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Logistics

• Optional Problem Set 5 due 5/13 at 11:59pm.
• Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. See Piazza post for info on study materials.

• I will hold additional final review office hours Monday 5/13
from 3-4:30pm.

• Final project due the last day of finals: Friday 5/17 – if you
have questions as you come into the last couple of weeks
of the project feel free to reach out.
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Summary

Last Time:

• Finish Markov chain unit.

• Analysis of Metropolis Hastings algorithm

• Example sampling to counting reduction for independent sets.

Today:

• Convex relaxation + randomized rounding for NP-Hard problems.

• Example application to vertex cover and set cover.
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Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex
optimization problems subject to integral constraints.

Example 1: Vertex cover – find a minimum set of vertices such that
any edge in a graph is covered by at least one vertex.

min
n∑
i=1

xv s.t. xu + xv ≥ 1 for all (u, v) ∈ E

xi ∈ {0, 1} for all i ∈ [n].
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Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex
optimization problems subject to integral constraints.

Example 2: Set cover – given a universe of elements [n] and a
collection of sets S1, S2, . . . , Sm ⊆ [n], find the minimum number of
sets that cover all items in [n].

min
m∑
i=1

xi s.t.
∑
i:j∈Si

xi ≥ 1 for all j ∈ [n]

xi ∈ {0, 1} for all i ∈ [m].
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Applications Beyond Theory

Convex optimization problems with non-convex constraints arise all
over the place outside of algorithms textbooks.

• Sparse linear regression: minx:∥x∥0≤k ∥Ax− b∥22.

• Low-rank matrix completion: minM:rank(M)≤k
∑

(i,j)∈Ω[Bi,j −Mi,j]
2.

• Matching matrices with permutations:
min

permutation matrices P1,P2
∥A− P1BP2∥2F. Recently, these types of

problems are very relevant e.g. in identifying permutation
invariances in neural networks.
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Convex Relaxation

• Step 1: ‘Relax’ the non-convex constraint to be a related (and
weaker) convex constraint.

• Step 2: Solve the resulting convex problem in polynomial time.

• Step 3: Map the relaxed solution back to a solution to the
original problem. For integral constraints this is called
‘rounding’.

Key Challenge: Need to argue that the rounding step both gives a
feasible solution and does not increase the cost of the relaxed
solution too much.

Applications: This very general approach yields the best known
approximation algorithms for a huge range of problems: set cover,
vertex cover, max-cut (Goemans-Williamson SDP), etc. In many cases,
the approximation ratios obtained are known to be optimal under
complexity theoretic assumptions.
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Vertex Cover Relaxation

min
n∑
i=1

xv s.t. xu + xv ≥ 1 for all (u, v) ∈ E

xi ∈ {0, 1}[0, 1] for all i ∈ [n].

• This is now a linear program. It can be solved in polynomial
time.

• A solution may no longer be a valid vertex cover.

• How should be round to solution to obtain a true vertex cover?
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Vertex Cover Relaxation

Deterministic Rounding for Vertex Cover: Given a fractional solution
x̃1, . . . , x̃n, obtain integral solution x1, . . . , xn by applying the rule: if
x̃u ≥ 1/2, set xu = 1. if x̃u < 1/2, set xu = 0.

Claim 1: The rounded solution is feasible.

Proof: For any (u, v) ∈ E, we must have xu + xv ≥ 1, and thus at least
one of xu or xv ≥ 1/2. So all edges are covered in the rounded
solution.

Claim 2: The rounded solution is within a 2-factor of optimal.

Proof:
∑n

i=1 xi ≤ 2
∑n

i=1 x̃i = 2 · OPTrelax ≤ 2 · OPT.
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Vertex Cover Integrality Gap

Could we do any better than a 2-approximation for vertex cover via
this approach?

• There exist graphs for which OPTrelax ≤ OPT/2. I.e., this
relaxation has an integrality gap of 2.

• So any rounding scheme must at least double OPTrelax in the
worst case, or would have to be infeasible on such graphs.

• Since there also exist solutions where OPTrelax = OPT, this
makes it unlikely to get an approximation factor better than 2
for this problem.

• Assuming the unique games conjecture, vertex cover is hard to
approximate to a factor better than 2 in general [Khot, Regev
‘08]]. Assuming P ̸= NP it cannot be approximated to a factor
better than ≈ 1.36 [Dinur, Safra ‘05].
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Set Cover Relaxation

min
m∑
i=1

xi s.t.
∑
i:j∈Si

xi ≥ 1 for all j ∈ [n]

xi ∈ {0, 1}[0, 1] for all i ∈ [m].

Will deterministic rounding work here?
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Randomized Rounding for Set Cover

Naive Randomized Rounding: Given a fractional set cover solution
x̃1, . . . , x̃m, obtain integral solution x1, . . . , xm by independently
setting xi = 1 with probability x̃i and 0 otherwise.

• What is the expected cost E[
∑m

i=1 xi]?

• Is the rounded solution feasible?

• No with pretty good probability. Consider an item that is
covered by t sets, each with weight 1/t.
Pr[not feasible] = (1− 1/t)t ≈ 1/e.

• How could we fix this issue?
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
x̃1, . . . , x̃m, obtain integral solution x1, . . . , xm by independently
setting xi = 1 with probability min(1, α · x̃i) and 0 otherwise.

• Expected cost:
E[
∑m

i=1 xi] =
∑m

i=1 min(1, αx̃i) ≤ α
∑m

i=1 x̃i ≤ α · OPT.

• Feasibility: For any given item j, if there is some Si ∋ j with
x̃j = 1, and so j is covered.

• Otherwise, E[
∑

i:j∈Si xi] = α ·
∑

i:j∈Si x̃i ≥ α.

• How big must we set α such that, with probability at least
1− 1/nc,

∑
i:j∈Si xi ≥ 1? α = O(log n) suffices via a Chernoff

bound

• By a union bound over all n items, the solution will be feasible
with probability at least 1− 1/nc−1.
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Set Cover Approximation Via Randomized Rounding

Upshot: We obtain a O(log n) approximation algorithm for Set Cover
via relaxation + randomized rounding.

• The natural Set Cover LP relaxation has an integrality gap of
Ω(log n).

• Assuming P ̸= NP this approximation factor is optimal up to
constants [Raz, Safra ‘97].

• A simple deterministic greedy algorithm also gives an O(log n)
approximation factor: at each step pick the set that covers the
most number of previously uncovered elements.
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Bonus Slides: Semidefinite Programming
Relaxation of Max-Cut
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Max-Cut

Given a graph G output the sets of vertices S such that the number
of edges between S and V \ S is maximized.

• Decision version is NP-Hard.

• If P ̸= NP no algorithm gives better than 16/17 approximation.

• Best known algorithm is the Goemans-Williamson algorithm,
which is based on convex relaxation and randomized rounding.
Gives ≈ 0.878 approximation.

• This is optimal assuming the Unique Games Conjecture.
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Max-Cut SDP Formulation

max
1
2

∑
(u,v)∈E

(1− xuxv) s.t. xv ∈ {−1, 1} for all v ∈ V.

• If we just relax xv ∈ [−1, 1], this problem is not convex.

• Instead, Goemans and Williamson relax the problem by letting
the xv be unit vectors in Rn:

max
1
2

∑
(u,v)∈E

(1− ⟨xu, xv⟩) s.t. xv ∈ Rn, ∥xv∥2 = 1 for all v ∈ V.

• This is a valid relaxation – given an integral solution could set
x̃v = [xv, 0, 0, 0, . . .] and achieve the same cost.

• Further it can be solved in polynomial time as a semidefinite
program (SDP).
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Max-Cut Rounding

To round the Max-Cut SDP relaxation, Goemans and Williamson use
the following procedure:

• Let r ∈ Rn be a uniform random point with ∥r∥2 = 1.

• Let xv = 1 if x̃v : ⟨xv, r⟩ ≥ 0, and xv = 0 otherwise.

Note that the output solution is always a valid cut. So the main
challenge is to prove the approximation ratio.
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Max-Cut Approximation Ratio

• Focusing on just a single edge (u, v), the relaxed solution gives
value 1−⟨xu,xv⟩

2 = 1−cos θ
2 where θ is the angle between xu and xv.

• The rounded solution gives value 1 if xu and xv are rounded to
different sides of the cut (and value 0 otherwise). What is the
probability of this happening? θ/π.

• Thus, summing over all edges, the Goemans Williamson
algorithm has expected approximation ratio at least
minθ

θ/π
1−cos θ

2
≈ 0.878.
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Max-Cut Approximation Ratio

• If you took 514 you may recognize that this analysis is very
closely related to the SimHash locality sensitive hashing
algorithm, and in turn the JL Lemma.

• In fact SimHash, which is used e.g. for high dimensional
approximate near neighbor search is exactly the rounding
scheme from Goemans Williamson. 19


