COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024. Lecture 24 (Final Lecture!)

Logistics

- Optional Problem Set 5 due 5/13 at 11:59pm.
- Final exam will be Tuesday 5/14, 10:30-12:30pm in the classroom. See Piazza post for info on study materials.
- I will hold additional final review office hours Monday 5/13 from 3-4:30pm.
- Final project due the last day of finals: Friday 5/17 if you have questions as you come into the last couple of weeks of the project feel free to reach out.
- · Please fill our SRTIs when you get a chance!

Summary

Last Time: Convex relaxation and randomized rounding.

- High level idea of convex relaxation for approximating NP-hard problems.
- Deterministic rounding for vertex cover. Randomized rounding for set cover.
- SDP relaxation and hyperplane rounding for max-cut (Goemans-Williamson algorithm)

Today: The Probabilistic Method (not on the exam)

- From probabilistic proofs to algorithms via the method of conditional expectations.
- · The Lovasz local lemma for events with 'bounded' correlation.

The Probabilistic Method

The Basic Idea: Suppose we want to prove that a combinatorial object satisfying a certain property exists. Then it suffices to exhibit a random process that produces such an object with probability > 0.

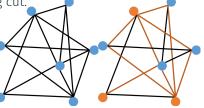
We have already seen examples of this – e.g. the JL Lemma and Newman's Theorem reducing private coin communication complexity to public coin communication complexity (Problem Set 2).

A common tool: For a random variable with $\mathbb{E}[X = \mu]$, $\Pr[X \ge \mu] > 0$ and $\Pr[X \le \mu] > 0$.

Example 1: Max-Cut

Prove that for any graph with m edges, there exists a cut containing at least m/2 edges.

Consider a random partition of the nodes (each node is included independently in each half with probability 1/2). Let X be the size of the corresponding cut.



We have $\mathbb{E}[X] =$

Therefore, $Pr[X \ge m/2] > 0$. So every graph with m edges has a cut containing at least m/2 edges.

Example 2: 3-SAT

Prove that for any 3-SAT formula, there is some assignment of the variables such that at least 7/8 of the clauses are true.

Consider a random assignment of the variables. And let **X** be the number of satisfied clauses.

$$(x_1 \vee \overline{x}_2 \vee x_4) \wedge (x_2 \vee \overline{x}_4 \vee x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge \dots$$

What is $\mathbb{E}[X]$?

So, $Pr[X \ge 7/8m] > 0$. So there is an assignment satisfying at least 7/8 of the clauses in every 3-SAT formula.

From Existence to Efficient Algorithms

Simple Max-Cut Approximation: A randomly sampled partition cuts m/2 edges in expectation. But how many partitions do we need to sample before finding a cut of size at least m/2 with good probability?

Let p be the probability of finding a cut of size $\geq m/2$. Then:

$$\mathbb{E}[X] = \frac{m}{2} \le (1 - p) \cdot \left(\frac{m}{2} - 1\right) + p \cdot m$$

$$\implies \frac{1}{\frac{m}{2} + 1} \le p.$$

How many attempts do we need to take to find a large cut with probability at least $1 - \delta$? $O(m \cdot \log(1/\delta))$

Method of Conditional Expectations

We can also derandomize this algorithm in a very simple way.

Let $x_1, x_2, \ldots \in \{0, 1\}$ indicate if the vertices are included on one side of the random partition.

Consider determining these randsom variables sequentially.

$$\frac{m}{2}=\mathbb{E}[X]=\frac{1}{2}\mathbb{E}[X|X_1=1]+\frac{1}{2}\mathbb{E}[X|X_1=0].$$

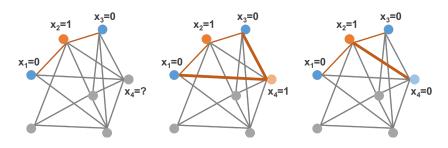
Set $\mathbf{x}_1 = v_1$ such that $\mathbb{E}[\mathbf{X}|\mathbf{x}_1 = v_1] \geq \frac{m}{2}$ Then we have:

$$\frac{m}{2} \le \mathbb{E}[X|X_1 = v_1] = \frac{1}{2}\mathbb{E}[X|X_1 = v_1, X_2 = 1] + \frac{1}{2}\mathbb{E}[X|X_1 = v_1, X_2 = 0]$$

Set $\mathbf{x}_2 = v_2$ such that $\mathbb{E}[\mathbf{X}|\mathbf{x}_1 = v_1, \mathbf{x}_2 = v_2] \geq \frac{m}{2}$. And so on...

Conditional Expectations for Cuts

How can we pick v_i such that $\mathbb{E}[\mathbf{X}|\mathbf{x}_1=v_1,\ldots,\mathbf{x}_{i-1}=v_{i-1}]\geq \frac{m}{2}$?



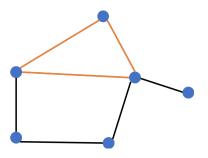
$$\mathbb{E}[X|X_1 = 0, \dots, X_4 = 1] = \frac{1}{2} \cdot 10 + 2 = 7\mathbb{E}[X|X_1 = 0, \dots, X_4 = 0] = \frac{1}{2} \cdot 10 + 1 = 6$$

Natural greedy approach: add vertex *i* to the side of the cut to which it has fewest edges.

Yields a 1/2 approximation algorithm for max-cut. Recall that 16/17 is the best possible assuming $P \neq NP$, and .878 is the best known

Large Girth Graphs

The girth of a graph is the length of its shortest cycle.

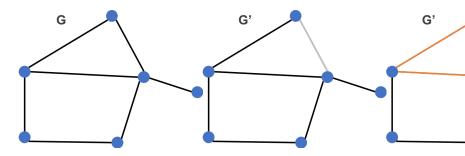


Natural Question: How large can the girth be for a graph with *m* edges?

Erdös Girth Conjecture: For any $k \ge 1$, there exists a graph with $m = \Omega(n^{1+1/k})$ edges and girth 2k + 1.

Relevance to Spanners

A spanner is a subgraph that approximately preserves shortest path distances. We say G' is a spanner for G with stretch t if for all u, v $d_{G'}(u, v) \le t \cdot d_G(u, v)$.



Even when G' excludes a single edge, $t \ge girth(G) - 1$.

Erdös Girth Conjecture \implies there are no generic spanner constructions with $o(n^{1+1/k})$ edges and stretch $\le 2k-1$.

Large Girth Graphs via Probabilistic Method

Theorem (Weaker Version of Girth Conjecture)

For any fixed $k \ge 3$, there exists a graph with n nodes, $\Omega(n^{1+1/k})$ edges, and girth k+1.

Sample and Modify Approach: Let G be an Erdös-Renyi random graph, where each edge is included independently with probability $p=n^{1/k-1}$. Remove one edge from every cycle in G with length $\leq k$, to get a graph with girth k+1.

Let **X** be the number of edges in the graph and **Y** be the number of cycles of length $\leq k$. Suffices to show $\mathbb{E}[\mathbf{X} - \mathbf{Y}] = \Omega(n^{1+1/k})$.

$$\mathbb{E}[X] = \frac{n(n-1)}{2} \cdot p = \frac{1}{2} \cdot \left(1 - \frac{1}{n}\right) \cdot n^{1+1/k}.$$

$$\mathbb{E}[Y] = \sum_{i=3}^{k} \binom{n}{i} \cdot \frac{(i-1)!}{2} \cdot p^{i} \le \sum_{i=3}^{k} n^{i} p^{i} = \sum_{i=3}^{k} n^{i/k} < k \cdot n.$$

Large Girth Graphs via Probabilistic Method

So far: An Erdös-Renyi random graph with $p = n^{1/k-1}$ has expected number of edges (X) and cycles of length $\leq k - 1$ (Y) bounded by:

$$\mathbb{E}[X] = \frac{1}{2} \cdot \left(1 - \frac{1}{n}\right) \cdot n^{1 + 1/k}$$
$$\mathbb{E}[Y] < k \cdot n.$$

When k is fixed and n is sufficiently large, $k \cdot n \ll n^{1+1/k}$. Thus,

$$\mathbb{E}[X - Y] = \Omega(\mathbb{E}[X]) = \Omega(n^{1+1/k}),$$

proving the theorem.

Lovasz Local Lemma

Probabilities of Correlated Events

Suppose we want to sample a random object that avoids n 'bad events' E_1, \ldots, E_n .

E.g., we want to sample a random assignment for variables that satisfies a a k-SAT formula with n clauses. E_i is the event that clause i is not satisfied.

If the E_i are independent, and $Pr[E_i] < 1$ for all i then:

$$\Pr\left[\neg\bigcup_{i=1}^n E_i\right] = \prod_{i=1}^n (1 - E_i) > 0.$$

What if the events are not independent?

If $\sum_{i=1}^{n} \Pr[E_i] < 1$ then by a union bound,

$$\Pr\left[\neg \bigcup_{i=1}^n E_i\right] \ge 1 - \sum_{i=1}^n E_i > 0.$$

As n gets large, the union bound gets very weak – each event has to occur with probability < 1/n on average.

Bounded Correlation

Consider events E_1, \ldots, E_n where E_i is independent of any $j \notin \Gamma(i)$ (the neighborhood of i in the dependency graph)

E.g., consider randomly assigning variables in a k-SAT formula with n clauses, and let E_i be the event that clause i is unsatisfied.

$$(x_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor \bar{x}_4 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_6 \lor x_7) \dots$$

Theorem (Lovasz Local Lemma)

Suppose for a set of events E_1, E_2, \dots, E_n , $\Pr[E_i] \leq p$ for all i, and that each E_i is dependent on at most d other events E_j (i.e.,

$$|\Gamma(i)| \le d$$
, then if $4dp \le 1$:
$$\Pr\left[\neg \bigcup_{i=1}^{n} E_i\right] > (1-2p)^n > 0.$$

In the worse case, d = n - 1 and this is similar to the union bound. But it can be much stronger.

LLL Application: k-SAT

Theorem

If no variable in a k-SAT formula appears in more than $\frac{2^k}{4k}$ clauses, then the formula is satisfiable.

Let E_i be the event that clause i is unsatisfied by a random assignment. $\Pr[E_i] \leq \frac{1}{2R} = p$.

$$|\Gamma(i)| \le k \cdot \frac{2^k}{4k} = \frac{2^k}{4} = d$$

So $4dp = 4 \cdot \frac{1}{2^k} \cdot \frac{2^k}{4} \le 1$, and thus $\Pr\left[\neg \bigcup_{i=1}^n E_i\right] > 0$. I.e., a random assignment satisfies the formula with non-zero probability.

Algorithmic LLL

Important Question: Given an Lovasz Local Lemma based proof of the existence, can we convert it into an efficient algorithm?

Moser and Tardos [2010] prove that a very natural algorithm can be used to do this.

Let E_1, \ldots, E_n be events determined by a set of independent random variables $V = \{v_1, \ldots, v_m\}$. Let $v(E_i)$ be the set of variables that E_i depends on.

Resampling Algorithm:

- 1. Assign v_1, \ldots, v_m random values.
- 2. While there is some E_i that occurs, reassign random values to all variables in $v(E_i)$.
- 3. Halt when an assignment is found such that no E_i occurs.

Algorithmic LLL

Theorem (Algorithmic Lovasz Local Lemma)

Consider a set of events E_1, E_2, \ldots, E_n determined by a finite set of random variables V. If for all i, $\Pr[E_i] \leq p$ and $|\Gamma(i)| \leq d$, and if $ep(d+1) \leq 1$, then RESAMPLING finds an assignment of the variables in V such that no event E_i occurs. Further, the algorithm makes $O(\frac{n}{d})$ iterations in expectation.

Application to k-SAT: Consider a k-SAT formula where no variable appears in more than $\frac{2^k}{5k}$ clauses. Let E_i be the event that clause i is unsatisfied by a random assignment

$$\Pr[E_i] \le \frac{1}{2^k} = p$$
 and $|\Gamma(i) \le k \cdot \frac{2^k}{5k} = \frac{2^k}{5} = d$.

Have $ep(d+1) \le \frac{e}{5} + \frac{e}{2^k} \le 1$ as long as $k \ge 3$, so the theorem applies, giving a polynomial time algorithm for this variant of k-SAT.

Thanks for a great semester!