- m requests are distributed randomly to n servers. Want to bound the maximum number of requests that a single server must handle.
- Assignment is often is done via a random hash function so that repeated requests or related requests can be mapped to the same server, to take advantages of caching and other optimizations.

Let \mathbf{b}_i be the number of balls landing in bin i. For n balls into m bins what is $\mathbb{E}[\mathbf{b}_i]$? $= \bigcap_{m}$

Let \mathbf{b}_i be the number of balls landing in bin i. For n balls into m bins what is $\mathbb{E}[\mathbf{b}_i]$?

$$\Pr\left[\max_{i=1,\dots,m} \mathbf{b}_i \ge k\right] = \Pr\left[\bigcup_{i=1}^m A_i\right],$$

where A_i is the event that $\mathbf{b}_i \geq k$.

Let \mathbf{b}_i be the number of balls landing in bin i. For n balls into m bins what is $\mathbb{E}[\mathbf{b}_i]$?

$$\Pr\left[\underbrace{\max_{i=1,\dots,n} \mathbf{b}_i}_{k} \geq k\right] = \Pr\left[\bigcup_{i=1}^n A_i\right],$$

where A_i is the event that $\mathbf{b}_i \geq k$.

Union Bound: For any random events $A_1, A_2, ..., A_n$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_n) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_n).$$

$$A_1$$

$$A_2$$

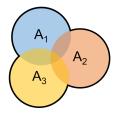
Let \mathbf{b}_i be the number of balls landing in bin i. For n balls into m bins what is $\mathbb{E}[\mathbf{b}_i]$?

$$\Pr\left[\max_{i=1,\ldots,n} \mathbf{b}_i \ge k\right] = \Pr\left[\bigcup_{i=1}^n A_i\right],$$

where A_i is the event that $\mathbf{b}_i \geq k$.

Union Bound: For any random events $A_1, A_2, ..., A_n$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_n) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_n).$$



Exercise: Show that the union bound is a special case of Markov's inequality with indicator random variables.

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\dots,n} \mathbf{b}_i \ge k\right] = \Pr\left[\bigcup_{i=1}^n A_i\right] \le n \cdot p.$$

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\text{Hb}^{-} \qquad \text{Pr} \left[\max_{i=1,\ldots,n} \mathbf{b}_i \geq k \right] = \text{Pr} \left[\bigcup_{i=1}^n A_i \right] \leq n \cdot p. \quad \leq \quad \frac{1}{n} \mathbf{Z}$$

Claim 1: Assume m=n. For $k\geq \frac{c\ln n}{\ln\ln n}$, $\Pr[\mathbf{b}_i\geq k]\leq \frac{1}{n^{c-o(1)}}$.

$$K = \frac{3\ln n}{\ln \ln n}$$
 $Pr(bi > K) \leq \frac{1}{n^3}$

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\dots,n} \mathbf{b}_i \ge k\right] = \Pr\left[\bigcup_{i=1}^n A_i\right] \le n \cdot p.$$

Claim 1: Assume m = n. For $k \ge \frac{c \ln n}{\ln \ln n}$, $\Pr[b_i \ge k] \le \frac{1}{n^{c - o(1)}}$.

• \mathbf{b}_i is a binomial random variable with n draws and success probability 1/n.

$$\Pr[\mathbf{b}_i = j] = \binom{n}{j} \cdot \frac{1}{n^j} \cdot \left(1 - \frac{1}{n}\right)^{n-j}.$$

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\ldots,n}\mathbf{b}_{i}\geq k\right]=\Pr\left[\bigcup_{i=1}^{n}A_{i}\right]\leq n\cdot p.$$

Claim 1: Assume m = n. For $k \ge \frac{c \ln n}{\ln \ln n}$, $\Pr[b_i \ge k] \le \frac{1}{n^{c-o(1)}}$.

• \mathbf{b}_i is a binomial random variable with n draws and success probability 1/n.

$$\Pr[\mathbf{b}_i = j] = \binom{n}{j} \cdot \frac{1}{n^j} \cdot \left(1 - \frac{1}{n}\right)^{n-j} \cdot \mathbf{s}_j$$
• We have $\binom{n}{j} \le \left(\frac{en}{j}\right)^j$, giving $\Pr[\mathbf{b}_i = j] \le \left(\frac{e}{j}\right)^j \cdot \left(1 - \frac{1}{n}\right)^{n-j} \le \left(\frac{e}{j}\right)^j$.

Let \mathbf{b}_i be the number of balls landing in bin i. If we can prove that for any i, $\Pr[A_i] = \Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\ldots,n}\mathbf{b}_{i}\geq k\right]=\Pr\left[\bigcup_{i=1}^{n}A_{i}\right]\leq n\cdot p.$$

Claim 1: Assume m = n. For $k \ge \frac{c \ln n}{\ln \ln n}$, $\Pr[b_i \ge k] \le \frac{1}{n^{c-o(1)}}$.

• \mathbf{b}_i is a binomial random variable with n draws and success probability 1/n.

$$\Pr[\mathbf{b}_i = j] = \binom{n}{j} \cdot \frac{1}{n^j} \cdot \left(1 - \frac{1}{n}\right)^{n-j}.$$

- We have $\binom{n}{j} \le \left(\frac{en}{j}\right)^j$, giving $\Pr[\mathbf{b}_i = j] \le \left(\frac{e}{j}\right)^j \cdot \left(1 \frac{1}{n}\right)^{n-j} \le \left(\frac{e}{j}\right)^j$.
- Summing over $j \ge k$ we have:

$$\Pr[\mathbf{b}_i \geq k] \leq \sum_{j \geq k} \left(\frac{e}{j}\right)^j \leq \left(\frac{e}{k}\right)^k \cdot \frac{1}{1 - e/k}.$$

We just showed: When n = m (i.e., n balls into n bins)

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\underbrace{\frac{e}{k}}\right)^{k} \frac{1}{1 - e/k}$$

For $k = \frac{c \ln n}{\ln \ln n}$ we have:

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{\ln \ln n}{\ln n}\right)^{\frac{c \ln n}{\ln \ln n}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)}$$

We just showed: When n = m (i.e., n balls into n bins)

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{e}{k}\right)^{k} \cdot \frac{1}{1 - e/k}$$

For $k = \frac{c \ln n}{\ln \ln n}$ we have:

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{\ln \ln n}{\ln n}\right)^{\frac{c \ln n}{\ln \ln n}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}}.$$

We just showed: When n = m (i.e., n balls into n bins)

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{e}{k}\right)^{k} \cdot \frac{1}{1 - e/k}$$

For $k = \frac{c \ln n}{\ln \ln n}$ we have:

$$\Pr\left[b_i \ge k\right] \le \left(\frac{\ln \ln n}{\ln n}\right)^{\frac{c \ln n}{\ln \ln n}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}}.$$

Upshot: By the union bound, For $k = c \frac{\ln n}{\ln \ln n}$ for sufficiently large c,

$$\Pr\left[\max_{i=1,...,n} \mathbf{b}_{i} \ge k\right] \le n \cdot \frac{1}{n^{c-o(1)}} = \frac{1}{n^{c-1-o(1)}}.$$

When throwing n balls in to n bins, with very high probability the maximum number of balls in a bin will be $O\left(\frac{\ln n}{\ln \ln n}\right)$.