COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 2

Summary

Last Class:

- Course logistics/overview of planned content.
- Intro to randomized algorithms: Las Vegas vs. Monte Carlo
- Randomized complexity classes including RP, ZPP, BPP, PP.

This Class: Basic probability review with algorithmic applications.

- Conditional probability, Bays's theorem, and independence. Application to polynomial identity testing.
- Linearity of expectation and variance. Application to randomized Quicksort analysis.
- Maybe start on concentration inequalities (Markov's and Chebyshev's).

Basic Probability Review

Conditional Probability Review

Consider two random events A and B.

- Conditional Probability:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

- Baye's Theorem:

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \mid B) \cdot P(B)}{P(A)} .
$$

- Independence: A and B are independent if:

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A) .
$$

Using the definition of conditional probability, independence means:

$$
\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\operatorname{Pr}(A) \Longrightarrow \operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

Independence

Sets of events: For a set of n events, A_{1}, \ldots, A_{n}, the events are k-wise independent if for any subset S of at most k events,

$$
\operatorname{Pr}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} \operatorname{Pr}\left(A_{i}\right)
$$

For $k=n$ we just say the events 'are independent'.
Random Variables: Two random variables X, Y are independent if for all $s, t, X=s$ and $Y=t$ are independent events. In other words:

$$
\operatorname{Pr}(X=s \cap Y=t)=\operatorname{Pr}(X=s) \cdot \operatorname{Pr}(Y=t)
$$

Application 1: Polynomial Identity Testing

Polynomial Identity Testing

Given an n-variable degree-d polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, determine if the polynomial is identically zero. I.e., if $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all x_{1}, \ldots, x_{n}. E.g., you are given:

$$
p\left(x_{1}, x_{2}, \ldots, x_{3}\right)=x_{3}\left(x_{1}-x_{2}\right)^{3}+\left(x_{1}+2 x_{2}-x_{3}\right)^{2}-x_{1}\left(x_{2}+x_{3}\right)^{2} .
$$

- Can expand out all the terms and check if they cancel. But the number of terms can be as large as $\binom{n+d}{d}$ - i.e., exponential in the number of variables n and the degree d.

Extremely Simple Randomized Algorithm: Just pick random values for x_{1}, \ldots, x_{n} and evaluate the polynomial at these values. With high probability, if $p\left(x_{1}, \ldots, x_{n}\right)=0$, the polynomial is identically 0 !

$$
p(5,2, \ldots,-1)=-1(5-2)^{3}+(5+2 \cdot 2+1)^{2}-5(2-1)^{2}=68 .
$$

What style algorithm is this? BPP, ZPP, RP, something else?

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ and any set S, if z_{1}, \ldots, z_{n} are selected independently and uniformly at random from S, then $\operatorname{Pr}\left[p\left(z_{1}, \ldots, z_{n}\right) \neq 0\right] \geq 1-\frac{d}{|S|}$.

Proof: Via induction on the number of variables n
Base Case $n=1$:Induction Step $n>1$:

- Let k be the max degree of x_{1} in $p(\cdots)$. Assume w.l.o.g. that $k>0$. Write $p\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{k} \cdot q\left(x_{2}, \ldots, x_{n}\right)+r\left(x_{1}, \ldots, x_{n}\right)$. E.g.,

$$
x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2} x_{3}=x_{1}^{2} \cdot \underbrace{\left(x_{2}+x_{3}\right)}_{q(\cdots)}+\underbrace{x_{1} x_{2} x_{3}+x_{2} x_{3}}_{r(\cdots)} .
$$

- Observe: $q(\cdot)$ is non-zero, with $n-1$ variables and degree $d-k$.
- So, by inductive assumption, $\operatorname{Pr}\left[q\left(z_{2}, \ldots, z_{n}\right) \neq 0\right] \geq 1-\frac{d-k}{|S|}$.
- Assuming $q\left(z_{2}, \ldots, z_{n}\right) \neq 0$, then $p\left(x_{1}, z_{2}, \ldots, z_{n}\right)$ is a degree k non-zero univariate polynomial in x_{1}.

Polynomial Identity Testing Proof

Assuming $q\left(z_{2}, \ldots, z_{n}\right) \neq 0$, then $p\left(x_{1}, z_{2}, \ldots, z_{n}\right)$ is a degree k non-zero univariate polynomial in x_{1}.
Example:

$$
\begin{gathered}
p\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2} x_{3}=x_{1}^{2} \cdot \underbrace{\left(x_{2}+x_{3}\right)}_{q(\cdots)}+\underbrace{x_{1} x_{2} x_{3}+x_{2} x_{3}}_{r(\cdots)} . \\
p\left(x_{1}, z_{2}, z_{3}\right)=p\left(x_{1}, 2,1\right)=x_{1}^{2} \cdot 3+2 x_{1}+2 .
\end{gathered}
$$

Next Step: Again applying the inductive hypothesis,

Overall:

$$
\operatorname{Pr}\left[p\left(z_{1}, \ldots z_{n}\right) \neq 0 \mid q\left(z_{2}, \ldots, z_{n}\right) \neq 0\right] \geq 1-\frac{k}{|S|} .
$$

$$
\begin{aligned}
\operatorname{Pr}\left[p\left(z_{1}, \ldots z_{n}\right) \neq 0\right] & \geq \operatorname{Pr}\left[p\left(z_{1}, \ldots z_{n}\right) \neq 0 \cap q\left(z_{2}, \ldots, z_{n}\right) \neq 0\right] \\
& =\operatorname{Pr}[p(\ldots) \neq 0 \mid q(\ldots) \neq 0] \cdot \operatorname{Pr}[q(\ldots) \neq 0] \\
& \geq\left(1-\frac{k}{|S|}\right) \cdot\left(1-\frac{d-k}{|S|}\right) \geq 1-\frac{d}{|S|} .
\end{aligned}
$$

This completes the proof of Schwartz-Zippel.

Expectation and Variance Review

Expectation and Variance

Consider a random X variable taking values in some finite set $S \subset \mathbb{R}$. E.g., for a random dice roll, $S=\{1,2,3,4,5,6\}$.

- Expectation: $\mathbb{E}[X]=\sum_{s \in S} \operatorname{Pr}(X=s) \cdot s$.
- Variance: $\quad \operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$.

Exercise: Verify that for any scalar $\alpha, \mathbb{E}[\alpha \cdot \mathrm{X}]=\alpha \cdot \mathbb{E}[\mathrm{X}]$ and $\operatorname{Var}[\alpha \cdot \mathrm{X}]=\alpha^{2} \cdot \operatorname{Var}[\mathrm{X}]$.

Linearity of Expectation

$\mathbb{E}[\mathrm{X}+\mathrm{Y}]=\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}]$ for any random variables X and Y . No matter how correlated they may be!

Proof:

$$
\begin{aligned}
\mathbb{E}[\mathrm{X}+\mathrm{Y}] & =\sum_{s \in S} \sum_{t \in T} \operatorname{Pr}(X=s \cap Y=t) \cdot(s+t) \\
& =\sum_{s \in S} \sum_{t \in T} \operatorname{Pr}(X=s \cap Y=t) \cdot s+\sum_{t \in T} \sum_{s \in S} \operatorname{Pr}(X=s \cap Y=t) \cdot t \\
& =\sum_{s \in S} \operatorname{Pr}(X=s) \cdot s+\sum_{t \in T} \operatorname{Pr}(Y=t) \cdot t \\
& =\mathbb{E}[X]+\mathbb{E}[Y] .
\end{aligned}
$$

Maybe the single most powerful tool in the analysis of randomized algorithms.

Linearity of Variance

$\operatorname{Var}[\mathrm{X}+\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}]$ when X and Y are independent.
Claim 1: (exercise) $\operatorname{Var}[\mathrm{X}]=\mathbb{E}\left[\mathrm{X}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}$ (via linearity of expectation)

Claim 2: (exercise) $\mathbb{E}[\mathrm{XY}]=\mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{Y}]$ (i.e., X and Y are uncorrelated) when X, Y are independent.

Together give:

$$
\begin{aligned}
\operatorname{Var}[\mathrm{X}+\mathrm{Y}] & =\mathbb{E}\left[(\mathrm{X}+\mathrm{Y})^{2}\right]-\mathbb{E}[\mathrm{X}+\mathrm{Y}]^{2} \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-(\mathbb{E}[\mathrm{X}]+\mathbb{E}[\mathrm{Y}])^{2} \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+2 \mathbb{E}[\mathrm{XY}]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-\mathbb{E}[\mathrm{X}]^{2}-2 \mathbb{E}[\mathrm{X}] \cdot \mathbb{E}[\mathrm{Y}]-\mathbb{E}[Y]^{2} \\
& =\mathbb{E}\left[\mathrm{X}^{2}\right]+\mathbb{E}\left[\mathrm{Y}^{2}\right]-\mathbb{E}[X]^{2}-\mathbb{E}[Y]^{2} \\
& =\operatorname{Var}[\mathrm{X}]+\operatorname{Var}[\mathrm{Y}] .
\end{aligned}
$$

Linearity of Variance

Exercise: Verify that for random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right),
$$

whenever the variables are 2 -wise independent (also called pairwise independent).

Application 2: Quicksort with Random Pivots

Quicksort

Quicksort (X) : where $X=\left(x_{1}, \ldots, x_{n}\right)$ is a list of numbers.

1. If X is empty: return X.
2. Else: select pivot p uniformly at random from $\{1, \ldots, n\}$.
3. Let $X_{l o}=\left\{i \in X: x_{i}<x_{p}\right\}$ and $X_{h i}=\left\{i \in X: x_{i} \geq x_{p}\right\}$ (requires $n-1$ comparisons with x_{p} to determine).
4. Return the concatenation of the lists
[Quicksort $\left(X_{l o}\right),\left(X_{p}\right)$, Quicksort $\left(X_{h i}\right)$].

4	5	2	8	1	3	6	9	7	0	4	5	2	8	1	3	6

What is the worst case running time of this algorithm?

Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by Quicksort (X). Then $\mathbb{E}[T]=O(n \log n)$.

- For any $i, j \in[n]$ with $i<j$, let $\mathbf{I}_{i j}=1$ if x_{i}, x_{j} are compared at some point during the algorithm, and $\mathbf{I}_{i j}=0$ if they are not. An indicator random variable.
- We can write $\mathbf{T}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{l}_{i j}$. Thus, via linearity of expectation

$$
\mathbb{E}[\mathbf{T}]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}\left[\iota_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left[x_{i}, x_{j} \text { are compared }\right]
$$

So we need to upper bound $\operatorname{Pr}\left[x_{i}, x_{j}\right.$ are compared $]$.

Randomized Quicksort Analysis

Upper bounding $\operatorname{Pr}\left[x_{i}, x_{j}\right.$ are compared]:

- Assume without loss of generality that $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$. This is just 'renaming' the elements of our list. Also recall that $i<j$.
- At exactly one step of the recursion, x_{i}, x_{j} will be 'split up' with one landing in $X_{h i}$ and the other landing in $X_{l o}$, or one being chosen as the pivot. x_{i}, x_{j} are only ever compared in this later case - if one is chosen as the pivot when they are split up.
- The split occurs when some element between x_{i} and x_{j} is chosen as the pivot. The possible elements are $x_{i}, x_{i+1}, \ldots, x_{j}$.

4	5	2	1	3	0	6	8	9	7

- $\operatorname{Pr}\left[x_{i}, x_{j}\right.$ are compared $]$ is equal to the probability that either x_{i} or x_{j} are chosen as the splitting pivot from this list. Thus, $\operatorname{Pr}\left[x_{i}, x_{j}\right.$ are compared $]=$

Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

$$
\mathbb{E}[T]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left[x_{i}, x_{j} \text { are compared }\right] .
$$

And we computed $\operatorname{Pr}\left[x_{i}, x_{j}\right.$ are compared $]=\frac{2}{j-i+1}$. Plugging in:

$$
\begin{aligned}
\mathbb{E}[T] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}=\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} \\
& \leq \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \leq 2 \cdot(n-1) \cdot \sum_{k=1}^{n} \frac{1}{k}=2 n \cdot H_{n}=O(n \log n) .
\end{aligned}
$$

Questions?

