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Logistics

• Problem Set 4 is due 4/22.
• Project progress report is due 4/16.
• We have no class on Tuesday – so the weekly quiz is due
Wednesday night.
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Summary

Last Class: Subspace embedding via sampling.

• Subspace embedding via sampling.

• The matrix leverage scores.

• Analysis via matrix concentration bounds.

Today:

• Intuition behind leverage scores

• Connection to effective resistances and spectral graph
sparsifiers.
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Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)
For any A ∈ Rn×d with left singular vector matrix U, let τi = ‖Ui,:‖22
and pi =

τi∑
τi
. Let S ∈ Rm×n have S:,j independently set to 1√mpi

· eTi
with probability pi.

Then, if m = O
(

d log(d/δ)
ε2

)
, with probability ≥ 1− δ, S is an

ε-subspace embedding for A.

• Matches oblivious random projection up to the log d factor.

• Can sample according to the row norms of any orthonormal
basis for col(A).
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Leverage Score Intuition
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Variational Characterization of Leverage Scores

For a matrix A ∈ Rn×d with SVD A = UΣVT, the ith leverage score is
given by τi(A) = ‖Ui,:‖22.

Consider the maximization problem:

τi(A) =

max
x∈Rd

[Ax](i)2

‖Ax‖22
.

How much can a vector in A’s column span ‘spike’ at position i.

Can rewrite this problem as:

max
z:‖z‖2=1

[Uz](i)2

‖Uz‖22

= [Uz](i)2.

What z maximizes this value?
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Variational Characterization of Leverage Scores

τi(A) = max
x∈Rd

[Ax](i)2

‖Ax‖22
.

• Remember that we want ‖SAx‖22 ≈ ‖Ax‖22 for all x ∈ Rd.

• The leverage scores ensure that we sample each entry of Ax
with high enough probability to well approximate ‖Ax‖22.

• In fact, could prove the subspace embedding theorem by
showing that for a fixed x ∈ Rd, ‖SAx‖22 ≈ ‖Ax‖22, and then
applying a net argument + union bound. Athough you would
lose a factor d over the optimal bound. 6
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Leverage Score Intuition

• When ai is not spanned by the other rows of A, τi(A) = 1.

• τi(A) is small when many rows are similar to ai.
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Leverage Score Intuition

• When ai is not spanned by the other rows of A, τi(A) = 1.
• τi(A) is small when many rows are similar to ai.
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Leverage Score Intuition

• Leverage scores are a ‘smooth’ indicator of cluster structure.

• Very high leverage scores tend to correspond to outliers –
original motivation for use in statistics.

• When used as sampling probabilities, give a more ‘balanced
sample’ than uniform sampling.
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Spectral Graph Sparsification
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Graph Sparsification

Given a graph G = (V, E), find a (weighted) subgraph G′ with many
fewer edges that approximates various properties of G.1

Cut Sparsifier: (Karger) For any set of nodes S,

CUT′(S, V \ S) ≈ε CUT(S, V \ S).

1Image taken from Nick Harvey’s notes https://www.cs.ubc.ca/~nickhar/W15/Lecture11Notes.pdf.
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The Graph Laplacian

For a graph with adjacency matrix A ∈ {0, 1}n×n and diagonal degree
matrix D ∈ Rn×n, L = D− A is the graph Laplacian.

L can be written as L =
∑

(u,v)∈E

Lu,v where Lu,v is an ‘edge Laplacian’
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Laplacian Smoothness

Observation 1: For any z ∈ Rd,

zTLz =
∑

(u,v)∈E

zTLu,vz

=
∑

(u,v)∈E

(z(i)− z(j))2.

• zTLz measures how smoothly z varies across the graph.

• If z ∈ {−1, 1}n is a cut indicator vector with z(i) = 1 for i ∈ S and
z(i) = −1 otherwise, then zTLz = 4 · CUT(S, V \ S).

• So G′ with (weighted) Laplacian L′ ≈ε L will be a cut sparsifier,
with CUT′(S, V \ S) ≈ε CUT(S, V \ S) for all S.

• Such a G′ is called an ε-spectral sparsifier of G.

11
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Laplacian Factorization

Observation 2: Lu,v = bu,vbT
u,v.

So L =
∑

(u,v)∈E

bu,vbT
u,v.

That is, letting B ∈ Rm×n have rows {bT
u,v : (u, v) ∈ E}, L = BTB.

• So if a sampling matrix S is a subspace embedding for B, then
BTSTSB ≈ε BTB ≈ε L. I.e., SB is the weighted vertex-edge
incidence matrix of an ε-spectral sparsifier of G.

• By our results on subspace embedding, every graph G has an
ε-spectral sparsifier with just O(n log n/ε2) edges.

12
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Leverage Scores and Effective Resistance

A spectral sparsifier G′ of G with O(n log n/ε2) edges can be
constructed by sampling rows of the vertex-edge incidence matrix
via their leverage scores. What are these leverage scores?

• View each edge as a 1-Ohm resistor.

• If we fix a current of 1 between u, v, the voltage drop across the
nodes is known as the effective resistance between u and v.

• We will show that the leverage score of each edge is exactly
equal to its effective resistance.

• Intuitively, to form a spectral sparsifier, we should sample high
resistance edges with high probability, since they are
‘bottlenecks’.
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Electrical Flows

For a flow f ∈ Rm, the currents going into each node are given by BTf.

The electrical flow when one unit of current is sent from u to v is:

f e = argmin
f:BTf=bu,v

‖f‖2.

Since power (energy/time) is given by P = I2 · R.
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Leverage Scores and Effective Resistance

f e = argmin
f:BTf=bu,v

‖f‖2.

By Ohm’s law, the voltage drop across (u, v) (i.e., the effective
resistance) is simply the entry f eu,v (since u, v is a unit resistor).

• To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = Bφ for some vector φ ∈ Rn.

• Then need to solve BTBφ = bu,v. I.e., Lφ = bu,v. φ is unique up to
its component in the null-space of L.

• φ = L+bu,v.

• Gives f e = BL+bu,v. So f eu,v is just bT
u,vL+bu,v = bu,v(BTB)+bu,v.

15



Leverage Scores and Effective Resistance

f e = argmin
f:BTf=bu,v

‖f‖2.

By Ohm’s law, the voltage drop across (u, v) (i.e., the effective
resistance) is simply the entry f eu,v (since u, v is a unit resistor).

• To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = Bφ for some vector φ ∈ Rn.

• Then need to solve BTBφ = bu,v. I.e., Lφ = bu,v. φ is unique up to
its component in the null-space of L.

• φ = L+bu,v.

• Gives f e = BL+bu,v. So f eu,v is just bT
u,vL+bu,v = bu,v(BTB)+bu,v.

15



Leverage Scores and Effective Resistance

f e = argmin
f:BTf=bu,v

‖f‖2.

By Ohm’s law, the voltage drop across (u, v) (i.e., the effective
resistance) is simply the entry f eu,v (since u, v is a unit resistor).

• To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = Bφ for some vector φ ∈ Rn.

• Then need to solve BTBφ = bu,v. I.e., Lφ = bu,v. φ is unique up to
its component in the null-space of L.

• φ = L+bu,v.

• Gives f e = BL+bu,v. So f eu,v is just bT
u,vL+bu,v = bu,v(BTB)+bu,v.

15



Leverage Scores and Effective Resistance

f e = argmin
f:BTf=bu,v

‖f‖2.

By Ohm’s law, the voltage drop across (u, v) (i.e., the effective
resistance) is simply the entry f eu,v (since u, v is a unit resistor).

• To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = Bφ for some vector φ ∈ Rn.

• Then need to solve BTBφ = bu,v. I.e., Lφ = bu,v. φ is unique up to
its component in the null-space of L.

• φ = L+bu,v.

• Gives f e = BL+bu,v. So f eu,v is just bT
u,vL+bu,v = bu,v(BTB)+bu,v.

15



Leverage Scores and Effective Resistance

f e = argmin
f:BTf=bu,v

‖f‖2.

By Ohm’s law, the voltage drop across (u, v) (i.e., the effective
resistance) is simply the entry f eu,v (since u, v is a unit resistor).

• To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = Bφ for some vector φ ∈ Rn.

• Then need to solve BTBφ = bu,v. I.e., Lφ = bu,v. φ is unique up to
its component in the null-space of L.

• φ = L+bu,v.

• Gives f e = BL+bu,v. So f eu,v is just bT
u,vL+bu,v = bu,v(BTB)+bu,v.

15



Leverage Scores and Effective Resistance

f e = argmin
f:BTf=bu,v

‖f‖2.

By Ohm’s law, the voltage drop across (u, v) (i.e., the effective
resistance) is simply the entry f eu,v (since u, v is a unit resistor).

• To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = Bφ for some vector φ ∈ Rn.

• Then need to solve BTBφ = bu,v. I.e., Lφ = bu,v. φ is unique up to
its component in the null-space of L.

• φ = L+bu,v.

• Gives f e = BL+bu,v. So f eu,v is just bT
u,vL+bu,v = bu,v(BTB)+bu,v.

15



Leverage Scores and Effective Resistance

The effective resistance across edge (u, v) is given by

bu,v(BTB)+bu,v = eTu,vB(BTB)+BTeu,v.

Write B = UΣVT in its SVD.

eTu,vB(BTB)+BTeu,v = eTu,vUΣVT(VΣ−2VT)VΣUTeu,v

= eTu,vUUTeu,v
= UT

u,vUu,v = ‖Uu,v‖22.

I.e., the effective resistance is exactly the leverage score of the
corresponding row in B.
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Some History

• The concept of spectral sparsification was first introduced by
Spielman and Teng ‘04 in their seminal work on fast system
solvers for graph Laplacians. In this work, sparsifiers are used
as preconditioners (like in Problem Set 3).

• Spielman and Srivastava ‘08 showed how to construct
sparsifiers with O(n log n/ε2) edges via effective resistance
(leverage score) sampling.

• Batson, Spielman, and Srivastava ‘08 showed how to achieve
O(n/ε2) edges with a deterministic algorithm.

• Marcus, Spielman, and Srivastava ‘13 built on this work to give
optimal bipartite expanders with any degree and to resolve the
famous Kadison-Singer problem in functional analysis.
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