COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 18

Logistics

- Problem Set 4 is due Monday 4/22 at 11:59pm.
- No quiz this week.

Summary

Last Class:

- Leverage score intuition.
- Connection to spectral graph sparsification
- Connection to effective resistances in electrical networks. Note: I am not going to finish this full derivation - see Lecture 17 slides if you are interested.

Today:

- New unit: Markov Chains.
- Markov chain based algorithms for 2-SAT and 3-SAT.

Markov Chain Definition

- A discrete time stochastic process is a collection of random variables $\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$,
- A discrete time stochastic process is a Markov chain if is it memoryless:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathrm{X}_{t}=a_{t} \mid \mathrm{X}_{t-1}=a_{t-1}, \ldots, \mathrm{X}_{0}=a_{0}\right) & =\operatorname{Pr}\left(\mathrm{X}_{t}=a_{t} \mid \mathrm{X}_{t-1}=a_{t-1}\right) \\
& =\operatorname{Pa} a_{t-1}, a_{t}
\end{aligned}
$$

Question: In a Markov chain, is X_{t} independent of $X_{t-2}, X_{t-3}, \ldots, X_{0}$?

Transition Matrix

A Markov chain $\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots$ where each X_{i} can take m possible values, is specified by the transition matrix $P \in[0,1]^{m \times m}$ with

$$
P_{j, k}=\operatorname{Pr}\left(\mathbf{X}_{i+1}=k \mid \mathbf{X}_{i}=j\right)
$$

Let $q_{i} \in[0,1]^{1 \times m}$ be the distribution of X_{i}. Then $q_{i+1}=q_{i} P$.

\mathbf{P}			
.5	.5	0	0
.25	.25	.5	0
0	1	0	0
0	.5	.5	0

Graph View

Often viewed as an underlying state transition graph. Nodes correspond to possible values that each X_{i} can take.

The Markov chain is irreducible if the underlying graph consists of single strongly connected component.

2-SAT

Motivating Example: Find a satisfying assignment for a 2-CNF formula with n variables.

$$
\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)
$$

A simple 'local search' algorithm:

1. Start with an arbitrary assignment.
2. Repeat $2 m n^{2}$ times, terminating if a satisfying assignment is found:

- Chose an arbitrary unsatisfied clause.
- Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.

3. If a valid assignment is not found, return that the formula is unsatisfiable.

Claim: If the formula is satisfiable, the algorithm finds a satisfying assignment with probability $\geq 1-2^{-m}$.

Randomized 2-SAT Analysis

Fix a satisfying assignment S. Let $X_{i} \leq n$ be the number of variables that are assigned the same values as in S, at step i.

- $\mathrm{X}_{i+1}=\mathrm{X}_{i} \pm 1$ since we flip one variable in an unsatisfied clause.
- $\operatorname{Pr}\left(\mathrm{X}_{i+1}=\mathrm{X}_{i}+1\right) \geq$
- $\operatorname{Pr}\left(X_{i+1}=X_{i}-1\right) \leq$

$$
\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right)
$$

Coupling to a Markov Chain

The number of correctly assigned variables at step i, X_{i}, obeys

$$
\operatorname{Pr}\left(\mathrm{X}_{i+1}=\mathrm{X}_{i}+1\right) \geq \frac{1}{2} \quad \text { and } \quad \operatorname{Pr}\left(\mathrm{X}_{i+1}=\mathrm{X}_{i}-1\right) \leq \frac{1}{2} .
$$

Is $X_{0}, X_{1}, X_{2}, \ldots$ a Markov chain?
Define a Markov chain $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots$ such that $\mathrm{Y}_{0}=\mathrm{X}_{0}$ and:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathrm{Y}_{i+1}=1 \mid \mathrm{Y}_{i}=0\right) & =1 \\
\operatorname{Pr}\left(\mathrm{Y}_{i+1}=j+1 \mid \mathrm{Y}_{i}=j\right) & =1 / 2 \text { for } 1 \leq j \leq n-1 \\
\operatorname{Pr}\left(\mathrm{Y}_{i+1}=j-1 \mid \mathrm{Y}_{i}=j\right) & =1 / 2 \text { for } 1 \leq j \leq n-1 \\
\operatorname{Pr}\left(\mathrm{Y}_{i+1}=n \mid \mathrm{Y}_{i}=n\right) & =1 .
\end{aligned}
$$

- Our algorithm terminates as soon as $X_{i}=n$. We expect to reach this point only more slowly with Y_{i}. So it suffices to argue that $Y_{i}=n$ with high probability for large enough i.
- Formally could use a coupling argument (will see later on).

Simple Markov Chain Analysis

Want to bound the expected time required to have $\mathrm{Y}_{i}=n$.

Let h_{j} be the expected number of steps to reach n when starting at node j (i.e., the expected termination time when j variables are assigned correctly.)

$$
\begin{aligned}
& h_{n}=0 \\
& h_{0}=h_{1}+1 \\
& h_{j}=\frac{h_{j-1}}{2}+\frac{h_{j+1}}{2}+1 \text { for } 1 \leq j \leq n-1
\end{aligned}
$$

Simple Markov Chain Analysis

Claim: $h_{j}=h_{j+1}+2 j+1$. Can prove via induction on j.

- $h_{0}=h_{1}+1$, satisfying the claim in the base case.

$$
\begin{aligned}
& h_{j}=\frac{h_{j-1}}{2}+\frac{h_{j+1}}{2}+1 \\
& h_{j}=\frac{h_{j}}{2}+(j-1)+\frac{1}{2}+\frac{h_{j+1}}{2}+1 \\
& h_{j}=\frac{h_{j}}{2}+\frac{h_{j+1}}{2}+j+\frac{1}{2} .
\end{aligned}
$$

- Rearranging gives: $h_{j}=h_{j+1}+2 j+1$.

So in total we have:

$$
h_{0}=h_{1}+1=h_{2}+3+1=\ldots=\sum_{j=0}^{n-1}(2 j+1)=n^{2}
$$

Simple Markov Chain Analysis

Upshot: Consider the Markov chain $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots$, and let i^{*} be the minimum i such $Y_{i^{*}}=n$. Then $\mathbb{E}\left[i^{*}\right] \leq n^{2}$.

- Thus, by Markov's inequality, with probability $\geq 1 / 2$, our 2-SAT algorithms finds a satisfying assignment within $2 n^{2}$ steps.
- Splitting our $2 m n^{2}$ total steps into m periods of $2 n^{2}$ steps each, we fail to find a satisfying assignment in all m periods with probability at most $1 / 2^{m}$.

3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with n variables.

$$
\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) .
$$

- 3-SAT is famously NP-hard. What is the naive deterministic runtime required to solve 3-SAT?
- The current best known runtime is $O\left(1.307^{n}\right)$ [Hansen, Kaplan, Zamir, Zwick, 2019].
- Will see that our simple Markov chain approach gives an $O\left(1.3334^{n}\right)$ time algorithm.
- Note that the exponential time hypothesis conjectures that $O\left(c^{n}\right)$ is needed to solve 3-SAT for some constant $c>1$. The strong exponential time hypothesis conjectures that for $k \rightarrow \infty$, solving k-SAT requires $O\left(2^{n}\right)$ time.

Randomized 3-SAT Algorithm

1. Start with an arbitrary assignment.
2. Repeat m times, terminating if a satisfying assignment is found:

- Chose an arbitrary unsatisfied clause.
- Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.

3. If a valid assignment is not found, return that the formula is unsatisfiable.

Randomized 3-SAT Analysis

As in the 2-SAT setting, let X_{i} be the number of correctly assigned variables at step i. We have:

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{i}=X_{i-1}+1\right) \geq \\
& \operatorname{Pr}\left(X_{i}=X_{i-1}-1\right) \leq
\end{aligned}
$$

Define the coupled Markov chain $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots$ as before, but with $Y_{i}=Y_{i-1}+1$ with probability $1 / 3$ and $Y_{i}=Y_{i-1}-1=2 / 3$.

How many steps do you expect are needed to reach $\mathrm{Y}_{i}=n$?

Randomized 3-SAT Analysis

Letting h_{j} be the expected number of steps to reach n when starting at node j,

$$
\begin{aligned}
& h_{n}=0 \\
& h_{0}=h_{1}+1 \\
& h_{j}=\frac{2 h_{j-1}}{3}+\frac{h_{j+1}}{3}+1 \text { for } 1 \leq j \leq n-1
\end{aligned}
$$

- We can prove via induction that $h_{j}=h_{j+1}+2^{j+2}-3$ and in turn, $h_{0}=2^{n+2}-4-3 n$.
- Thus, in expectation, our algorithm takes at most $\approx 2^{n+2}$ steps to find a satisfying assignment if there is one.
- Is this an interesting result?

Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we will have $\mathbb{E}\left[X_{0}\right]=n / 2$. With very small, but still non-negligible probability, X_{0} will be much larger, and our random walk will be more likely to find a satisfying assignment.

Modified Randomized 3-SAT Algorithm:
Repeat m times, terminating if a satisfying assignment is found:

1. Pick a uniform random assignment for the variables.
2. Repeat $3 n$ times, terminating if a satisfying assignment is found:

- Chose an arbitrary unsatisfied clause.
- Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.

If a valid assignment is not found, return that the formula is unsatisfiable.

Modified 3-SAT Analysis

Consider a single random assignment with $X_{0}=n-j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_{j} be a lower bound on the success probability in this case. Since $j \leq n$ and since we run the search process for $3 n$ steps,

$$
\begin{aligned}
a_{j} & =\operatorname{Pr}\left[X_{3 n}=n\right] \\
& \geq \operatorname{Pr}\left[X_{3 j}=n\right]
\end{aligned}
$$

$\geq \operatorname{Pr}[$ take exactly $2 j$ steps forward and j steps back in $3 j$ steps]

$$
=\binom{3 j}{j}\left(\frac{2}{3}\right)^{j} \cdot\left(\frac{1}{3}\right)^{2 j} .
$$

Via Stirling's approximation, $\binom{3 j}{j} \geq \frac{1}{\sqrt{j}} \cdot \frac{3^{j j-2}}{2^{2 j-2}}$, giving:

$$
a_{j} \geq \frac{2^{2}}{3^{2} \sqrt{j}} \cdot \frac{3^{3 j}}{2^{2 j}} \cdot \frac{2^{j}}{3^{3 j}} \approx \frac{1}{\sqrt{j} \cdot 2^{j}} \geq \frac{1}{\sqrt{n} \cdot 2^{j}} .
$$

Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower bounded by:

$$
\begin{aligned}
q & \geq \sum_{j=0}^{n} \operatorname{Pr}\left[X_{0}=n-j\right] \cdot a_{j} \\
& \geq \sum_{j=0}^{n}\binom{n}{j} \cdot \frac{1}{2^{n}} \cdot \frac{1}{\sqrt{n} \cdot 2^{j}} \\
& \geq \frac{1}{\sqrt{n} \cdot 2^{n}} \sum_{j=0}^{n}\binom{n}{j} \cdot \frac{1}{2^{j}} \\
& =\frac{1}{\sqrt{n} \cdot 2^{n}} \cdot\left(\frac{3}{2}\right)^{n}=\frac{1}{\sqrt{n}} \cdot\left(\frac{3}{4}\right)^{n} .
\end{aligned}
$$

Thus, if we repeat for $m=O\left(\sqrt{n} \cdot\left(\frac{4}{3}\right)^{n}\right)=O\left(1.33334^{n}\right)$ trials, with very high probability, we will find a satisfying assignment if there is one.

