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Logistics

• Problem Set 4 was released on Friday – it is due 4/22.
• Project progress report due on 4/16.
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nex t

• No class on" Tuesday

- Zoom next Thursday



Summary

Last Week: Subspace embedding via random sketching.

• Finish proof of subspace embedding from the distributional
Johnson-Lindenstrauss lemma and an ε-net argument.

• Proof of distributional JL via the Hanson-Wright inequality.

• Application to fast over-constrained linear regression.

Today:

• Subspace embedding via sampling.

• The matrix leverage scores.

• Analysis via matrix concentration bounds.

• Spectral graph sparsifiers.
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Quiz Review
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Quiz Review
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Subspace Embedding

S ∈ Rm×n is an ε-subspace embedding for A ∈ Rn×d, if for all x ∈ Rd,

(1− ε)‖Ax‖ ≤ ‖SAx‖2 ≤ (1+ ε)‖Ax‖2.

So Far: If S is a random sign matrix, and m = O
(

d+log(1/δ)
ε2

)
, then for

any A, S is an ε-subspace embedding with probability ≥ 1− δ.

In many applications it is preferable for S to be a row sampling
matrix. The sample can preserve sparsity, structure, etc.

6

ms
81¥)



Subspace Embedding

S ∈ Rm×n is an ε-subspace embedding for A ∈ Rn×d, if for all x ∈ Rd,

(1− ε)‖Ax‖ ≤ ‖SAx‖2 ≤ (1+ ε)‖Ax‖2.

So Far: If S is a random sign matrix, and m = O
(

d+log(1/δ)
ε2

)
, then for

any A, S is an ε-subspace embedding with probability ≥ 1− δ.

In many applications it is preferable for S to be a row sampling
matrix. The sample can preserve sparsity, structure, etc.

6



Subspace Embedding

S ∈ Rm×n is an ε-subspace embedding for A ∈ Rn×d, if for all x ∈ Rd,

(1− ε)‖Ax‖ ≤ ‖SAx‖2 ≤ (1+ ε)‖Ax‖2.

So Far: If S is a random sign matrix, and m = O
(

d+log(1/δ)
ε2

)
, then for

any A, S is an ε-subspace embedding with probability ≥ 1− δ.

In many applications it is preferable for S to be a row sampling
matrix. The sample can preserve sparsity, structure, etc.

6

conventsketch

mreintrpretubfactie regression



Problem Reformulation

For A ∈ Rn×d, let A = UΣVT be its SVD. U ∈ Rn×rank(A), V ∈ Rd×rank(A)

are orthonormal, and Σ ∈ Rrank(A)×rank(A) is positive diagonal.)

• For any x ∈ Rd, let z = ΣVTx. Observe that: ‖Ax‖2 = ‖Uz‖2 and
‖SA‖2 = ‖SUz‖2.

• Thus, to prove that S is an ε-subspace embedding for A, it
suffices to show that it is an ε-subspace embedding for U.

• I.e., it suffices to show that for any x ∈ Rd,

(1− ε)‖Ux‖22 ≤ ‖SUx‖22 ≤ (1+ ε)‖Ux‖22.
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Loewner Ordering

Suffices to show that for any x ∈ Rd,

(1−ε)‖x‖22 ≤ ‖SUx‖22 ≤ (1+ε)‖x‖22

=⇒ (1−ε)xTIx ≤ xTUTSTSUx ≤ (1+ε)xTIx.

This condition is typically denoted by (1− ε)I ' UTSTSU ' (1+ ε)I.

M ' N iff ∀x ∈ Rd xTMx ≤ xTNx (Loewner Order)

When (1− ε)N ' M ' (1+ ε)N, I will write M ≈ε N as shorthand.

(1− ε)I ' UTSTSU ' (1+ ε)I is equivilant to all eigenvalues of UTSTSU
lying in [1− ε, 1+ ε].
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Sampling from U

So Far: We have an orthonormal matrix U ∈ Rn×d and we want
to sample rows so that UTSTSU ≈ε I.

What are some possible
sampling strategies?
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Leverage Score Sampling

• τi = ‖Ui,:‖22 is known as the ith leverage score of U.

• Let pi =
τi∑n
i=1 τi

.

• Let S:,j = eTi ·
1√mpi

with probability pi.

E[UTSTSU] =

=
m∑

j=1

E[UTST:,jS:,jU]

=
m∑

j=1

n∑

i=1

pi · (
1

√mpi
UT
i,:)(

1
√mpi

Ui,:)

=
m∑

j=1

1
m
UTU = I.
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Matrix Concentration

We want to show that UTSTSU is close to E[UTSTSU] = I. Will apply a
matrix concentration bound.

Theorem (Matrix Chernoff Bound)
Consider independent symmetric random matrices
X1, . . . , Xm ∈ Rd×d, with Xi + 0, λmax(Xi) ≤ R, and X =

∑m
i=1 Xi. Let

M = E[X]. Then:

Pr [λmin(X) ≤ (1− ε)λmin(M)] ≤ d ·
[

e−ε

(1− ε)1−ε

]λmin(M)/R

Pr [λmax(X) ≥ (1+ ε)λmax(M)] ≤ d ·
[

eε

(1+ ε)1+ε

]λmin(M)/R
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)
Consider independent symmetric random matrices
X1, . . . , Xm ∈ Rd×d, with Xi + 0, λmax(Xi) ≤ R, and X =

∑m
i=1 Xi. Let

M = E[X]. Then:

Pr [λmax(X) ≥ (1+ ε)λmax(M)] ≤ d ·
[

eε

(1+ ε)1+ε

]λmin(M)/R

• In our setting, Xi = UTST:,jS:,jU. Xi =
1

mpi
UT
i,:Ui,: with probability pi.

• M = E[X] =

• R =

• Pr[UTSTSU + (1+ ε)I] ≤ d ·
[

eε
(1+ε)1+ε

]m/d

! d · e−ε2·m/d

• If we set m = O
(

d log(d/δ)
ε2

)
we have Pr[UTSTSU + (1+ ε)I] ≤ δ.
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Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)
For any A ∈ Rn×d with left singular vector matrix U, let
τi = ‖Ui,:‖22 and pi =

τi∑
τi
. Let S ∈ Rm×n have S:,j

independently set to 1√mpi
· eTi with probability pi.

Then, if m = O
(
d log(d/δ)

ε2

)
, with probability ≥ 1− δ, S is an

ε-subspace embedding for A.

Matches oblivious random projection up to the log d factor.
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Leverage Score Intuition
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Check-In

Check-in Question: Would row-norm sampling from A directly
rather than its left singular vectors U have worked to give a
subspace embedding?
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