COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024. Lecture 20

Summary

Last Time: Markov Chain Fundamentals

- The gambler's ruin problem.
- Aperiodicity and stationary distribution of a Markov chain.
- The fundamental theorem of Markov chains.
- Example of a uniform stationary distribution for a symmetric Markov chain (shuffling).

Summary

Last Time: Markov Chain Fundamentals

- The gambler's ruin problem.
- Aperiodicity and stationary distribution of a Markov chain.
- The fundamental theorem of Markov chains.
- Example of a uniform stationary distribution for a symmetric Markov chain (shuffling).

Today: Mixing Time Analysis

- How quickly does a Markov chain actually converge to its stationary distribution?
- Mixing time and its analysis via coupling.

- What is the state space of this chain?
- What is the transition probability $P_{i,j}$?

notes of graph

- What is the state space of this chain?
- What is the transition probability $P_{i,j}$?
- Is this chain aperiodic?

- What is the state space of this chain?
- What is the transition probability $P_{i,j}$?
- Is this chain aperiodic?
- If the graph is not bipartite, then there is at least one odd cycle, making the chain aperiodic.

$$\mathfrak{T}(\mathbf{i}) = \pi P_{:,i} = \sum_{j} \pi(j) P_{j,i}$$

$$\mathfrak{T}(\mathbf{i}) = \mathfrak{T}(\mathbf{i}) = \mathfrak{T}(\mathbf{i})$$

$$\pi P_{:,i} = \sum_{j=1}^{n} \pi(j) P_{j,i} = \sum_{j \in \mathcal{N}(i)} \frac{\mathcal{A}_j}{2|E|} \cdot \frac{1}{\mathcal{A}_j}$$

$$\pi P_{:,i} = \sum_{j \in \mathbf{I}} (j) P_{j,i} = \sum_{j \in \mathbf{A}(i)} \frac{d_j}{2|E|} \cdot \frac{1}{d_j} = \sum_{j \in \mathbf{A}(i)} \frac{1}{2|E|}$$

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \frac{d_j}{2|E|} \cdot \frac{1}{d_j} = \sum_{j} \frac{1}{2|E|} = \frac{d_i}{2|E|} = \pi(i).$$

Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i) = \frac{d_i}{2|\mathbf{F}|}$.

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \frac{d_j}{2|E|} \cdot \frac{1}{d_j} = \sum_{j} \frac{1}{2|E|} = \frac{d_i}{2|E|} = \pi(i).$$

I.e., the probability of being at a given node *i* is dependent only on the node's degree, not on the structure of the graph in any other way.

Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node *i* at step *t*, then it moves to any of *i*'s neighbors at step t + 1 with probability $\frac{1}{d_i}$.

Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i) = \frac{d_i}{2|E|}$.

$$\pi P_{:,i} = \sum_{j} \pi(j) P_{j,i} = \sum_{j} \frac{d_j}{2|E|} \cdot \frac{1}{d_j} = \sum_{j} \frac{1}{2|E|} = \frac{d_i}{2|E|} = \pi(i).$$

I.e., the probability of being at a given node *i* is dependent only on the node's degree, not on the structure of the graph in any other way.

What is the stationary distribution over the edges? \sim

1F/

Mixing Times

Definition (Total Variation (TV) Distance)

For two distributions $p, q \in [0, 1]^m$ over state space [m], the total variation distance is given by:

$$\|p - q\|_{TV} = \frac{1}{2} \sum_{i \in [m]} |p(i) - q(i)| = \max_{A \subseteq [m]} |p(A) - q(A)|.$$

$$\frac{1}{2} \|p - q\|_{1}$$

$$\|p - q\|_{TV} = \frac{1}{2} \left(\frac{1}{6} + \frac{1}{6} + \frac{1}{3}\right) = \frac{1}{3}$$

$$A = \text{event of body in state 3}$$

$$A^{c} = \text{event on 2}$$

Definition (Total Variation (TV) Distance)

For two distributions $p, q \in [0, 1]^m$ over state space [m], the total variation distance is given by:

$$||p-q||_{TV} = \frac{1}{2} \sum_{i \in [m]} |p(i) - q(i)| = \max_{A \subseteq [m]} |p(A) - q(A)|.$$

Kontorovich-Rubinstein duality: Let P, Q be possibly correlated random variables with marginal distributions p, q. Then

$$P = Q \qquad ||p - q||_{TV} \leq \Pr[P \neq Q]. \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \notin \begin{bmatrix} 34 \\ 4y \end{bmatrix}$$

$$P = Q \qquad ||p - q||_{TV} \leq \Pr[P \neq Q]. \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

$$P = Q \qquad P : \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \#$$

117

Definition (Mixing Time)

Consider a Markov chain X_0, X_1, \ldots with unique stationary distribution π . Let $q_{i,t}$ be the distribution over states at time t assuming $X_0 = i$. The mixing time is defined as:

$$au(\epsilon) = \min\left\{t: \max_{i\in[m]} \|q_{i,t} - \pi\|_{TV} \le \epsilon\right\}.$$

I.e., what is the maximum time it takes the Markov chain to converge to within ϵ in TV distance of the stationary distribution?

Definition (Mixing Time)

Consider a Markov chain X_0, X_1, \ldots with unique stationary distribution π . Let $q_{i,t}$ be the distribution over states at time t assuming $X_0 = i$. The mixing time is defined as:

$$\tau(\epsilon) = \min\left\{t: \max_{i\in[m]} \|q_{i,t} - \pi\|_{\mathsf{TV}} \leq \epsilon\right\}.$$

I.e., what is the maximum time it takes the Markov chain to converge to within ϵ in TV distance of the stationary distribution?

Note: If $||q_{i,t} - \pi||_{tv} \le \epsilon$ then for any $t' \ge t$, $||q_{i,t'} - \pi||_{tv} \le \epsilon$. $||q_{i,t} - \pi||_{tv} \le \epsilon$ then for any $t' \ge t$, $||q_{i,t'} - \pi||_{tv} \le \epsilon$. $||q_{i,t} - \pi||_{tv} \le \epsilon$ then for any $t' \ge t$, $||q_{i,t'} - \pi||_{tv} \le \epsilon$. $||e_{t+1}||_{t} \le ||e_{t+1}||_{tv} \le ||e_{t+1}|$

Mixing Time Convergence

Typically, it suffices to focus on the mixing time for $\epsilon = 1/2$. We have: **Claim:** If X_0, X_1, \ldots is finite, irreducible, and aperiodic, then $\tau(\epsilon) \leq \tau(1/2) \cdot c \log(1/\epsilon)$ for large enough constant *c*.

Claim: $\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}$.

Claim:
$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}$$
.
 $\|q_{i,t} - \pi\|_{TV} = \|q_{i,t} - \pi P^t\|_{TV}$

Claim:
$$\max_{i \in [m]} ||q_{i,t} - \pi||_{TV} \le \max_{i,j \in [m]} ||q_{i,t} - q_{j,t}||_{TV}.$$

 $||q_{i,t} - \pi||_{TV} = ||q_{i,t} - \pi P^t||_{TV}$
 $= ||q_{i,t} - \sum_{j} \pi(j)e_jP^t||_{TV}$
 $\int_{T} (1) \cdot \dots \cdot \int_{T} (m)$
 $= \int_{T} (1) \cdot \int_{T} (0 \cdot 0 \cdot 0 \cdot 1) + f_{T}(2) (0 + 0 \cdot 0.] + \dots$

Claim:
$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}.$$

 $\|q_{i,t} - \pi\|_{TV} = \|q_{i,t} - \pi P^t\|_{TV}$
 $= \|q_{i,t} - \sum_j \pi(j)e_jP^t\|_{TV}$
 $= \|q_{i,t} - \sum_j \pi(j)q_{j,t}\|_{TV}$

Claim:
$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}.$$

 $\|q_{i,t} - \pi\|_{TV} = \|q_{i,t} - \pi P^t\|_{TV}$
 $= \|q_{i,t} - \sum_j \pi(j)e_jP^t\|_{TV}$
 $= \|q_{i,t} - \sum_j \pi(j)q_{j,t}\|_{TV}$
 $\le \sum_j \|\pi(j)q_{i,t} - \pi(j)q_{j,t}\|_{TV}$

Claim:
$$\max_{i \in [m]} ||q_{i,t} - \pi||_{TV} \le \max_{i,j \in [m]} ||q_{i,t} - q_{j,t}||_{TV}.$$

 $||q_{i,t} - \pi||_{TV} = ||q_{i,t} - \pi P^t||_{TV}$
 $= ||q_{i,t} - \sum_j \pi(j)e_jP^t||_{TV}$
 $= ||q_{i,t} - \sum_j \pi(j)q_{j,t}||_{TV}$
 $\le \sum_j ||\pi(j)q_{i,t} - \pi(j)q_{j,t}||_{TV}$
 $\le \sum_j \pi(j) \cdot ||q_{i,t} - q_{j,t}||_{TV}$

$$\begin{aligned} \text{Claim: } \max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} &\leq \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV}. \\ \|q_{i,t} - \pi\|_{TV} &= \|q_{i,t} - \pi P^{t}\|_{TV} \\ &= \|q_{i,t} - \sum_{j} \pi(j)e_{j}P^{t}\|_{TV} \\ &= \|q_{i,t} - \sum_{j} \pi(j)q_{j,t}\|_{TV} \\ &\leq \sum_{j} \|\pi(j)q_{i,t} - \pi(j)q_{j,t}\|_{TV} \\ &\leq \sum_{j} \|\pi(j) \cdot \|q_{i,t} - q_{j,t}\|_{TV} \\ &+ \gamma \cdot [o_{1}o_{1}f_{j}] \\ &+ \gamma \cdot [o_{1}o_{1}f_{j}] \\ &= \sum_{j} \|q_{i,t} - q_{j,t}\|_{TV}. \end{aligned}$$

Claim:
$$\max_{i \in [m]} ||q_{i,t} - \pi||_{TV} \le \max_{i,j \in [m]} ||q_{i,t} - q_{j,t}||_{TV}.$$

 $||q_{i,t} - \pi||_{TV} = ||q_{i,t} - \pi P^t||_{TV}$
 $= ||q_{i,t} - \sum_j \pi(j)e_jP^t||_{TV}$
 $= ||q_{i,t} - \sum_j \pi(j)q_{j,t}||_{TV}$
 $\le \sum_j ||\pi(j)q_{i,t} - \pi(j)q_{j,t}||_{TV}$
 $\le \sum_j \pi(j) \cdot ||q_{i,t} - q_{j,t}||_{TV}.$

Coupling: A common technique for bounding the mixing time by showing that $\max_{i,j \in [m]} ||q_{i,t} - q_{j,t}||_{TV}$ is small.

Definition (Coupling)

1.
$$X_0 = i$$
 and $Y_0 = j$ for some $i, j \in [m]$.

2.
$$\Pr[\mathbf{X}_t = j | \mathbf{X}_{t-1} = i] = \Pr[\mathbf{Y}_t = j | \mathbf{Y}_{t-1} = i] = P_{i,j}$$

3. If
$$X_t = Y_t$$
, then $X_{t+1} = Y_{t+1}$.

Definition (Coupling)

1.
$$\mathbf{X}_0 = i$$
 and $\mathbf{Y}_0 = j$ for some $i, j \in [m]$.

2.
$$\Pr[X_t = j | X_{t-1} = i] = \Pr[Y_t = j | Y_{t-1} = i] = P_{i,j}$$

3. If
$$X_t = Y_t$$
, then $X_{t+1} = Y_{t+1}$.

Definition (Coupling)

1.
$$\mathbf{X}_0 = i$$
 and $\mathbf{Y}_0 = j$ for some $i, j \in [m]$.

2.
$$\Pr[X_t = j | X_{t-1} = i] = \Pr[Y_t = j | Y_{t-1} = i] = P_{i,j}$$

3. If
$$X_t = Y_t$$
, then $X_{t+1} = Y_{t+1}$.

Definition (Coupling)

1.
$$\mathbf{X}_0 = i$$
 and $\mathbf{Y}_0 = j$ for some $i, j \in [m]$.

2.
$$\Pr[X_t = j | X_{t-1} = i] = \Pr[Y_t = j | Y_{t-1} = i] = P_{i,j}$$

3. If
$$X_t = Y_t$$
, then $X_{t+1} = Y_{t+1}$.

Definition (Coupling)

1.
$$\mathbf{X}_0 = i$$
 and $\mathbf{Y}_0 = j$ for some $i, j \in [m]$.

2.
$$\Pr[X_t = j | X_{t-1} = i] = \Pr[Y_t = j | Y_{t-1} = i] = P_{i,j}$$

3. If
$$X_t = Y_t$$
, then $X_{t+1} = Y_{t+1}$.

Definition (Coupling)

1.
$$\mathbf{X}_0 = i$$
 and $\mathbf{Y}_0 = j$ for some $i, j \in [m]$.

2.
$$\Pr[X_t = j | X_{t-1} = i] = \Pr[Y_t = j | Y_{t-1} = i] = P_{i,j}$$

3. If
$$X_t = Y_t$$
, then $X_{t+1} = Y_{t+1}$.

Definition (Coupling)

For a finite Markov chain $X_0, X_1, ...$ with transition matrix $P \in \mathbb{R}^{m \times m}$, a coupling is a joint process $(X_0, Y_0), (X_1, Y_1), ...$ such that:

1.
$$\mathbf{X}_0 = i$$
 and $\mathbf{Y}_0 = j$ for some $i, j \in [m]$.

2.
$$\Pr[X_t = j | X_{t-1} = i] = \Pr[Y_t = j | Y_{t-1} = i] = P_{i,j}$$

3. If
$$X_t = Y_t$$
, then $X_{t+1} = Y_{t+1}$.

Theorem (Mixing Time Bound via Coupling)

For a finite, irreducible, and aperiodic Markov chain X_0, X_1, \ldots and any valid coupling $(X_0, Y_0), (X_1, Y_1), \ldots$ letting $T_{i,j} = \min\{t : X_t = Y_t | X_0 = i, Y_0 = j\},$

$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{\mathsf{TV}} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{\mathsf{TV}} \le \max_{i,j \in [m]} \mathsf{Pr}[\mathsf{T}_{i,j} > t].$$

Coupling Theorem Proof

Theorem (Mixing Time Bound via Coupling)

For a finite, irreducible, and aperiodic Markov chain $X_0, X_1, ...$ and any valid coupling $(X_0, Y_0), (X_1, Y_1), ...$ letting $T_{i,j} = \min\{t : X_t = Y_t | X_0 = i, Y_0 = j\}_{12}$ $\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV} \le \max_{i,j \in [m]} \Pr[T_{i,j} > t].$

Follows from Kontorovich-Rubinstein duality.

Coupling Theorem Proof

Theorem (Mixing Time Bound via Coupling)

For a finite, irreducible, and aperiodic Markov chain $X_0, X_1, ...$ and any valid coupling $(X_0, Y_0), (X_1, Y_1), ...$ letting $T_{i,j} = min\{t : X_t = Y_t | X_0 = i, Y_0 = j\},\$

$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \|q_{i,t} - q_{j,t}\|_{TV} \le \max_{i,j \in [m]} \Pr[\mathsf{T}_{i,j} > t].$$

Follows from Kontorovich-Rubinstein duality.

For X_t , Y_t distributed by evolving the chain for t steps starting from state i or j respectively, we have:

$$\max_{\substack{i,j\in[m]\\ i \in [m]}} \frac{\|q_{i,t} - q_{j,t}\|_{TV}}{\bigvee} \leq \max_{\substack{i,j\in[m]\\ i,j\in[m]}} \Pr[X_t \neq Y_t] = \max_{\substack{i,j\in[m]\\ i,j\in[m]}} \Pr[T_{i,j} > t]$$

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

- Let X_0, X_1, \ldots be the Markov chain where a random card is moved to the top in each step.
- Let **Y**₀, **Y**₁ be a correlated Markov chain. When card S is swapped to the top in the **X** chain, swap S to the top in the **Y** chain as well.

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

- Let X_0, X_1, \ldots be the Markov chain where a random card is moved to the top in each step.
- Let **Y**₀, **Y**₁ be a correlated Markov chain. When card S is swapped to the top in the **X** chain, swap S to the top in the **Y** chain as well.

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

- Let X_0, X_1, \ldots be the Markov chain where a random card is moved to the top in each step.
- Let **Y**₀, **Y**₁ be a correlated Markov chain. When card S is swapped to the top in the **X** chain, swap S to the top in the **Y** chain as well.

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

- Let X_0, X_1, \ldots be the Markov chain where a random card is moved to the top in each step.
- Let **Y**₀, **Y**₁ be a correlated Markov chain. When card S is swapped to the top in the **X** chain, swap S to the top in the **Y** chain as well.

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

- Let X_0, X_1, \ldots be the Markov chain where a random card is moved to the top in each step.
- Let **Y**₀, **Y**₁ be a correlated Markov chain. When card S is swapped to the top in the **X** chain, swap S to the top in the **Y** chain as well.

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

- Let X_0, X_1, \ldots be the Markov chain where a random card is moved to the top in each step.
- Let **Y**₀, **Y**₁ be a correlated Markov chain. When card S is swapped to the top in the **X** chain, swap S to the top in the **Y** chain as well.

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

- Let X_0, X_1, \ldots be the Markov chain where a random card is moved to the top in each step.
- Let **Y**₀, **Y**₁ be a correlated Markov chain. When card *S* is swapped to the top in the **X** chain, swap *S* to the top in the **Y** chain as well.
- Can check that this is a valid coupling since Xt, Yt have the correct marginal distributions, and since
 Xt = Yt ⇒ Xt+1 = Yt+1

How many times do we need to swap a random card to the top of the deck so that the distribution of orderings on our cards is ϵ -close in TV distance to the uniform distribution over all permutations?

- Let X_0, X_1, \ldots be the Markov chain where a random card is moved to the top in each step.
- Let **Y**₀, **Y**₁ be a correlated Markov chain. When card S is swapped to the top in the **X** chain, swap S to the top in the **Y** chain as well.
- Can check that this is a valid coupling since X_t, Y_t have the correct marginal distributions, and since
 X_t = Y_t ⇒ X_{t+1} = Y_{t+1}
- Observe that X_t = Y_t as soon as all c unique cards have been swapped at least once. How many swaps does this take?

$$\begin{split} \max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} &\leq \max_{i,j \in [m]} \Pr[\mathsf{T}_{i,j} > t] \\ &\leq \Pr[< c \text{ unique cards are swapped in } t \text{ swaps}] \end{split}$$

$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \leq \max_{i,j \in [m]} \Pr[\mathsf{T}_{i,j} > t]$$

$$\leq \Pr[< c \text{ unique cards are swapped in } t \text{ swaps}]$$

By coupon collector analysis for $t \ge c \ln(c/\epsilon)$, this probability is bounded by ϵ . In particular, by the fact that $\left(1 - \frac{1}{c}\right)^{c \ln c/\epsilon} \le \frac{\epsilon}{c}$ plus a union bound over c cards.

$$\max_{i \in [m]} \|q_{i,t} - \pi\|_{TV} \le \max_{i,j \in [m]} \Pr[\mathsf{T}_{i,j} > t]$$
$$\le \Pr[< c \text{ unique cards are swapped in } t \text{ swaps}]$$

By coupon collector analysis for $t \ge c \ln(c/\epsilon)$, this probability is bounded by ϵ . In particular, by the fact that $\left(1 - \frac{1}{c}\right)^{c \ln c/\epsilon} \le \frac{\epsilon}{c}$ plus a union bound over c cards.

Thus, for $t \ge c \ln(c/\epsilon)$, $\max_{i \in [m]} ||q_{i,t} - \pi||_{TV} \le \max_{i,j \in [m]} ||q_{i,t} - q_{j,t}||_{TV} \le \epsilon$. I.e., $\tau(\epsilon) \le c \ln(c/\epsilon)$.