
COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 22

1

Logistics

• Optional Problem Set 5 due 5/13 at 11:59pm.
• Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. Study materials to be posted soon.

• Final project due the last day of finals: Friday 5/17.

2

Summary

Last Time:

• Finish up coupling. Example applications to shuffling, random
walks on hypercubes, and exponential convergence of TV
distance.

• Markov Chain Monte Carlo – example of sampling random
independent sets.

• Start on Metropolis Hastings algorithms and application to
sampling from the hardcore model.

Today:

• Finish the Metropolis Hastings algorithm.

• Sampling to counting reduction for independent sets.

3

t l e) stk).lagllle) c c 42

Summary

Last Time:

• Finish up coupling. Example applications to shuffling, random
walks on hypercubes, and exponential convergence of TV
distance.

• Markov Chain Monte Carlo – example of sampling random
independent sets.

• Start on Metropolis Hastings algorithms and application to
sampling from the hardcore model.

Today:

• Finish the Metropolis Hastings algorithm.

• Sampling to counting reduction for independent sets.

3

Mixing Time and Eigenvalues

A Markov chain is reversible if π(i)Pij = π(j)Pji for all i, j. I.e., if the
probability of transitioning from state i to state j is equal to the
probability of transitioning from state j to state i in the steady state
distribution. ’Detailed balance’ condition.

• If the chain is irreducible and reversible, P has all real
eigenvalues, 1 = λ1 > λ2 . . . > λn.

• The eigenvalue gap is γ = λ1 −max{|λ2|, |λn|}.

• The mixing time is equal to τ(ε) = Õ(1
γ).

4

• ' o
-

-

- synetricdawn Pi;:P; ⇒ M i)i n ;)
reunsie trivially

- random wa lk o n undirected graph,
Mil.Pijj¥id÷z¥,§Piis¥,'d;=z¥

-

i ,
I F ;%⇒ ;ftp.P.r.pzi.pyslor~probwbih

dcbndcwarlpspJT/DaTh#' R i'III.Be . .9¥,'By

Mixing Time and Eigenvalues

A Markov chain is reversible if π(i)Pij = π(j)Pji for all i, j. I.e., if the
probability of transitioning from state i to state j is equal to the
probability of transitioning from state j to state i in the steady state
distribution. ’Detailed balance’ condition.

• If the chain is irreducible and reversible, P has all real
eigenvalues, 1 = λ1 > λ2 . . . > λn.

• The eigenvalue gap is γ = λ1 −max{|λ2|, |λn|}.

• The mixing time is equal to τ(ε) = Õ(1
γ).

4

-
3 , 7 ,- 1

T I P : p

Mixing Time and Eigenvalues

A Markov chain is reversible if π(i)Pij = π(j)Pji for all i, j. I.e., if the
probability of transitioning from state i to state j is equal to the
probability of transitioning from state j to state i in the steady state
distribution. ’Detailed balance’ condition.

• If the chain is irreducible and reversible, P has all real
eigenvalues, 1 = λ1 > λ2 . . . > λn.

• The eigenvalue gap is γ = λ1 −max{|λ2|, |λn|}.

• The mixing time is equal to τ(ε) = Õ(1
γ).

4

* * 1¥'¥÷÷

slown i xy

01*4*0

. ± . ! so't¥l EH
i i i .' ''Ei's, AEiti:

Mixing Time and Eigenvalues

Claim: If a Markov chain is reversible (i.e., π(i)Pij = π(j)Pji for all i, j),
then P has all real eigenvalues.

Proof:
• Let D = diag(π). Then D−1/2PD1/2 is symmetric (and thus has
real eigenvalues)

• The above is a similarity transform. The eigenvalues of P are
identical to the eigenvalues of D−1/2PD1/2 and are thus real.

5

Mixing Time and Eigenvalues

Claim: If a Markov chain is reversible (i.e., π(i)Pij = π(j)Pji for all i, j),
then P has all real eigenvalues.

Proof:
• Let D = diag(π). Then D−1/2PD1/2 is symmetric (and thus has
real eigenvalues)

• The above is a similarity transform. The eigenvalues of P are
identical to the eigenvalues of D−1/2PD1/2 and are thus real.

5

i
Ali)Pij

①'"PD"" que s #
"'Pj,'

i l
Ali)"

i n

Mi ,' Dii'".pij-D,j'" mji = Tibi,'"
s ⇒ '" x . i n DjiNj)nz-Pi,' g -

detailed balance

Mixing Time and Eigenvalues

Claim: If a Markov chain is reversible (i.e., π(i)Pij = π(j)Pji for all i, j),
then P has all real eigenvalues.

Proof:
• Let D = diag(π). Then D−1/2PD1/2 is symmetric (and thus has
real eigenvalues)

• The above is a similarity transform. The eigenvalues of P are
identical to the eigenvalues of D−1/2PD1/2 and are thus real.

5

•
-

T

ATAspy? vTAAV "Avn' n'bing.tn

-
u tan :vi.tv:1#liNisnnnyuturewY.4

h ow t o pore
syndrio matrix hasrealcigs?

MCMC Methods Continued

5

Achieving a Non-Uniform Stationary Distribution

Suppose we want to sample an independent set X from our
graph with probability:

π(X) = λ|X|
∑

Y independent λ
|Y| ,

for some ‘fugacity’ parameter λ > 0.

Known as the ‘hard-core model’ in statistical physics.

6

-

⇒

Metropolis-Hastings Algorithm

A very generic way of designing a Markov chain over state space [m]

with stationary distribution π ∈ [0, 1]m.

• Assume the ability to efficiently compute a density p(X) ∝ π(X).

• Assume access to some symmetric transition function with
transition probability matrix Q ∈ [0, 1]m×m.

• At step t, generate a ‘candidate’ state Xt+1 from Xt according to Q.

• With probability min
(
1, p(Xt+1)

p(Xt)

)
, ‘accept’ the candidate. Else

‘reject’ the candidate, setting Xt+1 = Xt.

7

Pci)3PG)

Pij s Qij.PT#sQii'%¥} al i) .PijsQi;-Nj)
B-i = Qj is Qi; sp j i .Ali)

byway o f Q d e t a i n e e

Metropolis-Hastings Intuition

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

8

¥".÷.
X t o

Tici)P i ; = TIL;)P ji

Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, πP = π.

Suffices to show that pP = p where p(i) ∝ π(i) is our efficiently
computable density.

[pP](i) =
∑

j

p(j) · Qj,i ·min

(
1, p(i)
p(j)

)

︸ ︷︷ ︸
aceptances

+p(i) ·
∑

j

Qi,j

(
1−min

(
1, p(j)
p(i)

))

︸ ︷︷ ︸
rejections

=
∑

j

Qi,j ·min (p(j),p(i)) + p(i) ·
∑

j

Qi,j −
∑

j

Qi,j ·min(p(i),p(j))

= p(i) ·
∑

j

Qi,j

= p(i).

9

Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, πP = π.

Suffices to show that pP = p where p(i) ∝ π(i) is our efficiently
computable density.

[pP](i) =
∑

j

p(j) · Qj,i ·min

(
1, p(i)
p(j)

)

︸ ︷︷ ︸
aceptances

+p(i) ·
∑

j

Qi,j

(
1−min

(
1, p(j)
p(i)

))

︸ ︷︷ ︸
rejections

=
∑

j

Qi,j ·min (p(j),p(i)) + p(i) ·
∑

j

Qi,j −
∑

j

Qi,j ·min(p(i),p(j))

= p(i) ·
∑

j

Qi,j

= p(i).

9

Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, πP = π.

Suffices to show that pP = p where p(i) ∝ π(i) is our efficiently
computable density.

[pP](i) =
∑

j

p(j) · Qj,i ·min

(
1, p(i)
p(j)

)

︸ ︷︷ ︸
aceptances

+p(i) ·
∑

j

Qi,j

(
1−min

(
1, p(j)
p(i)

))

︸ ︷︷ ︸
rejections

=
∑

j

Qi,j ·min (p(j),p(i)) + p(i) ·
∑

j

Qi,j −
∑

j

Qi,j ·min(p(i),p(j))

= p(i) ·
∑

j

Qi,j

= p(i).

9

Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, πP = π.

Suffices to show that pP = p where p(i) ∝ π(i) is our efficiently
computable density.

[pP](i) =
∑

j

p(j) · Qj,i ·min

(
1, p(i)
p(j)

)

︸ ︷︷ ︸
aceptances

+p(i) ·
∑

j

Qi,j

(
1−min

(
1, p(j)
p(i)

))

︸ ︷︷ ︸
rejections

=
∑

j

Qi,j ·min (p(j),p(i)) + p(i) ·
∑

j

Qi,j −
∑

j

Qi,j ·min(p(i),p(j))

= p(i) ·
∑

j

Qi,j

= p(i).

9

f r ' y

Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, πP = π.

Suffices to show that pP = p where p(i) ∝ π(i) is our efficiently
computable density.

[pP](i) =
∑

j

p(j) · Qj,i ·min

(
1, p(i)
p(j)

)

︸ ︷︷ ︸
aceptances

+p(i) ·
∑

j

Qi,j

(
1−min

(
1, p(j)
p(i)

))

︸ ︷︷ ︸
rejections

=
∑

j

Qi,j ·min (p(j),p(i)) + p(i) ·
∑

j

Qi,j −
∑

j

Qi,j ·min(p(i),p(j))

= p(i) ·
∑

j

Qi,j

= p(i).

9

Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, πP = π.

Suffices to show that pP = p where p(i) ∝ π(i) is our efficiently
computable density.

[pP](i) =
∑

j

p(j) · Qj,i ·min

(
1, p(i)
p(j)

)

︸ ︷︷ ︸
aceptances

+p(i) ·
∑

j

Qi,j

(
1−min

(
1, p(j)
p(i)

))

︸ ︷︷ ︸
rejections

=
∑

j

Qi,j ·min (p(j),p(i)) + p(i) ·
∑

j

Qi,j −
∑

j

Qi,j ·min(p(i),p(j))

= p(i) ·
∑

j

Qi,j = p(i).

9

9 9' l

Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
π(X) = λ|X|

∑
Y independent λ

|Y| .

• Let p(X) = λ|X| and let the transition function Q be given by:
• Pick a random vertex v.
• If v ∈ Xt, set Xt+1 = Xt \ {v}
• If v /∈ Xt and Xt ∪ {v} is independent, set Xt+1 = Xt ∪ {v}.
• Else set Xt+1 = Xt

• Need to accept the transition with probability min
(
1, p(Xt+1)

p(Xt)

)
.

The key challenge then becomes to analyze the mixing time.

For the related Glauber dynamics, Luby and Vigoda showed that for
graphs with maximum degree ∆, when λ < 2

∆−2 , the mixing time is
O(n log n). But when λ > c

∆ for large enough constant c, it is NP-hard
to approximately sample from the hard-core model.

10

Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
π(X) = λ|X|

∑
Y independent λ

|Y| .

• Let p(X) = λ|X| and let the transition function Q be given by:
• Pick a random vertex v.
• If v ∈ Xt, set Xt+1 = Xt \ {v}
• If v /∈ Xt and Xt ∪ {v} is independent, set Xt+1 = Xt ∪ {v}.
• Else set Xt+1 = Xt

• Need to accept the transition with probability min
(
1, p(Xt+1)

p(Xt)

)
.

The key challenge then becomes to analyze the mixing time.

For the related Glauber dynamics, Luby and Vigoda showed that for
graphs with maximum degree ∆, when λ < 2

∆−2 , the mixing time is
O(n log n). But when λ > c

∆ for large enough constant c, it is NP-hard
to approximately sample from the hard-core model.

10

W

d i f addizvertex
& i f ann igw t h

Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
π(X) = λ|X|

∑
Y independent λ

|Y| .

• Let p(X) = λ|X| and let the transition function Q be given by:
• Pick a random vertex v.
• If v ∈ Xt, set Xt+1 = Xt \ {v} with probability min(1, 1/λ).
• If v /∈ Xt and Xt ∪ {v} is independent, set Xt+1 = Xt ∪ {v}.
• Else set Xt+1 = Xt with probability min(1,λ).

• Need to accept the transition with probability min
(
1, p(Xt+1)

p(Xt)

)
.

The key challenge then becomes to analyze the mixing time.

For the related Glauber dynamics, Luby and Vigoda showed that for
graphs with maximum degree ∆, when λ < 2

∆−2 , the mixing time is
O(n log n). But when λ > c

∆ for large enough constant c, it is NP-hard
to approximately sample from the hard-core model.

10

Mr
A l

Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
π(X) = λ|X|

∑
Y independent λ

|Y| .

• Let p(X) = λ|X| and let the transition function Q be given by:
• Pick a random vertex v.
• If v ∈ Xt, set Xt+1 = Xt \ {v} with probability min(1, 1/λ).
• If v /∈ Xt and Xt ∪ {v} is independent, set Xt+1 = Xt ∪ {v}.
• Else set Xt+1 = Xt with probability min(1,λ).

• Need to accept the transition with probability min
(
1, p(Xt+1)

p(Xt)

)
.

The key challenge then becomes to analyze the mixing time.

For the related Glauber dynamics, Luby and Vigoda showed that for
graphs with maximum degree ∆, when λ < 2

∆−2 , the mixing time is
O(n log n). But when λ > c

∆ for large enough constant c, it is NP-hard
to approximately sample from the hard-core model.

10

g -*
dmnail * ¢

A

"sharp trans.'tons"

MCMC for Approximate Counting

10

Counting to Sampling Reductions

Often if one can efficiently sample from the distribution
π(X) = p(X)∑

Y p(Y)
, one can efficiently approximate the normalizing

constant Z =
∑

Y p(Y) (often called the partition function).

• If Z is hard to approximate, then this can give a proof that
sampling is hard, and thus it is unlikely that any simple MCMC
method for sampling from π mixes rapidly.

• This is e.g., how one can show that sampling from the hard-core
model is hard when λ = Ω(1/∆).

• Let’s consider the simple case of λ = 1. I.e., we want to sample a
uniformly random independent set.

• In this case, Z = |S(G)|, the number of independent sets in G. It
is known that approximating |S(G)| even up to a poly(n) factor is
NP-Hard.

11

Counting to Sampling Reductions

Often if one can efficiently sample from the distribution
π(X) = p(X)∑

Y p(Y)
, one can efficiently approximate the normalizing

constant Z =
∑

Y p(Y) (often called the partition function).

• If Z is hard to approximate, then this can give a proof that
sampling is hard, and thus it is unlikely that any simple MCMC
method for sampling from π mixes rapidly.

• This is e.g., how one can show that sampling from the hard-core
model is hard when λ = Ω(1/∆).

• Let’s consider the simple case of λ = 1. I.e., we want to sample a
uniformly random independent set.

• In this case, Z = |S(G)|, the number of independent sets in G. It
is known that approximating |S(G)| even up to a poly(n) factor is
NP-Hard.

11
•I , Is ays y

Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let G0,G1, . . . ,Gm be a sequence of graphs with Gm = G and Gi
obtained by removing an arbitrary edge from Gi+1.

We can write:

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|.

12

Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let G0,G1, . . . ,Gm be a sequence of graphs with Gm = G and Gi
obtained by removing an arbitrary edge from Gi+1.

We can write:

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|.

12

Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let G0,G1, . . . ,Gm be a sequence of graphs with Gm = G and Gi
obtained by removing an arbitrary edge from Gi+1.

We can write:

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|.

12

Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let G0,G1, . . . ,Gm be a sequence of graphs with Gm = G and Gi
obtained by removing an arbitrary edge from Gi+1.

We can write:

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|.

12

Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let G0,G1, . . . ,Gm be a sequence of graphs with Gm = G and Gi
obtained by removing an arbitrary edge from Gi+1.

We can write:

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|.

12

Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let G0,G1, . . . ,Gm be a sequence of graphs with Gm = G and Gi
obtained by removing an arbitrary edge from Gi+1.

We can write:

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|.

12

Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let G0,G1, . . . ,Gm be a sequence of graphs with Gm = G and Gi
obtained by removing an arbitrary edge from Gi+1.

We can write:

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|.

12

Gridev i a
sampling.

2 ,
I

Counting Independent Sets

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· |S(G0)|

= 2n ·Πm
i=1ri,

where ri =
|S(Gm)|
|S(Gm−i)|

. If we can estimate each ri with r̃i satisfying

(
1− ε

2m

)
· ri ≤ r̃i ≤

(
1+ ε

2m

)
· ri,

then:

(1− ε) · |S(G)| ≤ 2n · Πm
i=1r̃i ≤ (1+ ε) · |S(G)|

since
(
1+ ε

2m
)m ≤ 1+ ε and

(
1− ε

2m
)m ≥ 1− ε.

13

Counting Independent Sets

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· 2n

= 2n · Πm
i=1ri,

where ri =
|S(Gm)|
|S(Gm−i)|

. If we can estimate each ri with r̃i satisfying

(
1− ε

2m

)
· ri ≤ r̃i ≤

(
1+ ε

2m

)
· ri,

then:

(1− ε) · |S(G)| ≤ 2n · Πm
i=1r̃i ≤ (1+ ε) · |S(G)|

since
(
1+ ε

2m
)m ≤ 1+ ε and

(
1− ε

2m
)m ≥ 1− ε.

13

Counting Independent Sets

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· 2n = 2n · Πm
i=1ri,

where ri =
|S(Gm)|
|S(Gm−i)|

.

If we can estimate each ri with r̃i satisfying

(
1− ε

2m

)
· ri ≤ r̃i ≤

(
1+ ε

2m

)
· ri,

then:

(1− ε) · |S(G)| ≤ 2n · Πm
i=1r̃i ≤ (1+ ε) · |S(G)|

since
(
1+ ε

2m
)m ≤ 1+ ε and

(
1− ε

2m
)m ≥ 1− ε.

13

±

Counting Independent Sets

|S(G)| = |S(Gm)|
|S(Gm−1)|

· |S(Gm−1)|
|S(Gm−2)|

· . . . · |S(G1)|
|S(G0)|

· 2n = 2n · Πm
i=1ri,

where ri =
|S(Gm)|
|S(Gm−i)|

. If we can estimate each ri with r̃i satisfying

(
1− ε

2m

)
· ri ≤ r̃i ≤

(
1+ ε

2m

)
· ri,

then:

(1− ε) · |S(G)| ≤ 2n · Πm
i=1r̃i ≤ (1+ ε) · |S(G)|

since
(
1+ ε

2m
)m ≤ 1+ ε and

(
1− ε

2m
)m ≥ 1− ε.

13

Independent Set Ratios

Consider the ratio ri = |S(Gi)|
|S(Gi−1)| . Observe that ri ≤ 1.

Further, ri ≥ 1/2. Let (u, v) be the edge removed from Gi to obtain
Gi−1. Then each independent set in S(Gi−1) \ S(Gi), must contain both
u and v.

So, we can map each set in S(Gi−1) \ S(Gi) to a unique set in S(Gi) by
simply removing v.

ri =
|S(Gi)|
|S(Gi−1)|

=
|S(Gi)|

|S(Gi)|+ |S(Gi−1) \ S(Gi)|
≥ 1

2
.

14

-

Independent Set Ratios

Consider the ratio ri = |S(Gi)|
|S(Gi−1)| . Observe that ri ≤ 1.

Further, ri ≥ 1/2. Let (u, v) be the edge removed from Gi to obtain
Gi−1. Then each independent set in S(Gi−1) \ S(Gi), must contain both
u and v.

So, we can map each set in S(Gi−1) \ S(Gi) to a unique set in S(Gi) by
simply removing v.

ri =
|S(Gi)|
|S(Gi−1)|

=
|S(Gi)|

|S(Gi)|+ |S(Gi−1) \ S(Gi)|
≥ 1

2
.

14

Independent Set Ratios

Consider the ratio ri = |S(Gi)|
|S(Gi−1)| . Observe that ri ≤ 1.

Further, ri ≥ 1/2. Let (u, v) be the edge removed from Gi to obtain
Gi−1. Then each independent set in S(Gi−1) \ S(Gi), must contain both
u and v.

So, we can map each set in S(Gi−1) \ S(Gi) to a unique set in S(Gi) by
simply removing v.

ri =
|S(Gi)|
|S(Gi−1)|

=
|S(Gi)|

|S(Gi)|+ |S(Gi−1) \ S(Gi)|
≥ 1

2
.

14

Independent Set Ratios

So Far: We have written |S(G)| = 2n · Πm
i=1ri where ri =

|S(Gi)|
|S(Gi−1)|

.
Need to get a 1± ε/m estimate to each ri to get a 1± ε estimate
to |S(G)|.

Let X be a random variable generated as follows: pick a
random independent set from Gi−1 and let X = 1 if the set is
also independent in Gi. Otherwise let X = 0.

What is E[X]?

How many samples of X do we need to take to obtain a 1± ε/m
approximation to ri with high probability?

15

Independent Set Ratios

So Far: We have written |S(G)| = 2n · Πm
i=1ri where ri =

|S(Gi)|
|S(Gi−1)|

.
Need to get a 1± ε/m estimate to each ri to get a 1± ε estimate
to |S(G)|.

Let X be a random variable generated as follows: pick a
random independent set from Gi−1 and let X = 1 if the set is
also independent in Gi. Otherwise let X = 0.

What is E[X]?

How many samples of X do we need to take to obtain a 1± ε/m
approximation to ri with high probability?

15

Independent Set Ratios

So Far: We have written |S(G)| = 2n · Πm
i=1ri where ri =

|S(Gi)|
|S(Gi−1)|

.
Need to get a 1± ε/m estimate to each ri to get a 1± ε estimate
to |S(G)|.

Let X be a random variable generated as follows: pick a
random independent set from Gi−1 and let X = 1 if the set is
also independent in Gi. Otherwise let X = 0.

What is E[X]?

How many samples of X do we need to take to obtain a 1± ε/m
approximation to ri with high probability?

15

= P r(x : D = 1 5 ¥
NG:D,

= r i

Independent Set Ratios

So Far: We have written |S(G)| = 2n · Πm
i=1ri where ri =

|S(Gi)|
|S(Gi−1)|

.
Need to get a 1± ε/m estimate to each ri to get a 1± ε estimate
to |S(G)|.

Let X be a random variable generated as follows: pick a
random independent set from Gi−1 and let X = 1 if the set is
also independent in Gi. Otherwise let X = 0.

What is E[X]?

How many samples of X do we need to take to obtain a 1± ε/m
approximation to ri with high probability?

15
01¥)

Counting Independent Sets

Upshot: For a graph G with m edges, making Õ(m2/ε2) calls to
a uniform random independent set sampler on G or its
subgraphs suffices to approximate the number of independent
sets in G up to 1± ε relative error.

• So a polynomial time algorithm for uniform random
independent set sampling, would lead to a polynomial
time algorithm for counting independent sets, and hence
the collapse of NP to P.

• Observe that near-uniform sampling (as would be
obtained e.g., with an MCMC method) would also suffice.

16

Counting Independent Sets

Upshot: For a graph G with m edges, making Õ(m2/ε2) calls to
a uniform random independent set sampler on G or its
subgraphs suffices to approximate the number of independent
sets in G up to 1± ε relative error.

• So a polynomial time algorithm for uniform random
independent set sampling, would lead to a polynomial
time algorithm for counting independent sets, and hence
the collapse of NP to P.

• Observe that near-uniform sampling (as would be
obtained e.g., with an MCMC method) would also suffice.

16

Counting Independent Sets

Upshot: For a graph G with m edges, making Õ(m2/ε2) calls to
a uniform random independent set sampler on G or its
subgraphs suffices to approximate the number of independent
sets in G up to 1± ε relative error.

• So a polynomial time algorithm for uniform random
independent set sampling, would lead to a polynomial
time algorithm for counting independent sets, and hence
the collapse of NP to P.

• Observe that near-uniform sampling (as would be
obtained e.g., with an MCMC method) would also suffice.

16

