COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 19

Logistics

- I will send responses to project progress reports soon.

Summary

Last Week: Start on Markov Chains.

- Start on Markov chains and their analysis
- Markov chain based algorithms for satisfiability: $\approx n^{2}$ time for 2 -SAT, and $\approx(4 / 3)^{n}$ for 3 -SAT.

Today: Markov Chains Continued

- The gambler's ruin problem.
- Aperiodicity and stationary distribution of a Markov chain.
- The fundamental theorem of Markov chains.

Markov Chain Review

- A discrete time stochastic process is a Markov chain if is it memoryless:

$$
\operatorname{Pr}\left(\mathrm{X}_{t}=a_{t} \mid \mathrm{X}_{\mathrm{t}-1}=a_{t-1}, \ldots, \mathrm{X}_{0}=a_{0}\right)=\operatorname{Pr}\left(\mathrm{X}_{t}=a_{t} \mid \mathrm{X}_{\mathrm{t}-1}=a_{\mathrm{t}-1}\right)
$$

- If each X_{t} can take m possible values, the Markov chain is specified by the transition matrix $P \in[0,1]^{m \times m}$ with

$$
P_{i, j}=\operatorname{Pr}\left(X_{t+1}=j \mid X_{t}=i\right) .
$$

- Let $q_{t} \in[0,1]^{1 \times m}$ be the distribution of X_{i}. Then $q_{t+1}=q_{t} P$.

Markov Chain Review

Often viewed as an underlying state transition graph. Nodes correspond to possible values that each X_{t} can take.

The Markov chain is irreducible if the underlying graph consists of single strongly connected component.

Gambler's Ruin

Gambler's Ruin

- You and 'a friend' repeatedly toss a fair coin. If it hits heads, you give your friend \$1. If it hits tails, they give you \$1.
- You start with $\$ \ell_{1}$ and your friend starts with $\$ \ell_{2}$. When either of you runs out of money the game terminates.
- What is the probability that you win $\$ \ell_{2}$?

Gambler's Ruin Markov Chain

Let X_{0}, X_{1}, \ldots be the Markov chain where X_{t} is your profit at step t. $X_{0}=0$ and:

$$
\begin{aligned}
P_{-\ell_{1},-\ell_{1}} & =P_{\ell_{2}, \ell_{2}}=1 \\
P_{i, i+1}=P_{i, i-1} & =1 / 2 \text { for }-\ell_{1}<i<\ell_{2}
\end{aligned}
$$

- ℓ_{1} and ℓ_{2} are absorbing states.
- All i with $-\ell_{1}<i<\ell_{2}$ are transient states. I.e.,

$$
\operatorname{Pr}\left[X_{t^{\prime}}=i \text { for some } t^{\prime}>t \mid X_{t}=i\right]<1 .
$$

Observe that this Markov chain is also a Martingale since $\mathbb{E}\left[\mathrm{X}_{t+1} \mid \mathrm{X}_{t}\right]=\mathrm{X}_{\mathrm{t}}$.

Gambler's Ruin Analysis

Let $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$ be the Markov chain where X_{t} is your profit at step t. $X_{0}=0$ and:

$$
\begin{aligned}
P_{-\ell_{1},-\ell_{1}} & =P_{\ell_{2}, \ell_{2}}=1 \\
P_{i, i+1}=P_{i, i-1} & =1 / 2 \text { for }-\ell_{1}<i<\ell_{2}
\end{aligned}
$$

We want to compute $q=\lim _{t \rightarrow \infty} \operatorname{Pr}\left[X_{t}=\ell_{2}\right]$.
By linearity of expectation, for any $i, \mathbb{E}\left[\mathrm{X}_{i}\right]=0$. Further, for
$q=\lim _{t \rightarrow \infty} \operatorname{Pr}\left[X_{t}=\ell_{2}\right]$, since $-\ell_{1}, \ell_{2}$ are the only non-transient states,

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left[X_{t}\right]=\ell_{2} q+-\ell_{1}(1-q)=0
$$

Solving for q, we have $q=\frac{\ell_{1}}{\ell_{1}+\ell_{2}}$.

Gambler's Ruin Thought Exercise

What if you always walk away as soon as you win just \$1. Then what is your probability of winning, and what are your expected winnings?

Stationary Distributions

Stationary Distribution

A stationary distribution of a Markov chain with transition matrix $P \in[0,1]^{m \times m}$ is a distribution $\pi \in[0,1]^{m}$ such that $\pi=\pi P$.
I.e. if $\mathrm{X}_{\mathrm{t}} \sim \pi$, then $\mathrm{X}_{t+1} \sim \pi P=\pi$.

Think-pair-share: Do all Markov chains have a stationary distribution?

Claim (Existence of Stationary Distribution)

Any Markov chain with a finite state space, and transition matrix $P \in[0,1]^{m \times m}$ has a stationary distribution $\pi \in[0,1]^{m}$ with $\pi=\pi$ P.

Follows from the Brouwer fixed point theorem: for any continuous function $f: \mathcal{S} \rightarrow \mathcal{S}$, where \mathcal{S} is a compact convex set, there is some x such that $f(x)=x$.

Periodicity

The periodicity of a state i is defined as:

$$
T=\operatorname{gcd}\left\{t>0: \operatorname{Pr}\left(X_{t}=i \mid X_{0}=i\right)>0\right\} .
$$

The state is aperiodic if it has periodicity $T=1$.
A Markov chain is aperiodic if all states are aperiodic.

Periodicity

Claim

If a Markov chain is irreducible, and has at least one self-loop, then it is aperiodic.

Fundamental Theorem

Theorem (The Fundamental Theorem of Markov Chains)
Let $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$ be a Markov chain with a finite state space and transition matrix $P \in[0,1]^{m \times m}$. If the chain is both irreducible and aperiodic,

1. There exists a unique stationary distribution $\pi \in[0,1]^{m}$ with $\pi=\pi P$.
2. For any states $i, j, \lim _{t \rightarrow \infty} \operatorname{Pr}\left[X_{t}=i \mid X_{0}=j\right]=\pi(i)$. I.e., for any initial distribution $q_{0}, \lim _{t \rightarrow \infty} q_{t}=\lim _{t \rightarrow \infty} q_{0} p^{\text {t }}=\pi$.
3. $\pi(i)=\frac{1}{\mathbb{E}\left[\min \left(t: x_{t}=i\right) \mid X_{0}=T \text {. }\right.}$. I.e., $\pi(i)$ is the inverse of the average expected return time from state i back to i.

In the limit, the probability of being at any state i is independent of the starting state.

Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of c cards. At each step draw two random cards, swap them and repeat.
-What is the state space of this chain?

- What is the transition probability $P_{i, j}$? How does it compare to $P_{j, i}$?
- This Markov chain is symmetric and thus its stationary distribution is uniform, $\pi(i)=\frac{1}{c!}$.

Letting $m=c$! denote the size of the state space,

$$
\pi P_{:, i}=\sum_{j} \pi(j) P_{j, i}=\sum_{j} \pi(j) P_{i, j}=\frac{1}{m} \sum_{j} P_{i, j}=\frac{1}{m}=\pi(i) .
$$

Once we have exhibited a stationary distribution, we know that it is unique and that the chain converges to it in the limit!

Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i 's neighbors at step $t+1$ with probability $\frac{1}{d_{i}}$.

- What is the state space of this chain?
- What is the transition probability $P_{i, j}$?
- Is this chain aperiodic?
- If the graph is not bipartite, then there is at least one odd cycle, making the chain aperiodic.

Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random walk on an undirected graph. If it is at node i at step t, then it moves to any of i 's neighbors at step $t+1$ with probability $\frac{1}{d_{i}}$.
Claim: When the graph is not bipartite, the unique stationary distribution of this Markov chain is given by $\pi(i)=\frac{d_{i}}{2|E|}$.

$$
\pi P_{:, i}=\sum_{j} \pi(j) P_{j, i}=\sum_{j} \frac{d_{j}}{2|E|} \cdot \frac{1}{d_{j}}=\sum_{j} \frac{1}{2|E|}=\frac{d_{i}}{2|E|}=\pi(i)
$$

I.e., the probability of being at a given node i is dependent only on the node's degree, not on the structure of the graph in any other way.

