COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024. Lecture 16

- Problem Set 4 was released on Friday it is due 4/22.
- Project progress report due on 4/16.

Summary

Last Week: Subspace embedding via random sketching.

- Finish proof of subspace embedding from the distributional Johnson-Lindenstrauss lemma and an ϵ -net argument.
- Proof of distributional JL via the Hanson-Wright inequality.
- Application to fast over-constrained linear regression.

Today:

- Subspace embedding via sampling.
- The matrix leverage scores.
- Analysis via matrix concentration bounds.
- Spectral graph sparsifiers.

Quiz Review

Question 3
Not complete
Points out of 1.00
♥ Flag question
Edit question

Assume that $S \in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$. Do the following guarantees hold, for some small constant c (e.g., c = 1, or c = 2, etc.)?

$$(1) (1 - c\epsilon) \|A\|_F \le \|SA\|_F \le (1 + c\epsilon) \|A\|_F$$

and

(2) $(1 - c\epsilon) \|A\|_2 \le \|SA\|_2 \le (1 + c\epsilon) \|A\|_2$.

Recall that the spectral norm of a matrix is defined $\|M\|_2 = \max_{x:\|x\|_2=1} \|Mx\|_2$. **Hint:** Try to prove these bounds using the guarantee that $\|SAx\| \approx_{\epsilon} \|Ax\|_2$ for all $x \in \mathbb{R}^d$.

- a. Yes, both always hold.
- b. (1) always holds but (2) may not.
- c. (2) always holds but (1)) may not.
- d. Neither is guaranteed to always hold.

Check

Quiz Review

Question ${f 5}$
Not complete
Points out of 1.00
♥ Flag questionEdit
question

Which of the following concentration bounds can be apply to show that, for a random $x \in \mathbb{R}^n$ with i.i.d. ± 1 entries, and some fixed $A \in \mathbb{R}^{n \times n}$, that $x^T A x$ is concentrated around its mean? Select all that apply.

a. Markov bound

b. Bernstein bound

- C. Chebyshev inequality
- d. Hanson-Wright Inequality

Check

Subspace Embedding

 $S \in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$, if for all $x \in \mathbb{R}^d$, $(1 - \epsilon) ||Ax|| \le ||SAx||_2 \le (1 + \epsilon) ||Ax||_2$.

So Far: If **S** is a random sign matrix, and $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, then for any *A*, **S** is an ϵ -subspace embedding with probability $\geq 1 - \delta$.

In many applications it is preferable for **S** to be a row sampling matrix. The sample can preserve sparsity, structure, etc.

Problem Reformulation

For $A \in \mathbb{R}^{n \times d}$, let $A = U\Sigma V^T$ be its SVD. $U \in \mathbb{R}^{n \times \operatorname{rank}(A)}$, $V \in \mathbb{R}^{d \times \operatorname{rank}(A)}$ are orthonormal, and $\Sigma \in \mathbb{R}^{\operatorname{rank}(A) \times \operatorname{rank}(A)}$ is positive diagonal.)

- For any $x \in \mathbb{R}^d$, let $z = \Sigma V^T x$. Observe that: $||Ax||_2 = ||Uz||_2$ and $||SA||_2 = ||SUz||_2$.
- Thus, to prove that S is an ϵ -subspace embedding for A, it suffices to show that it is an ϵ -subspace embedding for U.
- I.e., it suffices to show that for any $x \in \mathbb{R}^d$,

$$(1-\epsilon)||Ux||_2^2 \le ||\mathbf{S}Ux||_2^2 \le (1+\epsilon)||Ux||_2^2.$$

Suffices to show that for any $x \in \mathbb{R}^d$,

 $(1-\epsilon)\|x\|_2^2 \leq \|\mathsf{S}Ux\|_2^2 \leq (1+\epsilon)\|x\|_2^2 \implies (1-\epsilon)x^T Ix \leq x^T U^T \mathsf{S}^T \mathsf{S}Ux \leq (1+\epsilon)x^T Ix.$ This condition is typically denoted by $(1-\epsilon)I \leq U^T \mathsf{S}^T \mathsf{S}U \leq (1+\epsilon)I.$

 $M \leq N$ iff $\forall x \in \mathbb{R}^d x^T M x \leq x^T N x$ (Loewner Order)

When $(1 - \epsilon)N \preceq M \preceq (1 + \epsilon)N$, I will write $M \approx_{\epsilon} N$ as shorthand.

 $(1 - \epsilon)I \leq U^T \mathbf{S}^T \mathbf{S}U \leq (1 + \epsilon)I$ is equivilant to all eigenvalues of $U^T \mathbf{S}^T \mathbf{S}U$ lying in $[1 - \epsilon, 1 + \epsilon]$. **So Far:** We have an orthonormal matrix $U \in \mathbb{R}^{n \times d}$ and we want to sample rows so that $U^T S^T S U \approx_{\epsilon} I$. What are some possible sampling strategies?

Leverage Score Sampling

• $\tau_i = \|U_{i,:}\|_2^2$ is known as the *i*th leverage score of *U*.

• Let
$$p_i = \frac{\tau_i}{\sum_{i=1}^n \tau_i}$$
.

• Let $\mathbf{S}_{:,j} = e_i^T \cdot \frac{1}{\sqrt{mp_i}}$ with probability p_i .

$$\mathbb{E}[U^{T}\mathbf{S}^{T}\mathbf{S}U] = = \sum_{j=1}^{m} \mathbb{E}[U^{T}\mathbf{S}_{:,j}^{T}\mathbf{S}_{:,j}U]$$
$$= \sum_{j=1}^{m} \sum_{i=1}^{n} p_{i} \cdot (\frac{1}{\sqrt{mp_{i}}}U_{i,:}^{T})(\frac{1}{\sqrt{mp_{i}}}U_{i,:})$$
$$= \sum_{j=1}^{m} \frac{1}{m}U^{T}U = I.$$

We want to show that $U^T S^T S U$ is close to $\mathbb{E}[U^T S^T S U] = I$. Will apply a matrix concentration bound.

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices $X_1, \ldots, X_m \in \mathbb{R}^{d \times d}$, with $X_i \succeq 0$, $\lambda_{\max}(X_i) \leq R$, and $X = \sum_{i=1}^m X_i$. Let $M = \mathbb{E}[X]$. Then:

$$\Pr\left[\lambda_{\min}(\mathsf{X}) \leq (1-\epsilon)\lambda_{\min}(M)\right] \leq d \cdot \left[\frac{e^{-\epsilon}}{(1-\epsilon)^{1-\epsilon}}\right]^{\lambda_{\min}(M)/R}$$

$$\Pr\left[\lambda_{\max}(\mathsf{X}) \ge (1+\epsilon)\lambda_{\max}(M)\right] \le d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/R}$$

Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices $X_1, \ldots, X_m \in \mathbb{R}^{d \times d}$, with $X_i \succeq 0$, $\lambda_{max}(X_i) \leq R$, and $X = \sum_{i=1}^m X_i$. Let $M = \mathbb{E}[X]$. Then:

$$\Pr\left[\lambda_{\max}(\mathbf{X}) \geq (1+\epsilon)\lambda_{\max}(M)\right] \leq d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/F}$$

- In our setting, $\mathbf{X}_i = U^T \mathbf{S}_{:,j}^T \mathbf{S}_{:,j} U$. $\mathbf{X}_i = \frac{1}{mp_i} U_{i,:}^T U_{i,:}$ with probability p_i .
- $\cdot \ \textit{M} = \mathbb{E}[X] =$
- $\cdot R =$
- $\Pr[U^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{S}U \succeq (1+\epsilon)I] \le d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{m/d} \lesssim d \cdot e^{-\epsilon^2 \cdot m/d}$
- If we set $m = O\left(\frac{d \log(d/\delta)}{\epsilon^2}\right)$ we have $\Pr[U^T \mathbf{S}^T \mathbf{S} U \succeq (1+\epsilon)I] \leq \delta$.

Theorem (Subspace Embedding via Leverage Score Sampling) For any $A \in \mathbb{R}^{n \times d}$ with left singular vector matrix U, let $\tau_i = ||U_{i,:}||_2^2$ and $p_i = \frac{\tau_i}{\sum \tau_i}$. Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have $\mathbf{S}_{:,j}$ independently set to $\frac{1}{\sqrt{mp_i}} \cdot e_i^T$ with probability p_i . Then, if $m = O\left(\frac{d \log(d/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 - \delta$, \mathbf{S} is an ϵ -subspace embedding for A.

Matches oblivious random projection up to the $\log d$ factor.