COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024. Lecture 18

Logistics

- Problem Set 4 is due Monday 4/22 at 11:59pm.
- · No quiz this week.

Summary

Last Class:

st Class:

ATSTSA ~ ATA

wiggenss" of rows

Leverage score intuition.

Connection to spectral graph sparsification BTB ~ L

· Connection to effective resistances in electrical networks. **Note:** I am not going to finish this full derivation – see Lecture 17 slides if you are interested. Spielmen spectra graph

Summary

Last Class:

- · Leverage score intuition.
- · Connection to spectral graph sparsification
- Connection to effective resistances in electrical networks. Note:
 I am not going to finish this full derivation see Lecture 17 slides if you are interested.

Today:

- · New unit: Markov Chains.
- Markov chain based algorithms for 2-SAT and 3-SAT.

NP.Mar)

Markov Chain Definition

- A discrete time stochastic process is a collection of random variables $X_0, X_1, X_2, \ldots,$
- A discrete time stochastic process is a Markov chain if is it memoryless:

$$\Pr(\underbrace{X_t = a_t | X_{t-1} = a_{t-1}, \dots, X_0 = a_0}) = \Pr(X_t = a_t | X_{t-1} = a_{t-1})$$

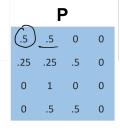
$$= \underbrace{P_{a_{t-1}, a_t}}.$$

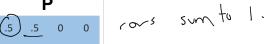
Question: In a Markov chain, is
$$X_t$$
 independent of $X_{t-2}, X_{t-3}, \dots, X_0$?

Ft. pars with $X_t = \{1, 2, 3, \dots, X_0, 1, 2, \dots, 2, \dots, 2, 1, 2, \dots, 2, \dots, 2, 1, 2, \dots, 2, \dots, 2, 1, 2, \dots, 2$

A Markov chain $X_0, X_1, ...$ where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$\underbrace{P_{j,k}} = \Pr(\underline{X_{i+1}} = k | \underline{X_i} = \underline{j}).$$

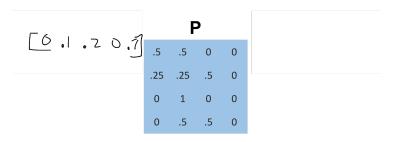




A Markov chain $X_0, X_1, ...$ where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$P_{j,k} = \Pr(\mathbf{X}_{i+1} = k | \mathbf{X}_i = j).$$

Let $\underline{q_i} \in [0,1]^{1 \times m}$ be the distribution of X_i . Then $\underline{q_{i+1}} = q_i P$.

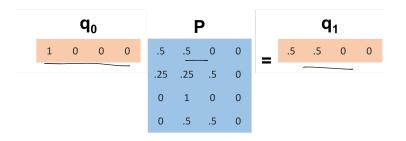


5

A Markov chain $X_0, X_1, ...$ where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$P_{j,k} = \Pr(\mathbf{X}_{i+1} = k | \mathbf{X}_i = j).$$

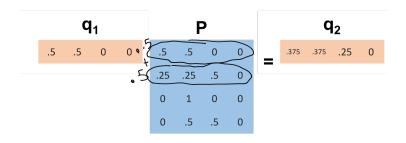
Let $q_i \in [0,1]^{1 \times m}$ be the distribution of X_i . Then $q_{i+1} = q_i P$.



A Markov chain $X_0, X_1, ...$ where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

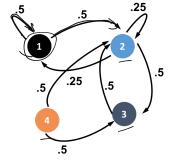
$$P_{j,k} = \Pr(\mathbf{X}_{i+1} = k | \mathbf{X}_i = j).$$

Let $q_i \in [0,1]^{1 \times m}$ be the distribution of X_i . Then $q_{i+1} = q_i P$.



Graph View

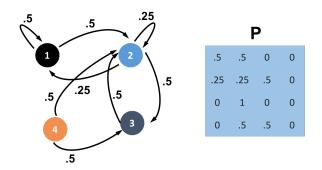
Often viewed as an underlying state transition graph. Nodes correspond to possible values that each X_i can take.



	F)	
.5	.5	0	0
.25	.25	.5	0
0	1	0	0
0	.5	.5	0

Graph View

Often viewed as an underlying state transition graph. Nodes correspond to possible values that each X_i can take.



The Markov chain is irreducible if the underlying graph consists of single strongly connected component. — I can get from the form of state.

6

Motivating Example: Find a satisfying assignment for a 2-CNF formula with p variables. $(x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1)$ $(x_1 \lor \bar{x}_2) \land (x_1 \lor x_2) \land (x_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1)$

Motivating Example: Find a satisfying assignment for a 2-CNF formula with <u>n variables</u>.

$$(x_1 \vee \overline{x}_2) \wedge (\overline{x}_1 \vee \overline{x}_3) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \overline{x}_3) \wedge (x_4 \vee \overline{x}_1)$$

A simple 'local search' algorithm:

- 1. Start with an arbitrary assignment.
- 2. Repeat 2<u>mn</u>² times, terminating if a satisfying assignment is found:
 - · Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.
- If a valid assignment is not found, return that the formula is unsatisfiable.

Motivating Example: Find a satisfying assignment for a 2-CNF formula with *n* variables.

$$(x_1 \vee \overline{x}_2) \wedge (\overline{x}_1 \vee \overline{x}_3) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \overline{x}_3) \wedge (x_4 \vee \overline{x}_1)$$

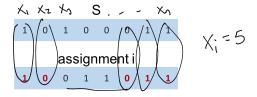
A simple 'local search' algorithm:

- 1. Start with an arbitrary assignment.
- 2. Repeat 2mn² times, terminating if a satisfying assignment is found:
 - · Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.
- 3. If a valid assignment is not found, return that the formula is unsatisfiable.

Claim: If the formula is satisfiable, the algorithm finds a satisfying assignment with probability $\geq 1 - 2^{-m}$.

Randomized 2-SAT Analysis

<u>Fix a satisfying assignment S.</u> Let $X_i \le n$ be the number of variables that are assigned the same values as in S, at step i.

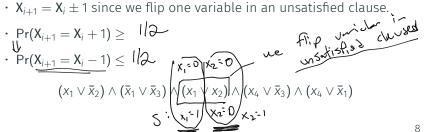


• $X_{i+1} = X_i \pm 1$ since we flip one variable in an unsatisfied clause.

Randomized 2-SAT Analysis

Fix a satisfying assignment S. Let $X_i \leq n$ be the number of variables that are assigned the same values as in S, at step i.

			9	3			
1	0	1	0	0	0	1	1
		as	sigr	me	nt i		
1	0	0	1	1	0	1	1



The number of correctly assigned variables at step i, X_i , obeys

$$\Pr(X_{i+1} = X_i + 1) \ge \frac{1}{2}$$
 and $\Pr(X_{i+1} = X_i - 1) \le \frac{1}{2}$.

The number of correctly assigned variables at step i, X_i, obeys

$$\Pr(X_{i+1} = X_i + 1) \ge \frac{1}{2} \text{ and } \Pr(X_{i+1} = X_i - 1) \le \frac{1}{2}.$$
Is $X_0, X_1, X_2, ...$ a Markov chain? — NO!

Lund I have a Markov chain it to be about equal to the content of the content o

The number of correctly assigned variables at step i, X_i , obeys

$$\Pr(X_{i+1} = X_i + 1) \ge \frac{1}{2} \quad \text{and} \quad \Pr(X_{i+1} = X_i - 1) \le \frac{1}{2}. \quad X_{1} = 0$$

$$\text{Is } X_0, X_1, X_2, \dots \text{ a Markov chain?} \quad (X_1 \lor X_2) \quad \land \quad (X_3 \lor X_4)$$

$$\text{S:} \quad \text{I} \quad \text{I} \quad \text{S:} \quad \text{I} \quad \text{I} \quad \text{I}$$

$$\text{S:} \quad \text{I} \quad \text{I} \quad \text{I} \quad \text{I}$$

$$\text{S:} \quad \text{I} \quad \text{I} \quad \text{I}$$

Define a Markov chain $\underline{Y_0, Y_1, \ldots}$ such that $\underline{Y_0 = X_0}$ and:

$$\Pr(Y_{i+1} = 1 | Y_i = 0) = 1$$

$$\Pr(Y_{i+1} = j + 1 | Y_i = j) = 1/2 \text{ for } 1 \le j \le n - 1$$

$$\Pr(Y_{i+1} = j - 1 | Y_i = j) = 1/2 \text{ for } 1 \le j \le n - 1$$

$$\Pr(Y_{i+1} = n | Y_i = n) = 1.$$

The number of correctly assigned variables at step i, X_i , obeys

$$\Pr(X_{i+1} = X_i + 1) \ge \frac{1}{2} \quad \text{and} \quad \Pr(X_{i+1} = X_i - 1) \le \frac{1}{2}.$$
 Is X_0, X_1, X_2, \ldots a Markov chain?
$$\bigvee_{i \in \mathcal{X}_0} X_i = X_0 \text{ and: } \bigvee_{i \in \mathcal{X}_0} X_i = X_0.$$
 Define a Markov chain Y_0, Y_1, \ldots such that $Y_0 = X_0$ and:
$$\bigvee_{i \in \mathcal{X}_0} Y_i = X_0.$$

$$Pr(Y_{i+1} = 1 | Y_i = 0) = 1$$

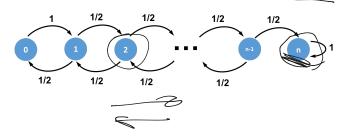
$$Pr(Y_{i+1} = j + 1 | Y_i = j) = 1/2 \text{ for } 1 \le j \le n - 1$$

$$Pr(Y_{i+1} = j - 1 | Y_i = j) = 1/2 \text{ for } 1 \le j \le n - 1$$

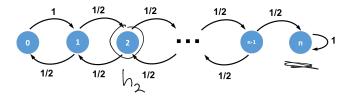
$$Pr(Y_{i+1} = n | Y_i = n) = 1.$$

- Our algorithm terminates as soon as $X_i = n$. We expect to reach this point only more slowly with Y_i . So it suffices to argue that $Y_i = n$ with high probability for large enough i.
- Formally could use a coupling argument (will see later on).

Want to bound the expected time required to have $Y_i = n$.

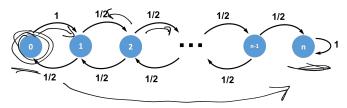


Want to bound the expected time required to have $Y_i = n$.



Let $\underline{h_j}$ be the expected number of steps to reach \underline{n} when starting at node j (i.e., the expected termination time when j variables are assigned correctly.)

Want to bound the expected time required to have $Y_i = n$.



Let h_j be the expected number of steps to reach n when starting at node j (i.e., the expected termination time when j variables are assigned correctly.)

$$\begin{array}{c}
h_{\underline{n}} = 0 \\
h_{\underline{0}} = h_{1} + 1 \\
\underline{h_{j}} = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \text{ for } 1 \le j \le n - 1
\end{array}$$

Claim:
$$h_j = h_{j+1} + 2j + 1$$
.

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case. $h_{0+1} + 2 \cdot 0 + 1$

Claim: $h_i = h_{i+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

$$h_{j} + \frac{2i}{2} + \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

$$h_{j} = \frac{h_{j}}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1$$

$$h_{j} = \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

$$h_{j} = \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

$$h_{j} = h_{j+1} + j + \frac{1}{2}$$

$$h_{j} = h_{j+1} + j + \frac{1}{2}$$

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

$$h_{j} = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

$$h_{j} = \frac{h_{j}}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1$$

$$h_{j} = \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

• Rearranging gives: $h_j = h_{j+1} + 2j + 1$.

11

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

$$h_{j} = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

$$h_{j} = \frac{h_{j}}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1$$

$$h_{j} = \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

• Rearranging gives: $h_i = h_{i+1} + 2j + 1$.

So in total we have:

$$h_0 = h_1 + 1 = h_2 + 3 + 1 = \dots = \sum_{j=0}^{n-1} (2j+1)$$

Claim: $h_i = h_{i+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

$$h_{j} = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

$$h_{j} = \frac{h_{j}}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1$$

$$h_{j} = \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

• Rearranging gives: $h_i = h_{i+1} + 2j + 1$.

So in total we have:

$$h_0 = h_1 + 1 = h_2 + 3 + 1 = \dots = \sum_{j=0}^{n-1} (2j+1) = n^2$$
.

expected the form $j = 0$ substituting $j = 0$.

Upshot: Consider the Markov chain $Y_0, Y_1, ...,$ and let i^* be the minimum i such $Y_{i^*} = n$. Then $\mathbb{E}[i^*] \leq n^2$.

Upshot: Consider the Markov chain $Y_0, Y_1, ...,$ and let i^* be the minimum i such $\mathbf{Y}_{i^*} = n$. Then $\mathbb{E}[i^*] \leq n^2$.

• Thus, by Markov's inequality, with probability $\geq 1/2$, our 2-SAT algorithms finds a satisfying assignment within $2n^2$ steps. $P((1)^{*} > 2n^2) \leq 1/2$

Upshot: Consider the Markov chain Y_0, Y_1, \ldots , and let i^* be the own minimum i such $Y_{i^*} = n$. Then $\mathbb{E}[i^*] \leq n^2$.

- Thus, by Markov's inequality, with probability $\geq 1/2$, our 2-SAT algorithms finds a satisfying assignment within $2n^2$ steps.
- Splitting our $2mn^2$ total steps into m periods of $2n^2$ steps each, we fail to find a satisfying assignment in all m periods with probability at most $1/2^m$.

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with *n* variables.

$$(x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_4) \wedge (\underline{x_1} \vee \underline{x_2} \vee \overline{x}_3).$$

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with *n* variables.

$$(x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_4) \wedge (x_1 \vee x_2 \vee \overline{x}_3).$$

· 3-SAT is famously NP-hard. What is the naive deterministic runtime required to solve 3-SAT?

The to clack possible was strats

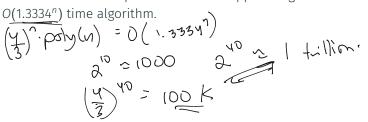
An a pay (n)

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with *n* variables.

$$(x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_4) \wedge (x_1 \vee x_2 \vee \overline{x}_3).$$

- 3-SAT is famously NP-hard. What is the naive deterministic runtime required to solve 3-SAT?
- The current best known runtime is $O(1.307^n)$ [Hansen, Kaplan, Zamir. Zwick. 2019l.

· Will see that our simple Markov chain approach gives an



3**-SAT**

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with *n* variables.

$$(x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_4) \wedge (x_1 \vee x_2 \vee \overline{x}_3).$$

$$(x_1 \vee x_2 \vee \overline{x}_3 \vee x_4) \wedge (x_1 \vee x_2 \vee \overline{x}_3).$$

- 3-SAT is famously NP-hard. What is the naive deterministic runtime required to solve 3-SAT?
- The current best known runtime is $O(1.307^n)$ [Hansen, Kaplan, Zamir, Zwick, 2019].
- Will see that our simple Markov chain approach gives an $O(1.3334^n)$ time algorithm. P‡NP
- Note that the exponential time hypothesis conjectures that $O(c^n)$ is needed to solve 3-SAT for some constant c>1. The strong exponential time hypothesis conjectures that for $k\to\infty$, solving k-SAT requires $O(2^n)$ time.

Randomized 3-SAT Algorithm

- 1. Start with an arbitrary assignment.
- 2. Repeat <u>m times</u>, terminating if a satisfying assignment is found:
 - · Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.
- 3. If a valid assignment is not found, return that the formula is unsatisfiable.

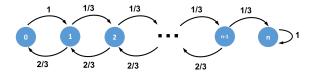
As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

$$Pr(X_i = X_{i-1} + 1) \ge$$

$$Pr(X_i = X_{i-1} - 1) \leq$$

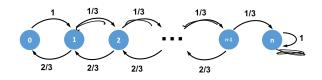
Define the coupled Markov chain $Y_0, Y_1, ...$ as before, but with $Y_i = Y_{i-1} + 1$ with probability 1/3 and $Y_i = Y_{i-1} - 1 = 2/3$.



As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

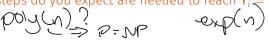
$$Pr(X_i = X_{i-1} + 1) \ge Pr(X_i = X_{i-1} - 1) \le$$

Define the coupled Markov chain $Y_0, Y_1, ...$ as before, but with $Y_i = Y_{i-1} + 1$ with probability 1/3 and $Y_i = Y_{i-1} - 1 = 2/3$.



1/2, 1/2 familed for the was Olvar)

How many steps do you expect are needed to reach $Y_i = n$?



Letting h_j be the expected number of steps to reach \underline{n} when starting at node j,

$$h_n = 0$$
 $h_0 = h_1 + 1$
 $h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \le j \le n-1$

Letting h_j be the expected number of steps to reach n when starting at node j,

$$h_n = 0$$
 $h_0 = h_1 + 1$
 $h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \le j \le n-1$
 $2i$

• We can prove via induction that $h_j = h_{j+1} + 2^{j+2} - 3$ and in turn, $h_0 = 2^{n+2} - 4 - 3n$.

Letting h_j be the expected number of steps to reach n when starting at node j,

$$h_n = 0$$

 $h_0 = h_1 + 1$
 $h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \le j \le n-1$

- We can prove via induction that $h_j = h_{j+1} + 2^{j+2} 3$ and in turn, $h_0 = 2^{n+2} 4 3n$.
- Thus, in expectation, our algorithm takes at most $\approx 2^{n+2}$ steps to find a satisfying assignment if there is one.

Letting h_j be the expected number of steps to reach n when starting at node j,

$$h_n = 0$$

 $h_0 = h_1 + 1$
 $h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \le j \le n-1$

- We can prove via induction that $h_j = h_{j+1} + 2^{j+2} 3$ and in turn, $h_0 = 2^{n+2} 4 3n$.
- Thus, in expectation, our algorithm takes at most $\approx 2^{n+2}$ steps to find a satisfying assignment if there is one.
- · Is this an interesting result? NO. we already hue also.

Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we will have $\mathbb{E}[X_0] = n/2$. With very small, but still non-negligible probability, X_0 will be much larger, and our random walk will be more likely to find a satisfying assignment.

Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we will have $\mathbb{E}[X_0] = n/2$. With very small, but still non-negligible probability, X_0 will be much larger, and our random walk will be more likely to find a satisfying assignment.

Modified Randomized 3-SAT Algorithm:

assignment is found.

Repeat m times, terminating if a satisfying assignment is found:

- 1. Pick a uniform random assignment for the variables.
- 2. Repeat <u>3n</u> times, terminating if a satisfying assignment is found:
 - · Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.

If a valid assignment is not found, return that the formula is unsatisfiable.

Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment. $(x_0 = n - j)$. I.e., we need to

Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \le n$ and since we run the search process for 3n steps,

$$q_j = \Pr[X_{3n} = n]$$

$$\geq \Pr[X_{3j} = n]$$

Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \le n$ and since we run the search process for 3n steps,

$$q_j = \Pr[X_{3n} = n]$$

$$\geq \Pr[X_{3j} = n]$$

$$\geq \Pr[\text{take exactly } 2j \text{ steps forward and } j \text{ steps back in } 3j \text{ steps}]$$

Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \le n$ and since we run the search process for 3n steps,

$$q_{j} = \Pr[X_{3n} = n]$$

$$\geq \Pr[X_{3j} = n]$$

$$\geq \Pr[\text{take exactly } 2j \text{ steps forward and } j \text{ steps back in } 3j \text{ steps}]$$

$$= \binom{3j}{j} \left(\frac{2}{3}\right)^{j} \cdot \left(\frac{1}{3}\right)^{2j}.$$

Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \le n$ and since we run the search process for 3n steps,

$$q_j = \Pr[\mathbf{X}_{3n} = n]$$

 $\geq \Pr[\mathbf{X}_{3i} = n]$

≥ Pr[take exactly 2*j* steps forward and *j* steps back in 3*j* steps]

$$= \underbrace{\binom{3j}{j}} \left(\frac{2}{3}\right)^j \cdot \left(\frac{1}{3}\right)^{2j}.$$

Via Stirling's approximation, $\binom{3j}{j} \ge \frac{1}{\sqrt{j}} \cdot \frac{3^{3j-2}}{2^{2j-2}}$, giving:

$$\underline{q_{j}} \ge \frac{2^{2}}{3^{2}\sqrt{j}} \cdot \frac{3^{3j}}{2^{2j}} \cdot \frac{2^{j}}{3^{3j}} \approx \frac{1}{\sqrt{j} \cdot 2^{j}} \ge \boxed{\frac{1}{\sqrt{n} \cdot 2^{j}}}.$$

$$q \ge \sum_{j=0}^{n} \Pr[\mathbf{X}_0 = n - j] \cdot \underline{q_j}$$

$$q \ge \sum_{j=0}^{n} \Pr[\mathbf{X}_{0} = n - j] \cdot q_{j}$$
$$\ge \sum_{j=0}^{n} \left(\underbrace{n}_{j} \right) \cdot \frac{1}{2^{n}} \cdot \frac{1}{\sqrt{n} \cdot 2^{j}}$$

$$q \ge \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j$$

$$\ge \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}$$

$$\ge \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^j}$$

$$q \ge \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j$$

$$\ge \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}$$

$$\ge \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^j}$$

$$= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2}\right)^n$$

$$= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2}\right)^n$$

$$q \ge \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j$$

$$\ge \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}$$

$$\ge \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^j}$$

$$= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2}\right)^n = \frac{1}{\sqrt{n}} \cdot \left(\frac{3}{4}\right)^n.$$

Our overall probability of success in a single trial is then lower bounded by:

$$q \ge \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j$$

$$\ge \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}$$

$$\ge \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^j}$$

$$= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2}\right)^n = \frac{1}{\sqrt{n}} \cdot \left(\frac{3}{4}\right)^n.$$

Thus, if we repeat for $m = O\left(\sqrt{n} \cdot \left(\frac{4}{3}\right)^n\right) = O\left(\underbrace{1.33334^n}\right)$ trials, with very high probability, we will find a satisfying assignment if there is one.