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Summary

Last Time: Markov Chain Fundamentals

• The gambler’s ruin problem.

• Aperiodicity and stationary distribution of a Markov chain.

• The fundamental theorem of Markov chains.

• Example of a uniform stationary distribution for a symmetric
Markov chain (shuffling).

Today: Mixing Time Analysis

• How quickly does a Markov chain actually converge to its
stationary distribution?

• Mixing time and its analysis via coupling.
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node i at step t, then it
moves to any of i’s neighbors at step t+ 1 with probability 1

di
.

• What is the state space of this chain?
• What is the transition probability Pi,j?

• Is this chain aperiodic?
• If the graph is not bipartite, then there is at least one odd
cycle, making the chain aperiodic.
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random walk on
an undirected graph. If it is at node i at step t, then it moves to any
of i’s neighbors at step t+ 1 with probability 1

di
.

Claim: When the graph is not bipartite, the unique stationary
distribution of this Markov chain is given by π(i) = di

2|E| .

πP:,i =
∑

j

π(j)Pj,i

=
∑

j

dj

2|E| ·
1
dj

=
∑

j

1
2|E| =

di
2|E| = π(i).

I.e., the probability of being at a given node i is dependent only on
the node’s degree, not on the structure of the graph in any other way.

What is the stationary distribution over the edges?
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Mixing Times
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Total Variation Distance

Definition (Total Variation (TV) Distance)
For two distributions p,q ∈ [0, 1]m over state space [m], the total
variation distance is given by:

‖p− q‖TV =
1
2
∑

i∈[m]

|p(i)− q(i)| = max
A⊆[m]

|p(A)− q(A)|.

Kontorovich-Rubinstein duality: Let P,Q be possibly correlated
random variables with marginal distributions p,q. Then

‖p− q‖TV ≤ Pr[P %= Q].
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Mixing Time

Definition (Mixing Time)
Consider a Markov chain X0, X1, . . . with unique stationary
distribution π. Let qi,t be the distribution over states at time t
assuming X0 = i. The mixing time is defined as:

τ(ε) = min

{
t : max

i∈[m]
‖qi,t − π‖TV ≤ ε

}
.

I.e., what is the maximum time it takes the Markov chain to converge
to within ε in TV distance of the stationary distribution?

Note: If ‖qi,t − π‖TV ≤ ε then for any t′ ≥ t, ‖qi,t′ − π‖TV ≤ ε.
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Mixing Time Convergence

Typically, it suffices to focus on the mixing time for ε = 1/2. We have:

Claim: If X0, X1, . . . is finite, irreducible, and aperiodic, then
τ(ε) ≤ τ(1/2) · c log(1/ε) for large enough constant c.
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Coupling Motivation

Claim: maxi∈[m] ‖qi,t − π‖TV ≤ maxi,j∈[m] ‖qi,t − qj,t‖TV.

‖qi,t − π‖TV = ‖qi,t − πPt‖TV

= ‖qi,t −
∑

j

π(j)ejPt‖TV

= ‖qi,t −
∑

j

π(j)qj,t‖TV

≤
∑

j

‖π(j)qi,t − π(j)qj,t‖TV

≤
∑

j

π(j) · ‖qi,t − qj,t‖TV

≤ max
j∈[m]

‖qi,t − qj,t‖TV.

Coupling: A common technique for bounding the mixing time by
showing that maxi,j∈[m] ‖qi,t − qj,t‖TV is small.
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Formal Coupling Definition

Definition (Coupling)
For a finite Markov chain X0, X1, . . . with transition matrix P ∈ Rm×m,
a coupling is a joint process (X0, Y0), (X1, Y1), . . . such that:
1. X0 = i and Y0 = j for some i, j ∈ [m].

2. Pr[Xt = j|Xt−1 = i] = Pr[Yt = j|Yt−1 = i] = Pi,j

3. If Xt = Yt, then Xt+1 = Yt+1.

Theorem (Mixing Time Bound via Coupling)
For a finite, irreducible, and aperiodic Markov chain X0, X1, . . . and
any valid coupling (X0, Y0), (X1, Y1), . . . letting
Ti,j = min{t : Xt = Yt|X0 = i, Y0 = j},

max
i∈[m]

‖qi,t − π‖TV ≤ max
i,j∈[m]

‖qi,t − qj,t‖TV ≤ max
i,j∈[m]

Pr[Ti,j > t].
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Coupling Theorem Proof

Theorem (Mixing Time Bound via Coupling)
For a finite, irreducible, and aperiodic Markov chain X0, X1, . . .
and any valid coupling (X0, Y0), (X1, Y1), . . . letting
Ti,j = min{t : Xt = Yt|X0 = i, Y0 = j},

max
i∈[m]

‖qi,t − π‖TV ≤ max
i,j∈[m]

‖qi,t − qj,t‖TV ≤ max
i,j∈[m]

Pr[Ti,j > t].

Follows from Kontorovich-Rubinstein duality.

For Xt, Yt distributed by evolving the chain for t steps starting
from state i or j respectively, we have:

max
i,j∈[m]

‖qi,t − qj,t‖TV ≤ max
i,j∈[m]

Pr[Xt %= Yt] = max
i,j∈[m]

Pr[Ti,j > t]
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Coupling Theorem Proof

Theorem (Mixing Time Bound via Coupling)
For a finite, irreducible, and aperiodic Markov chain X0, X1, . . .
and any valid coupling (X0, Y0), (X1, Y1), . . . letting
Ti,j = min{t : Xt = Yt|X0 = i, Y0 = j},
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For Xt, Yt distributed by evolving the chain for t steps starting
from state i or j respectively, we have:
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Coupling Example: Mixing Time of Shuffling

How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is ε-close in
TV distance to the uniform distribution over all permutations?

Coupling:

• Let X0, X1, . . . be the Markov chain where a random card is
moved to the top in each step.

• Let Y0, Y1 be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.
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• Let Y0, Y1 be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.

• Can check that this is a valid coupling since Xt, Yt have the
correct marginal distributions, and since
Xt = Yt =⇒ Xt+1 = Yt+1
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• Let X0, X1, . . . be the Markov chain where a random card is
moved to the top in each step.

• Let Y0, Y1 be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.

• Can check that this is a valid coupling since Xt, Yt have the
correct marginal distributions, and since
Xt = Yt =⇒ Xt+1 = Yt+1

• Observe that Xt = Yt as soon as all c unique cards have been
swapped at least once. How many swaps does this take?
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Coupling Example: Mixing Time of Shuffling

max
i∈[m]

‖qi,t − π‖TV ≤ max
i,j∈[m]

Pr[Ti,j > t]

≤ Pr[< c unique cards are swapped in t swaps]

By coupon collector analysis for t ≥ c ln(c/ε), this probability is
bounded by ε. In particular, by the fact that

(
1− 1

c
)c ln c/ε ≤ ε

c plus a
union bound over c cards.

Thus, for t ≥ c ln(c/ε),
maxi∈[m] ‖qi,t − π‖TV ≤ maxi,j∈[m] ‖qi,t − qj,t‖TV ≤ ε.

I.e., τ(ε) ≤ c ln(c/ε).
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