COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 23

Logistics

- Optional Problem Set 5 due 5/13 at 11:59pm.
- Final exam will be Tuesday 5/14, 10:30-12:30pm in the classroom. See Piazza post for info on study materials.
- I will hold additional final review office hours Monday 5/13 from 3-4:30pm.
- Final project due the last day of finals: Friday $5 / 17$ - if you have questions as you come into the last couple of weeks of the project feel free to reach out.

Summary

Last Time:

- Finish Markov chain unit.
- Analysis of Metropolis Hastings algorithm
- Example sampling to counting reduction for independent sets.

Today:

- Convex relaxation + randomized rounding for NP-Hard problems.
- Example application to vertex cover and set cover.

Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex optimization problems subject to integral constraints.

Example 1: Vertex cover - find a minimum set of vertices such that any edge in a graph is covered by at least one vertex.

$$
\begin{array}{lll}
\min \sum_{i=1}^{n} x_{v} \text { s.t. } & x_{u}+x_{v} \geq 1 \text { for all }(u, v) \in E \\
& x_{i} \in\{0,1\} \text { for all } i \in[n] .
\end{array}
$$

Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex optimization problems subject to integral constraints.

Example 2: Set cover - given a universe of elements [n] and a collection of sets $S_{1}, S_{2}, \ldots, S_{m} \subseteq[n]$, find the minimum number of sets that cover all items in [n].

$$
\begin{array}{ll}
\min \sum_{i=1}^{m} x_{i} \text { s.t. } & \sum_{i: j \in S_{i}} x_{i} \geq 1 \text { for all } j \in[n] \\
& x_{i} \in\{0,1\} \text { for all } i \in[m] .
\end{array}
$$

Applications Beyond Theory

Convex optimization problems with non-convex constraints arise all over the place outside of algorithms textbooks.

- Sparse linear regression: $\min _{x:\|x\|_{0} \leq k}\|A x-b\|_{2}^{2}$.
- Low-rank matrix completion: $\min _{M: \operatorname{rank}(M) \leq k} \sum_{(i, j) \in \Omega}\left[B_{i, j}-M_{i, j}\right]^{2}$.
- Matching matrices with permutations:

$$
\begin{aligned}
& \min _{\text {permutation matrices } P_{1}, P_{2}}\left\|A-P_{1} B P_{2}\right\|_{\text {Fe }}^{2} \text {. Recently, these types of } \\
& \text { problems are very relevant e.g. in identifying permutation } \\
& \text { invariances in neural networks. }
\end{aligned}
$$

Convex Relaxation

- Step 1: 'Relax' the non-convex constraint to be a related (and weaker) convex constraint.
- Step 2: Solve the resulting convex problem in polynomial time.
- Step 3: Map the relaxed solution back to a solution to the original problem. For integral constraints this is called 'rounding'.

Key Challenge: Need to argue that the rounding step both gives a feasible solution and does not increase the cost of the relaxed solution too much.

Applications: This very general approach yields the best known approximation algorithms for a huge range of problems: set cover, vertex cover, max-cut (Goemans-Williamson SDP), etc. In many cases, the approximation ratios obtained are known to be optimal under complexity theoretic assumptions.

Vertex Cover Relaxation

$$
\begin{aligned}
\min \sum_{i=1}^{n} x_{v} \text { s.t. } & x_{u}+x_{v} \geq 1 \text { for all }(u, v) \in E \\
& x_{i} \in\{0,1\}[0,1] \text { for all } i \in[n]
\end{aligned}
$$

- This is now a linear program. It can be solved in polynomial time.
- A solution may no longer be a valid vertex cover.

- How should be round to solution to obtain a true vertex cover?

Vertex Cover Relaxation

Deterministic Rounding for Vertex Cover: Given a fractional solution $\tilde{x}_{1}, \ldots, \tilde{x}_{n}$, obtain integral solution x_{1}, \ldots, x_{n} by applying the rule: if $\tilde{x}_{u} \geq 1 / 2$, set $x_{u}=1$. if $\tilde{x}_{u}<1 / 2$, set $x_{u}=0$.
Claim 1: The rounded solution is feasible.
Proof: For any $(u, v) \in E$, we must have $x_{u}+x_{v} \geq 1$, and thus at least one of x_{u} or $x_{v} \geq 1 / 2$. So all edges are covered in the rounded solution.

Claim 2: The rounded solution is within a 2-factor of optimal.
Proof: $\sum_{i=1}^{n} x_{i} \leq 2 \sum_{i=1}^{n} \tilde{x}_{i}=2 \cdot$ OPT relax $\leq 2 \cdot$ OPT.

Vertex Cover Integrality Gap

Could we do any better than a 2-approximation for vertex cover via this approach?

- There exist graphs for which $O P T_{\text {relax }} \leq O P T / 2$. I.e., this relaxation has an integrality gap of 2.
- So any rounding scheme must at least double OPT relax in the worst case, or would have to be infeasible on such graphs.
- Since there also exist solutions where OPT relax $=O P T$, this makes it unlikely to get an approximation factor better than 2 for this problem.
- Assuming the unique games conjecture, vertex cover is hard to approximate to a factor better than 2 in general [Khot, Regev '08]]. Assuming $P \neq N P$ it cannot be approximated to a factor better than ≈ 1.36 [Dinur, Safra '05].

Set Cover Relaxation

$$
\begin{aligned}
\min \sum_{i=1}^{m} x_{i} \text { s.t. } & \sum_{i: j \in S_{i}} x_{i} \geq 1 \text { for all } j \in[n] \\
& x_{i} \in\{0,1\}[0,1] \text { for all } i \in[m] .
\end{aligned}
$$

Will deterministic rounding work here?

Randomized Rounding for Set Cover

Naive Randomized Rounding: Given a fractional set cover solution $\tilde{x}_{1}, \ldots, \tilde{x}_{m}$, obtain integral solution x_{1}, \ldots, x_{m} by independently setting $x_{i}=1$ with probability \tilde{x}_{i} and 0 otherwise.

- What is the expected cost $\mathbb{E}\left[\sum_{i=1}^{m} x_{i}\right]$?
- Is the rounded solution feasible?
- No with pretty good probability. Consider an item that is covered by t sets, each with weight $1 / t$. $\operatorname{Pr}[$ not feasible $]=(1-1 / t)^{t} \approx 1 / e$.
- How could we fix this issue?

Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution $\tilde{x}_{1}, \ldots, \tilde{x}_{m}$, obtain integral solution x_{1}, \ldots, x_{m} by independently setting $x_{i}=1$ with probability $\min \left(1, \alpha \cdot \tilde{x}_{i}\right)$ and 0 otherwise.

- Expected cost:
$\mathbb{E}\left[\sum_{i=1}^{m} x_{i}\right]=\sum_{i=1}^{m} \min \left(1, \alpha \tilde{x}_{i}\right) \leq \alpha \sum_{i=1}^{m} \tilde{x}_{i} \leq \alpha \cdot$ OPT.
- Feasibility: For any given item j, if there is some $S_{i} \ni j$ with $\tilde{x}_{j}=1$, and so j is covered.
- Otherwise, $\mathbb{E}\left[\sum_{i: j \in S_{i}} x_{i}\right]=\alpha \cdot \sum_{i: j \in S_{i}} \tilde{x}_{i} \geq \alpha$.
- How big must we set α such that, with probability at least $1-1 / n^{c}, \sum_{i: j \in S_{i}} x_{i} \geq 1$? $\alpha=O(\log n)$ suffices via a Chernoff bound
- By a union bound over all n items, the solution will be feasible with probability at least $1-1 / n^{c-1}$.

Set Cover Approximation Via Randomized Rounding

Upshot: We obtain a $O(\log n)$ approximation algorithm for Set Cover via relaxation + randomized rounding.

- The natural Set Cover LP relaxation has an integrality gap of $\Omega(\log n)$.
- Assuming $P \neq N P$ this approximation factor is optimal up to constants [Raz, Safra '97].
- A simple deterministic greedy algorithm also gives an $O(\log n)$ approximation factor: at each step pick the set that covers the most number of previously uncovered elements.

Bonus Slides: Semidefinite Programming Relaxation of Max-Cut

Max-Cut

Given a graph G output the sets of vertices S such that the number of edges between S and $V \backslash S$ is maximized.

- Decision version is NP-Hard.
- If $P \neq$ NP no algorithm gives better than 16/17 approximation.
- Best known algorithm is the Goemans-Williamson algorithm, which is based on convex relaxation and randomized rounding. Gives ≈ 0.878 approximation.
- This is optimal assuming the Unique Games Conjecture.

Max-Cut SDP Formulation

$$
\max \frac{1}{2} \sum_{(u, v) \in E}\left(1-x_{u} x_{v}\right) \quad \text { s.t. } \quad x_{v} \in\{-1,1\} \text { for all } v \in V \text {. }
$$

- If we just relax $x_{v} \in[-1,1]$, this problem is not convex.
- Instead, Goemans and Williamson relax the problem by letting the x_{v} be unit vectors in \mathbb{R}^{n} :

$$
\max \frac{1}{2} \sum_{(u, v) \in E}\left(1-\left\langle x_{u}, x_{v}\right\rangle\right) \quad \text { s.t. } \quad x_{v} \in \mathbb{R}^{n},\left\|x_{v}\right\|_{2}=1 \text { for all } v \in V .
$$

- This is a valid relaxation - given an integral solution could set $\tilde{x}_{v}=\left[x_{v}, 0,0,0, \ldots\right]$ and achieve the same cost.
- Further it can be solved in polynomial time as a semidefinite program (SDP).

Max-Cut Rounding

To round the Max-Cut SDP relaxation, Goemans and Williamson use the following procedure:

- Let $r \in \mathbb{R}^{n}$ be a uniform random point with $\|r\|_{2}=1$.
- Let $x_{v}=1$ if $\tilde{x}_{v}:\left\langle x_{v}, r\right\rangle \geq 0$, and $x_{v}=0$ otherwise.

Note that the output solution is always a valid cut. So the main challenge is to prove the approximation ratio.

Max-Cut Approximation Ratio

- Focusing on just a single edge (u, v), the relaxed solution gives value $\frac{1-\left\langle x_{u}, x_{v}\right\rangle}{2}=\frac{1-\cos \theta}{2}$ where θ is the angle between x_{u} and x_{v}.
- The rounded solution gives value 1 if x_{u} and x_{v} are rounded to different sides of the cut (and value 0 otherwise). What is the probability of this happening? θ / π.

- Thus, summing over all edges, the Goemans Williamson algorithm has expected approximation ratio at least $\min _{\theta} \frac{\theta / \pi}{\frac{1-\cos \theta}{2}} \approx 0.878$.

Max-Cut Approximation Ratio

- If you took 514 you may recognize that this analysis is very closely related to the SimHash locality sensitive hashing algorithm, and in turn the JL Lemma.
- In fact SimHash, which is used e.g. for high dimensional approximate near neighbor search is exactly the rounding scheme from Goemans Williamson.

