COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 21

Logistics

- I released Problem Set 5 yesterday, due 5/13 at 11:59pm.
- This problem set is optional - it can be used to replace your lowest grade on the first four problem sets.

Summary

Last Time: Markov Chain Mixing Times

- Total variation distance and its dual characterizations.
- Basic results on mixing time.
- Coupling as a technique for bounding mixing time.

Today: Mixing Time Analysis

- Finish up coupling and example applications.
- Start on algorithmic applications - Markov Chain Monte Carlo (MCMC).

Total Variation Distance

Definition (Total Variation (TV) Distance)

For two distributions $p, q \in[0,1]^{m}$ over state space $[m]$, the total variation distance is given by:

$$
\|p-q\|_{T V}=\frac{1}{2} \sum_{i \in[m]}|p(i)-q(i)|=\max _{A \subseteq[m]}|p(A)-q(A)| .
$$

Kontorovich-Rubinstein duality: Let P, Q be possibly correlated random variables with marginal distributions p, q. Then

$$
\|p-q\|_{T V} \leq \operatorname{Pr}[\mathrm{P} \neq \mathrm{Q}] .
$$

This dual notion is the key idea behind mixing time analysis via coupling.

Mixing Time

Definition (Mixing Time)

Consider a Markov chain $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$ with unique stationary distribution π. Let $q_{i, t}$ be the distribution over states at time t assuming $X_{0}=i$. The mixing time is defined as:

$$
\tau(\epsilon)=\min \left\{t: \max _{i \in[m]}\left\|a_{i, t}-\pi\right\|_{T V} \leq \epsilon\right\}
$$

Formal Coupling Definition

Definition (Coupling)

For a finite Markov chain X_{0}, X_{1}, \ldots with transition matrix $P \in \mathbb{R}^{m \times m}$, a coupling is a joint process $\left(X_{0}, Y_{0}\right),\left(X_{1}, Y_{1}\right), \ldots$ such that:

1. $X_{0}=i$ and $Y_{0}=j$ for some $i, j \in[m]$.
2. $\operatorname{Pr}\left[\mathrm{X}_{t}=j \mid \mathrm{X}_{\mathrm{t}-1}=i\right]=\operatorname{Pr}\left[\mathrm{Y}_{\mathrm{t}}=j \mid \mathrm{Y}_{\mathrm{t}-1}=i\right]=P_{i, j}$
3. If $X_{t}=Y_{t}$, then $X_{t+1}=Y_{t+1}$.

Coupling Example: Mixing Time of Shuffling

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ-close in TV distance to the uniform distribution over all permutations?

Coupling:

- Let $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$ be the Markov chain where a random card is moved to the top in each step.
- Let $\mathrm{Y}_{0}, \mathrm{Y}_{1}$ be a correlated Markov chain. When card S is swapped to the top in the X chain, swap S to the top in the Y chain as well.
- Can check that this is a valid coupling since X_{t}, Y_{t} have the correct marginal distributions, and since

$$
X_{t}=Y_{t} \Longrightarrow X_{t+1}=Y_{t+1}
$$

- Observe that $X_{t}=Y_{t}$ as soon as all c unique cards have been swapped at least once. How many swaps does this take?

Coupling Example 1: Mixing Time of Shuffling

$$
\begin{aligned}
\max _{i \in[m]}\left\|q_{i, t}-\pi\right\|_{T V} & \leq \max _{i, j \in[m]} \operatorname{Pr}\left[\mathbf{T}_{i, j}>t\right] \\
& \leq \operatorname{Pr}[<c \text { unique cards are swapped in } t \text { swaps }]
\end{aligned}
$$

By coupon collector analysis for $t \geq c \ln (c / \epsilon)$, this probability is bounded by ϵ. In particular, by the fact that $\left(1-\frac{1}{c}\right)^{c \ln c / \epsilon} \leq \frac{\epsilon}{c}$ plus a union bound over c cards.

Thus, for $t \geq c \ln (c / \epsilon)$,
$\max _{i \in[m]}\left\|q_{i, t}-\pi\right\|_{T V} \leq \max _{i, j \in[m]}\left\|q_{i, t}-q_{j, t}\right\|_{T V} \leq \epsilon$.
I.e., $\tau(\epsilon) \leq c \ln (c / \epsilon)$.

Coupling Example 2: Random Walk on a Hypercube

Let X_{0}, X_{1} be a Markov chain over state space $\{0,1\}^{n}$. In each step, pick a random position $i \in[n]$ and $\operatorname{set} X_{t}(i)=0$ with probability $1 / 2$ and $X_{t}(i)=1$ with probability $1 / 2$.

What is a coupling $\left(X_{0}, Y_{0}\right),\left(X_{1}, Y_{1}\right), \ldots$ on this chain that we can use to bound the mixing time of this walk?

Coupling Example 2: Random Walk on a Hypercube

In each step, pick a single random position $i \in[n]$ and let $X_{t}(i)=Y_{t}(i)=0$ with probability $1 / 2$ and $X_{t}(i)=Y_{t}(i)=1$ with probability $1 / 2$.

How large must we set t so that $\operatorname{Pr}\left[\mathrm{X}_{t} \neq \mathrm{Y}_{t}\right] \leq \epsilon$?
Upshot: The mixing time of the n-dimensional hypercube is $\tau(\epsilon)=O(n \log (n / \epsilon))$.

Coupling Example 3: Geometric Convergence of TV Distance

Claim: If $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$ is finite, irreducible, and aperiodic, then for any $c<1 / 2$ and any $\epsilon>0, \tau(\epsilon) \leq \tau(c) \cdot O(\log (1 / \epsilon))$.
I.e., it suffices to bound the mixing time for any small constant c and then can boost this result to any $\epsilon>0$.

Proof:

- After $t=\tau(c)$ steps, for any i we have $\left\|q_{i, t}-\pi\right\|_{T V} \leq c$. So, for any i, j we have $\left\|q_{i, t}-q_{j, t}\right\|_{T v} \leq 2 c<1$.
- This implies a coupling between two chains X_{0}, X_{1}, \ldots and Y_{0}, Y_{1}, \ldots starting in any initial states such that $\operatorname{Pr}\left[X_{t} \neq Y_{t}\right] \leq 2 c<1$.
- So after $\tau(c) \cdot O(\log (1 / \epsilon))$ steps, $\operatorname{Pr}\left[X_{t} \neq \mathrm{Y}_{t}\right] \leq(2 c)^{O(\log 1 / \epsilon)} \leq \epsilon$
- This establishes that $\tau(\epsilon) \leq \tau(c) \cdot O(\log (1 / \epsilon))$.

Markov Chain Monte Carlo

Markov Chain Monte Carlo

Many applications in computational biology, machine learning, theoretical computer science, etc. require sampling from complex distributions, which are difficult to write down in closed form, and difficult to directly sample from.

A very common approach is to design a Markov chain whose stationary distribution π is equal to the distribution of interest.

By running this Markov chain for at least $\tau(\epsilon)$ steps (burn-in time), one can draw a sample which is nearly from the distribution of interest.

Note: A major focus is on designing and analyzing Markov chains where $\tau(\epsilon)$ is small. For today, we'll just focus on getting the stationary distribution right, and mostly ignore runtime.

Sampling Independent Sets

Suppose we would like to sample a uniformly random independent set from a graph G.

Very non-obvious how to sample from this distribution. Exactly counting the number of independent sets, which is closely related to sampling, is \#P-hard.

Markov Chain on Independent Sets

Design a Markov chain $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$ whose states are exactly the independent sets. E.g., let X_{t+1} be chosen uniformly at random from $\mathcal{N}\left(\mathrm{X}_{\mathrm{t}}\right)=\left\{Y\right.$: independent set formed by adding/removing a node from $\left.\mathrm{X}_{\mathrm{t}}\right\}$.

Unfortunately, the stationary distribution of this chain may not be uniform. It places higher probability on independent sets with lots of neighboring indenendent sets

Achieving a Uniform Stationary Distribution

Define a Markov chain $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$ over independent sets with transition function:

- Pick a random vertex v.
- If $v \in X_{t}$, set $X_{t+1}=X_{t} \backslash\{v\}$.
- If $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is independent, set $X_{t+1}=X_{t} \cup\{v\}$.
- Else set $X_{t+1}=X_{t}$.

Is this chain irreducible and aperiodic? Yes.
For any two independent sets i, j, what is $P_{i, j}$? $P_{i, j}=P_{j, i}=1 /|V|$
if i, j differ by one vertex, $P_{i, j}=P_{j, i}=0$ otherwise.c
Thus, the Markov chain is symmetric, so by our claim from two classes ago, the stationary distribution is uniform.

Achieving a Non-Uniform Stationary Distribution

Suppose we want to sample an independent set X from our graph with probability:

$$
\pi(X)=\frac{\lambda^{|X|}}{\sum_{Y \text { independent }} \lambda^{|Y|}},
$$

for some 'fugacity' parameter $\lambda>0$.
Known as the 'hard-core model' in statistical physics.

Metropolis-Hastings Algorithm

A very generic way of designing a Markov chain over state space [m] with stationary distribution $\pi \in[0,1]^{m}$.

- Assume the ability to efficiently compute a density $p(X) \propto \pi(X)$.
- Assume access to some symmetric transition function with transition probability matrix $Q \in[0,1]^{m \times m}$.
- At step t, generate a 'candidate' state X_{t+1} from X_{t} according to Q.
- With probability $\min \left(1, \frac{p\left(X_{t+1}\right)}{p\left(X_{t}\right)}\right)$, 'accept' the candidate. Else 'reject' the candidate, setting $X_{t+1}=X_{t}$.

Metropolis-Hastings Intuition

Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, $\pi P=\pi$.
Suffices to show that $p P=p$ where $p(i) \propto \pi(i)$ is our efficiently computable density.

$$
\begin{aligned}
{[p P](i) } & =\underbrace{\sum_{j} p(j) \cdot Q_{j, i} \cdot \min \left(1, \frac{p(i)}{p(j)}\right)}_{\text {aceptances }}+\underbrace{p(i) \cdot \sum_{j} Q_{i, j}\left(1-\min \left(1, \frac{p(j)}{p(i)}\right)\right)}_{\text {rejections }} \\
& =\sum_{j} Q_{i, j} \cdot \min (p(j), p(i))+p(i) \cdot \sum_{j} Q_{i, j}-\sum_{j} Q_{i, j} \cdot \min (p(i), p(j)) \\
& =p(i) \cdot \sum_{j} Q_{i, j}=p(i) .
\end{aligned}
$$

Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability $\pi(X)=\frac{\lambda^{|X|}}{\sum_{\text {Yidependent }} \lambda^{\mid Y}}$.

- Let $p(X)=\lambda^{|X|}$ and let the transition function Q be given by:
- Pick a random vertex v.
- If $v \in X_{t}$, set $X_{t+1}=X_{t} \backslash\{v\}$ with probability $\min (1,1 / \lambda)$.
- If $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is independent, set $X_{t+1}=X_{t} \cup\{v\}$.
- Else set $X_{t+1}=X_{t}$ with probability min $(1, \lambda)$.
- Need to accept the transition with probability $\min \left(1, \frac{p\left(X_{t+1}\right)}{p\left(X_{t}\right)}\right)$.

The key challenge then becomes to analyze the mixing time.
For the related Glauber dynamics, Luby and Vigoda showed that for graphs with maximum degree Δ, when $\lambda<\frac{2}{\Delta-2}$, the mixing time is $O(n \log n)$. But when $\lambda>\frac{c}{\Delta}$ for large enough constant c, it is NP-hard to approximately sample from the hard-core model.

