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Logistics

• I released Problem Set 5 yesterday, due 5/13 at 11:59pm.
• This problem set is optional – it can be used to replace
your lowest grade on the first four problem sets.
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Summary

Last Time: Markov Chain Mixing Times

• Total variation distance and its dual characterizations.

• Basic results on mixing time.

• Coupling as a technique for bounding mixing time.

Today: Mixing Time Analysis

• Finish up coupling and example applications.

• Start on algorithmic applications – Markov Chain Monte Carlo
(MCMC).
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Total Variation Distance

Definition (Total Variation (TV) Distance)
For two distributions p,q ∈ [0, 1]m over state space [m], the total
variation distance is given by:

‖p− q‖TV =
1
2
∑

i∈[m]

|p(i)− q(i)| = max
A⊆[m]

|p(A)− q(A)|.

Kontorovich-Rubinstein duality: Let P,Q be possibly correlated
random variables with marginal distributions p,q. Then

‖p− q‖TV ≤ Pr[P %= Q].

This dual notion is the key idea behind mixing time analysis via
coupling.
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Mixing Time

Definition (Mixing Time)
Consider a Markov chain X0, X1, . . . with unique stationary
distribution π. Let qi,t be the distribution over states at time t
assuming X0 = i. The mixing time is defined as:

τ(ε) = min

{
t : max

i∈[m]
‖qi,t − π‖TV ≤ ε

}
.
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Formal Coupling Definition

Definition (Coupling)
For a finite Markov chain X0, X1, . . . with transition matrix P ∈ Rm×m,
a coupling is a joint process (X0, Y0), (X1, Y1), . . . such that:
1. X0 = i and Y0 = j for some i, j ∈ [m].

2. Pr[Xt = j|Xt−1 = i] = Pr[Yt = j|Yt−1 = i] = Pi,j

3. If Xt = Yt, then Xt+1 = Yt+1.

Theorem (Mixing Time Bound via Coupling)
For a finite, irreducible, and aperiodic Markov chain X0, X1, . . . and
any valid coupling (X0, Y0), (X1, Y1), . . . letting
Ti,j = min{t : Xt = Yt|X0 = i, Y0 = j},

max
i∈[m]

‖qi,t − π‖TV ≤ max
i,j∈[m]

‖qi,t − qj,t‖TV ≤ max
i,j∈[m]

Pr[Ti,j > t].
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Coupling Example: Mixing Time of Shuffling

How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is ε-close in
TV distance to the uniform distribution over all permutations?

Coupling:

• Let X0, X1, . . . be the Markov chain where a random card is
moved to the top in each step.

• Let Y0, Y1 be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.
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• Can check that this is a valid coupling since Xt, Yt have the
correct marginal distributions, and since
Xt = Yt =⇒ Xt+1 = Yt+1
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Coupling Example 1: Mixing Time of Shuffling

max
i∈[m]

‖qi,t − π‖TV ≤ max
i,j∈[m]

Pr[Ti,j > t]

≤ Pr[< c unique cards are swapped in t swaps]

By coupon collector analysis for t ≥ c ln(c/ε), this probability is
bounded by ε. In particular, by the fact that

(
1− 1

c
)c ln c/ε ≤ ε

c plus a
union bound over c cards.

Thus, for t ≥ c ln(c/ε),
maxi∈[m] ‖qi,t − π‖TV ≤ maxi,j∈[m] ‖qi,t − qj,t‖TV ≤ ε.

I.e., τ(ε) ≤ c ln(c/ε).
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Coupling Example 2: Random Walk on a Hypercube

Let X0, X1 be a Markov chain over state space {0, 1}n. In each
step, pick a random position i ∈ [n] and set Xt(i) = 0 with
probability 1/2 and Xt(i) = 1 with probability 1/2.

What is a coupling (X0, Y0), (X1, Y1), . . . on this chain that we
can use to bound the mixing time of this walk?

9
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Coupling Example 2: Random Walk on a Hypercube

In each step, pick a single random position i ∈ [n] and let
Xt(i) = Yt(i) = 0 with probability 1/2 and Xt(i) = Yt(i) = 1 with
probability 1/2.

How large must we set t so that Pr[Xt %= Yt] ≤ ε?

Upshot: The mixing time of the n-dimensional hypercube is
τ(ε) = O(n log(n/ε)).

10

D8

O F



Coupling Example 2: Random Walk on a Hypercube

In each step, pick a single random position i ∈ [n] and let
Xt(i) = Yt(i) = 0 with probability 1/2 and Xt(i) = Yt(i) = 1 with
probability 1/2.

How large must we set t so that Pr[Xt %= Yt] ≤ ε?

Upshot: The mixing time of the n-dimensional hypercube is
τ(ε) = O(n log(n/ε)).

10

.



Coupling Example 2: Random Walk on a Hypercube

In each step, pick a single random position i ∈ [n] and let
Xt(i) = Yt(i) = 0 with probability 1/2 and Xt(i) = Yt(i) = 1 with
probability 1/2.

How large must we set t so that Pr[Xt %= Yt] ≤ ε?

Upshot: The mixing time of the n-dimensional hypercube is
τ(ε) = O(n log(n/ε)).

10



Coupling Example 3: Geometric Convergence of TV Distance

Claim: If X0, X1, . . . is finite, irreducible, and aperiodic, then for any
c < 1/2 and any ε > 0, τ(ε) ≤ τ(c) · O(log(1/ε)).

I.e., it suffices to bound the mixing time for any small constant c and
then can boost this result to any ε > 0.

Proof:

• After t = τ(c) steps, for any i we have ‖qi,t − π‖TV ≤ c. So, for
any i, j we have ‖qi,t − qj,t‖TV ≤ 2c < 1.

• This implies a coupling between two chains X0, X1, . . . and
Y0, Y1, . . . starting in any initial states such that
Pr[Xt %= Yt] ≤ 2c < 1.

• So after τ(c) · O(log(1/ε)) steps, Pr[Xt %= Yt] ≤ (2c)O(log 1/ε) ≤ ε

• This establishes that τ(ε) ≤ τ(c) · O(log(1/ε)).
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo

Many applications in computational biology, machine learning,
theoretical computer science, etc. require sampling from complex
distributions, which are difficult to write down in closed form, and
difficult to directly sample from.

A very common approach is to design a Markov chain whose
stationary distribution π is equal to the distribution of interest.

By running this Markov chain for at least τ(ε) steps (burn-in time),
one can draw a sample which is nearly from the distribution of
interest.

Note: A major focus is on designing and analyzing Markov chains
where τ(ε) is small. For today, we’ll just focus on getting the
stationary distribution right, and mostly ignore runtime.

12
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Sampling Independent Sets

Suppose we would like to sample a uniformly random
independent set from a graph G.

Very non-obvious how to sample from this distribution. Exactly
counting the number of independent sets, which is closely
related to sampling, is #P-hard.
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Markov Chain on Independent Sets

Design a Markov chain X0, X1, . . . whose states are exactly the
independent sets. E.g., let Xt+1 be chosen uniformly at random from
N (Xt) = {Y : independent set formed by adding/removing a node from Xt}.

Unfortunately, the stationary distribution of this chain may not be
uniform. It places higher probability on independent sets with lots
of neighboring independent sets.
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of neighboring independent sets.
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Markov Chain on Independent Sets

Design a Markov chain X0, X1, . . . whose states are exactly the
independent sets. E.g., let Xt+1 be chosen uniformly at random from
N (Xt) = {Y : independent set formed by adding/removing a node from Xt}.

Unfortunately, the stationary distribution of this chain may not be
uniform. It places higher probability on independent sets with lots
of neighboring independent sets. 14



Achieving a Uniform Stationary Distribution

Define a Markov chain X0, X1, . . . over independent sets with
transition function:

• Pick a random vertex v.
• If v ∈ Xt, set Xt+1 = Xt \ {v}.
• If v /∈ Xt and Xt ∪ {v} is independent, set Xt+1 = Xt ∪ {v}.
• Else set Xt+1 = Xt.

Is this chain irreducible and aperiodic? Yes.

For any two independent sets i, j, what is Pi,j? Pi,j = Pj,i = 1/|V|
if i, j differ by one vertex, Pi,j = Pj,i = 0 otherwise.

c

Thus, the Markov chain is symmetric, so by our claim from two
classes ago, the stationary distribution is uniform.
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Achieving a Non-Uniform Stationary Distribution

Suppose we want to sample an independent set X from our
graph with probability:

π(X) = λ|X|
∑

Y independent λ
|Y| ,

for some ‘fugacity’ parameter λ > 0.

Known as the ‘hard-core model’ in statistical physics.
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Metropolis-Hastings Algorithm

A very generic way of designing a Markov chain over state space [m]

with stationary distribution π ∈ [0, 1]m.

• Assume the ability to efficiently compute a density p(X) ∝ π(X).

• Assume access to some symmetric transition function with
transition probability matrix Q ∈ [0, 1]m×m.

• At step t, generate a ‘candidate’ state Xt+1 from Xt according to Q.

• With probability min
(
1, p(Xt+1)

p(Xt)

)
, ‘accept’ the candidate. Else

‘reject’ the candidate, setting Xt+1 = Xt.
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Metropolis-Hastings Intuition
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Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, πP = π.

Suffices to show that pP = p where p(i) ∝ π(i) is our efficiently
computable density.

[pP](i) =
∑

j

p(j) · Qj,i ·min

(
1, p(i)
p(j)

)

︸ ︷︷ ︸
aceptances

+p(i) ·
∑

j

Qi,j

(
1−min

(
1, p(j)
p(i)

))

︸ ︷︷ ︸
rejections

=
∑

j

Qi,j ·min (p(j),p(i)) + p(i) ·
∑

j

Qi,j −
∑

j

Qi,j ·min(p(i),p(j))

= p(i) ·
∑

j

Qi,j

= p(i).
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Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
π(X) = λ|X|

∑
Y independent λ

|Y| .

• Let p(X) = λ|X| and let the transition function Q be given by:
• Pick a random vertex v.
• If v ∈ Xt, set Xt+1 = Xt \ {v}
• If v /∈ Xt and Xt ∪ {v} is independent, set Xt+1 = Xt ∪ {v}.
• Else set Xt+1 = Xt

• Need to accept the transition with probability min
(
1, p(Xt+1)

p(Xt)

)
.

The key challenge then becomes to analyze the mixing time.

For the related Glauber dynamics, Luby and Vigoda showed that for
graphs with maximum degree ∆, when λ < 2

∆−2 , the mixing time is
O(n log n). But when λ > c

∆ for large enough constant c, it is NP-hard
to approximately sample from the hard-core model.
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