
COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 24 (Final Lecture!)
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Logistics

• Optional Problem Set 5 due 5/13 at 11:59pm.
• Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. See Piazza post for info on study materials.

• I will hold additional final review office hours Monday 5/13
from 3-4:30pm.

• Final project due the last day of finals: Friday 5/17 – if you
have questions as you come into the last couple of weeks
of the project feel free to reach out.

• Please fill our SRTIs when you get a chance!
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Summary

Last Time: Convex relaxation and randomized rounding.

• High level idea of convex relaxation for approximating NP-hard
problems.

• Deterministic rounding for vertex cover. Randomized rounding
for set cover.

• SDP relaxation and hyperplane rounding for max-cut
(Goemans-Williamson algorithm)

Today: The Probabilistic Method (not on the exam)

• From probabilistic proofs to algorithms via the method of
conditional expectations.

• The Lovasz local lemma for events with ‘bounded’ correlation.
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The Probabilistic Method

The Basic Idea: Suppose we want to prove that a combinatorial
object satisfying a certain property exists. Then it suffices to exhibit
a random process that produces such an object with probability > 0.

We have already seen examples of this – e.g. the JL Lemma and
Newman’s Theorem reducing private coin communication complexity
to public coin communication complexity (Problem Set 2).

A common tool: For a random variable with E[X = µ], Pr[X ≥ µ] > 0
and Pr[X ≤ µ] > 0.
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Example 1: Max-Cut

Prove that for any graph with m edges, there exists a cut containing
at least m/2 edges.

Consider a random partition of the nodes (each node is included
independently in each half with probability 1/2). Let X be the size of
the corresponding cut.

We have E[X] =

Therefore, Pr[X ≥ m/2] > 0. So every graph with m edges has a cut
containing at least m/2 edges.
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Example 2: 3-SAT

Prove that for any 3-SAT formula, there is some assignment of the
variables such that at least 7/8 of the clauses are true.

Consider a random assignment of the variables. And let X be the
number of satisfied clauses.

(x1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x̄4 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ . . .

What is E[X]?

So, Pr[X ≥ 7/8m] > 0. So there is an assignment satisfying at least
7/8 of the clauses in every 3-SAT formula.
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From Existence to Efficient Algorithms

Simple Max-Cut Approximation: A randomly sampled partition cuts
m/2 edges in expectation. But how many partitions do we need to
sample before finding a cut of size at least m/2 with good
probability?

Let p be the probability of finding a cut of size ≥ m/2. Then:

E[X] = m
2

≤ (1− p) ·
(m
2

− 1
)
+ p ·m

=⇒ 1
m
2 + 1

≤ p.

How many attempts do we need to take to find a large cut with
probability at least 1− δ?

O(m · log(1/δ))
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Method of Conditional Expectations

We can also derandomize this algorithm in a very simple way.

Let x1, x2, . . . ∈ {0, 1} indicate if the vertices are included on one side
of the random partition.

Consider determining these randsom variables sequentially.

m
2

= E[X] = 1
2
E[X|x1 = 1] + 1

2
E[X|x1 = 0].

Set x1 = v1 such that E[X|x1 = v1] ≥ m
2 Then we have:

m
2

≤ E[X|x1 = v1] =
1
2
E[X|x1 = v1, x2 = 1] + 1

2
E[X|x1 = v1, x2 = 0]

Set x2 = v2 such that E[X|x1 = v1, x2 = v2] ≥ m
2 . And so on...
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Conditional Expectations for Cuts

How can we pick vi such that E[X|x1 = v1, . . . , xi−1 = vi−1] ≥ m
2 ?

E[X|x1 = 0, . . . , x4 = 1] = 1
2 · 10+ 2 = 7

Natural greedy approach: add vertex i to the side of the cut to which
it has fewest edges.

Yields a 1/2 approximation algorithm for max-cut.

Recall that 16/17 is
the best possible assuming P (= NP, and .878 is the best known
(Goemans, Williamson) from last lecture, and optimal under unique
games conjecture
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Large Girth Graphs

The girth of a graph is the length of its shortest cycle.

Natural Question: How large can the girth be for a graph with m
edges?

Erdös Girth Conjecture: For any k ≥ 1, there exists a graph with
m = Ω(n1+1/k) edges and girth 2k+ 1.
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Relevance to Spanners

A spanner is a subgraph that approximately preserves shortest path
distances. We say G′ is a spanner for G with stretch t if for all u, v
dG′(u, v) ≤ t · dG(u, v).

Even when G′ excludes a single edge, t ≥ girth(G)− 1.

Erdös Girth Conjecture =⇒ there are no generic spanner
constructions with o(n1+1/k) edges and stretch ≤ 2k− 1.
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Large Girth Graphs via Probabilistic Method

Theorem (Weaker Version of Girth Conjecture)
For any fixed k ≥ 3, there exists a graph with n nodes, Ω(n1+1/k)

edges, and girth k+ 1.

Sample and Modify Approach: Let G be an Erdös-Renyi random
graph, where each edge is included independently with probability
p = n1/k−1. Remove one edge from every cycle in G with length ≤ k,
to get a graph with girth k+ 1.

Let X be the number of edges in the graph and Y be the number of
cycles of length ≤ k. Suffices to show E[X− Y] = Ω(n1+1/k).

E[X] =

n(n− 1)
2

· p =
1
2
·
(
1− 1

n

)
· n1+1/k.

E[Y] =

k∑

i=3

(
n
i

)
· (i− 1)!

2
· pi ≤

k∑

i=3

nipi =
k∑

i=3

ni/k < k · n.
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p = n1/k−1. Remove one edge from every cycle in G with length ≤ k,
to get a graph with girth k+ 1.

Let X be the number of edges in the graph and Y be the number of
cycles of length ≤ k. Suffices to show E[X− Y] = Ω(n1+1/k).

E[X] = n(n− 1)
2

· p =
1
2
·
(
1− 1

n

)
· n1+1/k.

E[Y] =
k∑

i=3

(
n
i

)
· (i− 1)!

2
· pi

≤
k∑

i=3

nipi =
k∑

i=3

ni/k < k · n.
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Large Girth Graphs via Probabilistic Method

So far: An Erdös-Renyi random graph with p = n1/k−1 has expected
number of edges (X) and cycles of length ≤ k− 1 (Y) bounded by:

E[X] = 1
2
·
(
1− 1

n

)
· n1+1/k

E[Y] < k · n.

When k is fixed and n is sufficiently large, k · n ) n1+1/k. Thus,

E[X− Y] = Ω(E[X]) = Ω(n1+1/k),

proving the theorem.
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Lovasz Local Lemma
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Probabilities of Correlated Events

Suppose we want to sample a random object that avoids n ‘bad
events’ E1, . . . , En.

E.g., we want to sample a random assignment for variables that
satisfies a a k-SAT formula with n clauses. Ei is the event that clause
i is not satisfied.

If the Ei are independent, and Pr[Ei] < 1 for all i then:

Pr

[
¬

n⋃

i=1

Ei

]
=

n∏

i=1

(1− Ei) > 0.

What if the events are not independent?

If
∑n

i=1 Pr[Ei] < 1 then by a union bound,

Pr

[
¬

n⋃

i=1

Ei

]
≥ 1−

n∑

i=1

Ei > 0.

As n gets large, the union bound gets very weak – each event has to
occur with probability < 1/n on average.
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Bounded Correlation

Consider events E1, . . . , En where Ei is independent of any j /∈ Γ(i)
(the neighborhood of i in the dependency graph)

E.g., consider randomly assigning variables in a k-SAT formula with n
clauses, and let Ei be the event that clause i is unsatisfied.

(x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄4 ∨ x3) ∧ (x4 ∨ x5 ∨ x6) ∧ (¬x4 ∨ x6 ∨ x7) . . .

Theorem (Lovasz Local Lemma)
Suppose for a set of events E1, E2, . . . , En, Pr[Ei] ≤ p for all i, and
that each Ei is dependent on at most d other events Ej (i.e.,
|Γ(i)| ≤ d, then if 4dp ≤ 1:

Pr

[
¬

n⋃

i=1

Ei

]
> (1− 2p)n > 0.

In the worse case, d = n− 1 and this is similar to the union bound.
But it can be much stronger.
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LLL Application: k-SAT

Theorem

If no variable in a k-SAT formula appears in more than 2k
4k clauses,

then the formula is satisfiable.

Let Ei be the event that clause i is unsatisfied by a random
assignment. Pr[Ei] ≤

1
2k = p.

|Γ(i)| ≤

k · 2k
4k = 2k

4 = d

So 4dp = 4 · 1
2k ·

2k
4 ≤ 1, and thus Pr

[
¬
⋃n

i=1 Ei
]
> 0. I.e., a random

assignment satisfies the formula with non-zero probability.
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Algorithmic LLL

Important Question: Given an Lovasz Local Lemma based proof of
the existence, can we convert it into an efficient algorithm?

Moser and Tardos [2010] prove that a very natural algorithm can be
used to do this.

Let E1, . . . , En be events determined by a set of independent random
variables V = {v1, . . . , vm}. Let v(Ei) be the set of variables that Ei
depends on.

Resampling Algorithm:

1. Assign v1, . . . , vm random values.

2. While there is some Ei that occurs, reassign random values to all
varables in v(Ei).

3. Halt when an assignment is found such that no Ei occurs.
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Algorithmic LLL

Theorem (Algorithmic Lovasz Local Lemma)
Consider a set of events E1, E2, . . . , En determined by a finite set of
random variables V. If for all i, Pr[Ei] ≤ p and |Γ(i)| ≤ d, and if
ep(d+ 1) ≤ 1, then RESAMPLING finds an assignment of the
variables in V such that no event Ei occurs. Further, the algorithm
makes O(nd ) iterations in expectation.

Application to k-SAT: Consider a k-SAT formula where no variable
appears in more than 2k

5k clauses. Let Ei be the event that clause i is
unsatisfied by a random assignment

Pr[Ei] ≤
1
2k

= p and |Γ(i) ≤ k · 2
k

5k
=

2k

5
= d.

Have ep(d+ 1) ≤ e
5 +

e
2k ≤ 1 as long as k ≥ 3, so the theorem applies,

giving a polynomial time algorithm for this variant of k-SAT.
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Thanks for a great semester!
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