COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 22

Logistics

- Optional Problem Set 5 due 5/13 at 11:59pm.
- Final exam will be Tuesday 5/14, 10:30-12:30pm in the classroom. Study materials to be posted soon.
- Final project due the last day of finals: Friday 5/17.

Summary

Last Time:

- Finish up coupling. Example applications to shuffling, random walks on hypercubes, and exponential convergence of TV distance.
- Markov Chain Monte Carlo - example of sampling random independent sets.
- Start on Metropolis Hastings algorithms and application to sampling from the hardcore model.

Today:

- Finish the Metropolis Hastings algorithm.
- Sampling to counting reduction for independent sets.

Mixing Time and Eigenvalues

A Markov chain is reversible if $\pi(i) P_{i j}=\pi(j) P_{j i}$ for all i, j. I.e., if the probability of transitioning from state i to state j is equal to the probability of transitioning from state j to state i in the steady state distribution. 'Detailed balance' condition.

- If the chain is irreducible and reversible, P has all real eigenvalues, $1=\lambda_{1}>\lambda_{2} \ldots>\lambda_{n}$.
- The eigenvalue gap is $\gamma=\lambda_{1}-\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$.
- The mixing time is equal to $\tau(\epsilon)=\tilde{O}\left(\frac{1}{\gamma}\right)$.

Mixing Time and Eigenvalues

Claim: If a Markov chain is reversible (ie., $\pi(i) P_{i j}=\pi(j) P_{j i}$ for all i, j), then P has all real eigenvalues.

Proof:

- Let $D=\operatorname{diag}(\pi)$. Then $D^{-1 / 2} P D^{1 / 2}$ is symmetric (and thus has real eigenvalues)
- The above is a similarity transform. The eigenvalues of P are identical to the eigenvalues of $D^{-1 / 2} P D^{1 / 2}$ and are thus real.

MCMC Methods Continued

Achieving a Non-Uniform Stationary Distribution

Suppose we want to sample an independent set X from our graph with probability:

$$
\pi(X)=\frac{\lambda^{|X|}}{\sum_{Y \text { independent }} \lambda^{|Y|}},
$$

for some 'fugacity' parameter $\lambda>0$.
Known as the 'hard-core model' in statistical physics.

Metropolis-Hastings Algorithm

A very generic way of designing a Markov chain over state space [m] with stationary distribution $\pi \in[0,1]^{m}$.

- Assume the ability to efficiently compute a density $p(X) \propto \pi(X)$.
- Assume access to some symmetric transition function with transition probability matrix $Q \in[0,1]^{m \times m}$.
- At step t, generate a 'candidate' state X_{t+1} from X_{t} according to Q.
- With probability $\min \left(1, \frac{p\left(X_{t+1}\right)}{p\left(X_{t}\right)}\right)$, 'accept' the candidate. Else 'reject' the candidate, setting $X_{t+1}=X_{t}$.

Metropolis-Hastings Intuition

Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, $\pi P=\pi$.
Suffices to show that $p P=p$ where $p(i) \propto \pi(i)$ is our efficiently computable density.

$$
\begin{aligned}
{[p P](i) } & =\underbrace{\sum_{j} p(j) \cdot Q_{j, i} \cdot \min \left(1, \frac{p(i)}{p(j)}\right)}_{\text {aceptances }}+\underbrace{p(i) \cdot \sum_{j} Q_{i, j}\left(1-\min \left(1, \frac{p(j)}{p(i)}\right)\right)}_{\text {rejections }} \\
& =\sum_{j} Q_{i, j} \cdot \min (p(j), p(i))+p(i) \cdot \sum_{j} Q_{i, j}-\sum_{j} Q_{i, j} \cdot \min (p(i), p(j)) \\
& =p(i) \cdot \sum_{j} Q_{i, j}=p(i) .
\end{aligned}
$$

Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability $\pi(X)=\frac{\lambda^{|X|}}{\sum_{\text {Yidependent }} \lambda^{\mid Y}}$.

- Let $p(X)=\lambda^{|X|}$ and let the transition function Q be given by:
- Pick a random vertex v.
- If $v \in X_{t}$, set $X_{t+1}=X_{t} \backslash\{v\}$ with probability $\min (1,1 / \lambda)$.
- If $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is independent, set $X_{t+1}=X_{t} \cup\{v\}$.
- Else set $X_{t+1}=X_{t}$ with probability min $(1, \lambda)$.
- Need to accept the transition with probability $\min \left(1, \frac{p\left(X_{t+1}\right)}{p\left(X_{t}\right)}\right)$.

The key challenge then becomes to analyze the mixing time.
For the related Glauber dynamics, Luby and Vigoda showed that for graphs with maximum degree Δ, when $\lambda<\frac{2}{\Delta-2}$, the mixing time is $O(n \log n)$. But when $\lambda>\frac{c}{\Delta}$ for large enough constant c, it is NP-hard to approximately sample from the hard-core model.

MCMC for Approximate Counting

Counting to Sampling Reductions

Often if one can efficiently sample from the distribution $\pi(X)=\frac{p(X)}{\sum_{r} p(Y)}$, one can efficiently approximate the normalizing constant $Z=\sum_{Y} p(Y)$ (often called the partition function).

- If Z is hard to approximate, then this can give a proof that sampling is hard, and thus it is unlikely that any simple MCMC method for sampling from π mixes rapidly.
- This is e.g., how one can show that sampling from the hard-core model is hard when $\lambda=\Omega(1 / \Delta)$.
- Let's consider the simple case of $\lambda=1$. I.e., we want to sample a uniformly random independent set.
- In this case, $Z=|S(G)|$, the number of independent sets in G. It is known that approximating $|S(G)|$ even up to a poly (n) factor is NP-Hard.

Counting Independent Sets

How can we count the number of independent sets $|S(G)|$ in a graph, given an oracle for sampling a uniform random independent set?

Let $G_{0}, G_{1}, \ldots, G_{m}$ be a sequence of graphs with $G_{m}=G$ and G_{i} obtained by removing an arbitrary edge from G_{i+1}.

We can write:

$$
|S(G)|=\frac{\left|S\left(G_{m}\right)\right|}{\left|S\left(G_{m-1}\right)\right|} \cdot \frac{\left|S\left(G_{m-1}\right)\right|}{\left|S\left(G_{m-2}\right)\right|} \cdot \ldots \cdot \frac{\left|S\left(G_{1}\right)\right|}{\left|S\left(G_{0}\right)\right|} \cdot\left|S\left(G_{0}\right)\right| .
$$

Counting Independent Sets

$$
|S(G)|=\frac{\left|S\left(G_{m}\right)\right|}{\left|S\left(G_{m-1}\right)\right|} \cdot \frac{\left|S\left(G_{m-1}\right)\right|}{\left|S\left(G_{m-2}\right)\right|} \cdot \ldots \cdot \frac{\left|S\left(G_{1}\right)\right|}{\left|S\left(G_{0}\right)\right|} \cdot\left|S\left(G_{0}\right)\right| 2^{n}=2^{n} \cdot \Pi_{i=1}^{m} r_{i}
$$

where $r_{i}=\frac{\left|S\left(G_{m}\right)\right|}{\left|S\left(G_{m-i}\right)\right|}$. If we can estimate each r_{i} with \tilde{r}_{i} satisfying

$$
\left(1-\frac{\epsilon}{2 m}\right) \cdot r_{i} \leq \tilde{r}_{i} \leq\left(1+\frac{\epsilon}{2 m}\right) \cdot r_{i}
$$

then:

$$
(1-\epsilon) \cdot|S(G)| \leq 2^{n} \cdot \Pi_{i=1}^{m} \tilde{r}_{i} \leq(1+\epsilon) \cdot|S(G)|
$$

since $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leq 1+\epsilon$ and $\left(1-\frac{\epsilon}{2 m}\right)^{m} \geq 1-\epsilon$.

Independent Set Ratios

Consider the ratio $r_{i}=\frac{\left|S\left(G_{i}\right)\right|}{\left|S\left(G_{i-1}\right)\right|}$. Observe that $r_{i} \leq 1$.
Further, $r_{i} \geq 1 / 2$. Let (u, v) be the edge removed from G_{i} to obtain
G_{i-1}. Then each independent set in $S\left(G_{i-1}\right) \backslash S\left(G_{i}\right)$, must contain both u and v.

So, we can map each set in $S\left(G_{i-1}\right) \backslash S\left(G_{i}\right)$ to a unique set in $S\left(G_{i}\right)$ by simply removing v.

$$
r_{i}=\frac{\left|S\left(G_{i}\right)\right|}{\left|S\left(G_{i-1}\right)\right|}=\frac{\left|S\left(G_{i}\right)\right|}{\left|S\left(G_{i}\right)\right|+\left|S\left(G_{i-1}\right) \backslash S\left(G_{i}\right)\right|} \geq \frac{1}{2}
$$

Independent Set Ratios

So Far: We have written $|S(G)|=2^{n} \cdot \Pi_{i=1}^{m} r_{i}$ where $r_{i}=\frac{\left|S\left(G_{i}\right)\right|}{\mid S\left(G_{i-1}\right)}$. Need to get a $1 \pm \epsilon / m$ estimate to each r_{i} to get a $1 \pm \epsilon$ estimate to $|S(G)|$.

Let X be a random variable generated as follows: pick a random independent set from G_{i-1} and let $X=1$ if the set is also independent in G_{j}. Otherwise let $X=0$.

What is $\mathbb{E}[X]$?
How many samples of X do we need to take to obtain a $1 \pm \epsilon / \mathrm{m}$ approximation to r_{i} with high probability?

Counting Independent Sets

Upshot: For a graph G with m edges, making $\tilde{O}\left(m^{2} / \epsilon^{2}\right)$ calls to a uniform random independent set sampler on G or its subgraphs suffices to approximate the number of independent sets in G up to $1 \pm \epsilon$ relative error.

- So a polynomial time algorithm for uniform random independent set sampling, would lead to a polynomial time algorithm for counting independent sets, and hence the collapse of NP to P.
- Observe that near-uniform sampling (as would be obtained e.g., with an MCMC method) would also suffice.

