COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024. Lecture 16

- Problem Set 4 was released on Friday it is due 4/22.
- Project progress report due on 4/16.

· No class on Tresday · Zoom wit Thursday

Summary

Last Week: Subspace embedding via random sketching.

- Finish proof of subspace embedding from the distributional Johnson-Lindenstrauss lemma and an ϵ -net argument.
- Proof of distributional JL via the Hanson-Wright inequality.
- Application to fast over-constrained linear regression.

Summary

Last Week: Subspace embedding via random sketching.

- Finish proof of subspace embedding from the distributional Johnson-Lindenstrauss lemma and an ϵ -net argument.
- Proof of distributional JL via the Hanson-Wright inequality.
- Application to fast over-constrained linear regression.

Today:

- Subspace embedding via sampling.
- The matrix leverage scores.
- Analysis via matrix concentration bounds.
- Spectral graph sparsifiers.

Quiz Review

Quiz Review

Question 5 Which of the following concentration bounds can be apply to show that, for a random Not complete $x \in \mathbb{R}^n$ with i.i.d. ± 1 entries, and some fixed $A \in \mathbb{R}^{n \times n}$, that $x^T A x$ is concentrated around its mean? Select all that apply. Points out of 11×11~51 1.00 P Flag Markov bound question b. Bernstein bound 🗳 Edit question Chebyshev inequality d. Hanson-Wright Inequality Check $\sum_{i} \sum_{j} x(i) x(j) A_{ij}$

Subspace Embedding

 $\mathbf{S} \in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$, if for all $x \in \mathbb{R}^d$,

Subspace Embedding

 $\mathbf{S} \in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$, if for all $x \in \mathbb{R}^{d}$,

 $(1-\epsilon)\|Ax\| \le \|\mathsf{S}Ax\|_2 \le (1+\epsilon)\|Ax\|_2.$

So Far: If **S** is a random sign matrix, and $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, then for any *A*, **S** is an ϵ -subspace embedding with probability $\geq 1 - \delta$.

Subspace Embedding

 $\mathbf{S} \in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$, if for all $x \in \mathbb{R}^{d}$,

$(1-\epsilon) \|Ax\| \le \|SAx\|_2 \le (1+\epsilon) \|Ax\|_2.$

So Far: If **S** is a random sign matrix, and $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, then for any *A*, **S** is an ϵ -subspace embedding with probability $\geq 1 - \delta$. In many applications it is preferable for **S** to be a row sampling matrix. The sample can preserve sparsity, structure, etc.

For $A \in \mathbb{R}^{n \times d}$, let $A = U\Sigma V^T$ be its SVD. $U \in \mathbb{R}^{n \times \operatorname{rank}(A)}$, $V \in \mathbb{R}^{d \times \operatorname{rank}(A)}$ are orthonormal, and $\Sigma \in \mathbb{R}^{\operatorname{rank}(A) \times \operatorname{rank}(A)}$ is positive diagonal.)

For $A \in \mathbb{R}^{n \times d}$, let $A = U\Sigma V^T$ be its SVD. $U \in \mathbb{R}^{n \times \operatorname{rank}(A)}$, $V \in \mathbb{R}^{d \times \operatorname{rank}(A)}$ are orthonormal, and $\Sigma \in \mathbb{R}^{\operatorname{rank}(A) \times \operatorname{rank}(A)}$ is positive diagonal.)

• For any $x \in \mathbb{R}^d$, let $z = \Sigma V^T x$. Observe that: $||Ax||_2 = ||Uz||_2$ and $||SA||_2 = ||SUz||_2$.

For $A \in \mathbb{R}^{n \times d}$, let $A = U\Sigma V^T$ be its SVD. $U \in \mathbb{R}^{n \times \operatorname{rank}(A)}$, $V \in \mathbb{R}^{d \times \operatorname{rank}(A)}$ are orthonormal, and $\Sigma \in \mathbb{R}^{\operatorname{rank}(A) \times \operatorname{rank}(A)}$ is positive diagonal.)

• Thus, to prove that S is an ϵ -subspace embedding for A, it suffices to show that it is an ϵ -subspace embedding for U.

For $A \in \mathbb{R}^{n \times d}$, let $A = U\Sigma V^T$ be its SVD. $U \in \mathbb{R}^{n \times \operatorname{rank}(A)}$, $V \in \mathbb{R}^{d \times \operatorname{rank}(A)}$ are orthonormal, and $\Sigma \in \mathbb{R}^{\operatorname{rank}(A) \times \operatorname{rank}(A)}$ is positive diagonal.)

- For any $x \in \mathbb{R}^d$, let $z = \Sigma V^T x$. Observe that: $||Ax||_2 = ||Uz||_2$ and $||SA||_2 = ||SUz||_2$.
- Thus, to prove that S is an ϵ -subspace embedding for A, it suffices to show that it is an ϵ -subspace embedding for U.
- I.e., it suffices to show that for any $x \in \mathbb{R}^d$, $\|VX\|_2^2 = \|X\|_2^2$ $(1-\epsilon)\|UX\|_2^2 \le \|SUX\|_2^2 \le (1+\epsilon)\|UX\|_2^2$. Lecaule U is

Suffices to show that for any $x \in \mathbb{R}^d$, $\| \mathcal{V} x \|_2^2$, $(1-\epsilon) \|x\|_2^2 \le \|\mathbf{S} U x\|_2^2 \le (1+\epsilon) \|x\|_2^2$

 $(1-\epsilon)\|x\|_2^2 \le \|\mathsf{S}Ux\|_2^2 \le (1+\epsilon)\|x\|_2^2 \implies (1-\epsilon)x^{\mathsf{T}}Ix \le x^{\mathsf{T}}U^{\mathsf{T}}\mathsf{S}^{\mathsf{T}}\mathsf{S}Ux \le (1+\epsilon)x^{\mathsf{T}}Ix.$

 $(1-\epsilon)\|x\|_2^2 \le \|\mathsf{S}Ux\|_2^2 \le (1+\epsilon)\|x\|_2^2 \implies (1-\epsilon)x^T Ix \le x^T U^T \mathsf{S}^T \mathsf{S}Ux \le (1+\epsilon)x^T Ix.$

This condition is typically denoted by $(1 - \epsilon)I \preceq U^T S^T S U \preceq (1 + \epsilon)I$.

 $M \leq N$ iff $\forall x \in \mathbb{R}^d x^T M x \leq x^T N x$ (Loewner Order)

 $(1-\epsilon)\|x\|_2^2 \le \|\mathsf{S}Ux\|_2^2 \le (1+\epsilon)\|x\|_2^2 \implies (1-\epsilon)x^T |x| \le x^T U^T \mathsf{S}^T \mathsf{S}Ux \le (1+\epsilon)x^T |x|.$

This condition is typically denoted by $(1 - \epsilon)I \preceq U^T \mathbf{S}^T \mathbf{S}U \preceq (1 + \epsilon)I$.

 $M \leq N$ iff $\forall x \in \mathbb{R}^d x^T M x \leq x^T N x$ (Loewner Order)

When $(1 - \epsilon)N \preceq M \preceq (1 + \epsilon)N$, I will write $M \approx_{\epsilon} N$ as shorthand.

$$\begin{array}{cccc} U^{T}S^{T}S & U^{T}S^{T}S & \overline{U} & \overline{U}$$

 $\begin{aligned} (1-\epsilon)\|x\|_2^2 &\leq \|\mathsf{S}Ux\|_2^2 \leq (1+\epsilon)\|x\|_2^2 \implies (1-\epsilon)x^T lx \leq x^T U^T \mathsf{S}^T \mathsf{S}Ux \leq (1+\epsilon)x^T lx. \end{aligned}$ This condition is typically denoted by $(1-\epsilon)l \leq U^T \mathsf{S}^T \mathsf{S}U \leq (1+\epsilon)l. \end{aligned}$

 $M \leq N$ iff $\forall x \in \mathbb{R}^d x^T M x \leq x^T N x$ (Loewner Order)

When $(1 - \epsilon)N \preceq M \preceq (1 + \epsilon)N$, I will write $M \approx_{\epsilon} N$ as shorthand.

So Far: We have an orthonormal matrix $U \in \mathbb{R}^{n \times d}$ and we want to sample rows so that $U^T S^T S U \approx_{\epsilon} I$.

Sampling from U

So Far: We have an orthonormal matrix $U \in \mathbb{R}^{n \times d}$ and we want to sample rows so that $U^T \mathbf{S}^T \mathbf{S} U \approx_{\epsilon} I$. What are some possible sampling strategies?

• $\tau_i = ||U_{i,:}||_2^2$ is known as the *i*th leverage score of *U*. $(UJ)_{ij} = (P_{col(n)})_{ij}$ 0 G Ø

• $\tau_i = ||U_{i,:}||_2^2$ is known as the *i*th leverage score of *U*.

• $\tau_i = \|U_{i,:}\|_2^2$ is known as the *i*th leverage score of *U*.

• Let
$$p_i = \frac{\tau_i}{\sum_{i=1}^n \tau_i}$$
.
• Let $\mathbf{S}_{:,j} = e_i^T \cdot \frac{1}{\sqrt{mp_i}}$ with probability p_i .
• repeat \boldsymbol{n} has independing

 $\mathbb{E}[U^{\mathsf{T}}\mathsf{S}^{\mathsf{T}}\mathsf{S}U] =$

$$\tau_{i} = \|U_{i,:}\|_{2}^{2} \text{ is known as the } i^{th} \text{ leverage score of } U.$$

$$\text{ Let } p_{i} = \frac{\tau_{i}}{\sum_{i=1}^{n} \tau_{i}}.$$

$$\text{ Let } \mathbf{S}_{i,:} = e_{i}^{T} \cdot \frac{1}{\sqrt{mp_{i}}} \text{ with probability } p_{i}.$$

$$\text{ for } \mathbf{S}_{i,:} = \sum_{j=1}^{m} \mathbb{E}[U^{T}\mathbf{S}_{:,j}^{T}\mathbf{S}_{:,j}U]$$

$$\mathbb{E}[U^{T}\mathbf{S}^{T}\mathbf{S}U] = \sum_{j=1}^{m} \mathbb{E}[U^{T}\mathbf{S}_{:,j}^{T}\mathbf{S}_{:,j}U]$$

• $\tau_i = \|U_{i,:}\|_2^2$ is known as the *i*th leverage score of *U*.

• Let
$$p_i = \frac{\tau_i}{\sum_{i=1}^n \tau_i}$$
.

• Let $\mathbf{S}_{:,j} = e_i^T \cdot \frac{1}{\sqrt{mp_i}}$ with probability p_i .

$$\mathbb{E}[U^{\mathsf{T}}\mathsf{S}^{\mathsf{T}}\mathsf{S}U] = = \sum_{j=1}^{m} \mathbb{E}[U^{\mathsf{T}}\mathsf{S}_{:,j}^{\mathsf{T}}\mathsf{S}_{:,j}U]$$
$$= \sum_{j=1}^{m} \sum_{i=1}^{n} p_{i} \cdot (\frac{1}{\sqrt{mp_{i}}} U_{i,:}^{\mathsf{T}})(\frac{1}{\sqrt{mp_{i}}} U_{i,:})$$

- $\tau_i = \|U_{i,:}\|_2^2$ is known as the *i*th leverage score of *U*.
- Let $p_i = \frac{\tau_i}{\sum_{i=1}^n \tau_i}$.
- Let $\mathbf{S}_{:,j} = e_i^T \cdot \frac{1}{\sqrt{mp_i}}$ with probability p_i .

Matrix Concentration

AMM: looked at untues of uistov

We want to show that $U^T S^T S U$ is close to $\mathbb{E}[U^T S^T S U] = I$. Will apply a matrix concentration bound.

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
$$\begin{split} \mathbf{X}_{1}, \dots, \mathbf{X}_{m} \in \mathbb{R}^{d \times d}, & \text{with } \mathbf{X}_{i} \succeq 0, \ \lambda_{\max}(\mathbf{X}_{i}) \leq R, \text{ and } \mathbf{X} = \sum_{i=1}^{m} \mathbf{X}_{i}. \text{ Let} \\ M = \mathbb{E}[\mathbf{X}]. \text{ Then:} \quad \underbrace{I}_{\mathsf{MPi}} \bigcup_{\substack{i \in \mathcal{V} \\ d \times d}} \bigcup_{\substack{i \in \mathcal{V} \\ d \times d}} \sup_{\substack{i \in \mathcal{V} \\ i \in \mathcal{V}}} \sup_{\substack{i \in \mathcal{V} \\ d \times d}} \sum_{\substack{i \in \mathcal{V} \\ i \in \mathcal{V}}} \sup_{\substack{i \in \mathcal{V} \\ i \in \mathcal{V}}} \sum_{\substack{i \in \mathcal{V$$
 $\sum_{\substack{k \in \mathcal{K} \\ k \in \mathcal{K}}} \Pr\left[\lambda_{\max}(\mathbf{X}) \geq (1+\epsilon)\lambda_{\max}(M)\right] \leq d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/R} \frac{1}{1+\epsilon}$ (-E) M ≤ X ≤ (I+E) M

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices $X_1, \ldots, X_m \in \mathbb{R}^{d \times d}$, with $X_i \succeq 0$, $\lambda_{max}(X_i) \leq R$, and $X = \sum_{i=1}^m X_i$. Let $M = \mathbb{E}[X]$. Then:

$$\Pr\left[\lambda_{\max}(\mathsf{X}) \ge (1+\epsilon)\lambda_{\max}(M)\right] \le d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/R}$$

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices $X_1, \ldots, X_m \in \mathbb{R}^{d \times d}$, with $X_i \succeq 0$, $\lambda_{max}(X_i) \leq R$, and $X = \sum_{i=1}^m X_i$. Let $M = \mathbb{E}[X]$. Then:

$$\Pr\left[\lambda_{\max}(\mathbf{X}) \ge (1+\epsilon)\lambda_{\max}(M)\right] \le d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/R}$$

• In our setting, $X_i = U^T S_{:,j}^T S_{:,j} U$. $X_i = \frac{1}{mp_i} U_{i,:}^T U_{i,:}$ with probability p_i .

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices $X_1, \ldots, X_m \in \mathbb{R}^{d \times d}$, with $X_i \succeq 0$, $\lambda_{\max}(X_i) \le R$, and $X = \sum_{i=1}^m X_i$. Let $M = \mathbb{E}[X]$. Then:

$$\Pr\left[\lambda_{\max}(\mathsf{X}) \ge (1+\epsilon)\lambda_{\max}(M)\right] \le d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/R} \quad \left[\frac{1}{2}\right]^{\frac{1}{2}}$$

- In our setting, $\mathbf{X}_i = U^T \mathbf{S}_{:,j}^T \mathbf{S}_{:,j} U$. $\mathbf{X}_i = \frac{1}{mp_i} U_{i,:}^T U_{i,:}$ with probability p_i .
- $M = \mathbb{E}[X] =$

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices $X_1, \ldots, X_m \in \mathbb{R}^{d \times d}$, with $X_i \succeq 0$, $\lambda_{\max}(X_i) \leq R$, and $X = \sum_{i=1}^m X_i$. Let $M = \mathbb{E}[\mathbf{X}]$. Then:

$$\Pr\left[\lambda_{\max}(\mathbf{X}) \ge (1+\epsilon)\lambda_{\max}(M)\right] \le d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/R}$$

- In our setting, $\mathbf{X}_i = U^T \mathbf{S}_{ij}^T \mathbf{S}_{ij} U$. $\mathbf{X}_i = \frac{1}{mp_i} U_i^T U_{i,:}$ with probability p_i .
- $M = \mathbb{E}[X] = \mathcal{I}$ $R = \mathcal{I} \longrightarrow [\mathcal{I}] \leq \mathcal{I}$ $Pr[U^{\mathsf{T}}S^{\mathsf{T}}SU \succeq (1+\epsilon)I] \leq d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{m/d}$

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices $X_1, \ldots, X_m \in \mathbb{R}^{d \times d}$, with $X_i \succeq 0$, $\lambda_{max}(X_i) \leq R$, and $X = \sum_{i=1}^m X_i$. Let $M = \mathbb{E}[X]$. Then:

$$\Pr\left[\lambda_{\max}(\mathbf{X}) \ge (1+\epsilon)\lambda_{\max}(M)\right] \le d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/\kappa}$$

- In our setting, $\mathbf{X}_i = U^T \mathbf{S}_{:,j}^T \mathbf{S}_{:,j} U$. $\mathbf{X}_i = \frac{1}{mp_i} U_{i,:}^T U_{i,:}$ with probability p_i .
- $\cdot \ \textit{M} = \mathbb{E}[\textbf{X}] =$
- $\cdot R =$

•
$$\Pr[U^{\mathsf{T}}\mathsf{S}^{\mathsf{T}}\mathsf{S}U \succeq (1+\epsilon)I] \leq d \cdot \left[\underbrace{\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}}_{e^{-\epsilon}}\right]^{m/d} \lesssim d \cdot e^{-\epsilon^2 \cdot m/d}$$

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices $X_1, \ldots, X_m \in \mathbb{R}^{d \times d}$, with $X_i \succeq 0$, $\lambda_{\max}(X_i) \leq R$, and $X = \sum_{i=1}^m X_i$. Let $M = \mathbb{E}[\mathbf{X}]$. Then:

$$\Pr\left[\lambda_{\max}(\mathbf{X}) \geq (1+\epsilon)\lambda_{\max}(M)\right] \leq d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\lambda_{\min}(M)/F}$$

- In our setting, $\mathbf{X}_i = U^T \mathbf{S}_{i,i}^T \mathbf{S}_{i,i} U$. $\mathbf{X}_i = \frac{1}{m_P} U_i^T U_{i,i}$ with probability p_i .
- $\cdot M = \mathbb{E}[X] =$
- R =
- $\Pr[U^{\mathsf{T}}\mathsf{S}^{\mathsf{T}}\mathsf{S}U \succeq (1+\epsilon)I] \leq d \cdot \left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{m/d} \lesssim d \cdot e^{-\epsilon^2 \cdot m/d} \underset{\sim}{\overset{\sim}{\simeq}} d \cdot \underbrace{e^{\epsilon}}_{\mathcal{S}} \cdot \underbrace{e^{\epsilon}}_{\mathcal{S}} = \mathbf{C}$ If we set $m = O\left(\frac{d \log(d/\delta)}{\epsilon^2}\right)$ we have $\Pr[U^{\mathsf{T}}\mathsf{S}^{\mathsf{T}}\mathsf{S}U \succeq (1+\epsilon)I] \leq \delta$.

Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling) For any $\gamma \in \mathbb{R}^{n \times d}$ with left singular vector matrix U, let $\tau_i = ||U_{i,:}||_2^2$ and $p_i = \frac{\tau_i}{\sum \tau_i}$. Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have $\mathbf{S}_{:,j}$ independently set to $\frac{1}{\sqrt{mp_i}} \cdot e_i^T$ with probability p_i . Then, if $m = O\left(\frac{d \log(d/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 - \delta$, \mathbf{S} is an ϵ -subspace embedding for A.

Subpace Embedding via Sampling

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \int (d_i d_i d_i) for each distribution defined define$$

Matches oblivious random projection up to the $\log d$ factor.

Leverage Score Intuition

Check-In

Check-in Question: Would row-norm sampling from A directly rather than its left singular vectors *U* have worked to give a subspace embedding?

