COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 15

Logistics

- I'll release the weekly quiz later this afternoon. Due Monday as usual.
- I'll also release Pset 4 shortly.
- 2 page project progress report due 4/16.

Summary

Subspace Embedding:

- Given $A \in \mathbb{R}^{n \times d}$, want $S \in \mathbb{R}^{m \times n}$ such that $\|S A x\|_{2} \approx\|A x\|_{2}$ for all x. I.e., $\|S y\|_{2} \approx\|y\|_{2}$ for all $y \in \operatorname{col}(A)$. Want $m \ll n$.
- For a single y, we can apply the Johnson-Lindenstrauss Lemma. Here, we want to preserve the norms of infinite y.
- Proof via Johnson-Lindenstrauss Lemma and ϵ-net argument.

Today:

- Finish the subspace embedding proof.
- Prove the Johnson-Lindenstrauss lemma itself via the Hanson-Wright inequality.
- Possibly give a simple application of subspace embedding to fast linear regression.

Subspace Embedding

Definition (Subspace Embedding)

$S \in \mathbb{R}^{m \times d}$ is an ϵ-subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^{d}$,

$$
(1-\epsilon)\|A x\|_{2} \leq\|S A x\|_{2} \leq(1+\epsilon)\|A x\|_{2} .
$$

I.e., S preserves the norm of any vector $A x$ in the column span of A.

$$
\operatorname{col}(A) \subseteq \mathbb{R}^{n}
$$

$$
\operatorname{col}(S A) \subseteq \mathbb{R}^{m}
$$

$$
S y=S A x
$$

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\frac{d+\log (1 / \delta)}{\epsilon^{2}}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1-\delta$, S is an ϵ-subspace embedding of A.

- S can be computed without any knowledge of A.
- Still achieves near optimal compression.
- Constructions where \mathbf{S} is sparse or structured, allow efficient computation of SA (fast JL-transform, input-sparsity time algorithms via Count Sketch)

Proof Outline

1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1 / \sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^{n}$, with probability $1-\delta$ for very small $\delta,(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^{n}$, with probability $1-|\mathcal{N}| \cdot \delta,\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y \in \mathcal{N}$.
3. But we want $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y=A x$ with $x \in \mathbb{R}^{d}$. This is a linear subspace, i.e., an infinite set of vectors!
4. 'Discretize' this subspace by rounding to a finite set of vectors \mathcal{N}, called an ϵ-net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with
$\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon
$$

Proof last class via volume argument. By the distributional JL lemma, if we set $\delta^{\prime}=\delta \cdot\left(\frac{\epsilon}{4}\right)^{d}$ then, via a union bound, with

Proof Via ϵ-net

So Far: If we set $m=\tilde{O}\left(d / \epsilon^{2}\right)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1-\delta,\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any y $\in \mathcal{S}_{\mathcal{V}}$, we can write:

$$
\begin{aligned}
y & =w_{0}+\left(y-w_{0}\right) \quad \text { for } w_{0} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot e_{1} \quad \text { for } c_{1}=\sharp y w_{W_{0}} \|_{2} \text { and } e_{1}=\frac{y-w_{0}}{\left\|y-w_{0}\right\|_{2}} \in s_{\mathcal{V}} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{1} \cdot\left(e_{1} w_{1} 1 \text { for } w_{1} \in c_{\epsilon}\right. \\
& =w_{0}+c_{1} \cdot w_{1}+c_{2} \text { for } c_{2} c_{1} \cdot \| e_{1}-w_{1} \text { and } e_{2}=\frac{e_{1}-w_{1}}{\left\|e_{1}-w_{1}\right\|_{2}} \in s_{\mathcal{V}} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{2}+c_{3} \cdot w_{3}+\ldots
\end{aligned}
$$

Proof Via ϵ-net

Have written $y \in S_{\mathcal{V}}$ as $y=w_{0}+c_{1} w_{1}+c_{2} w_{2}+\ldots$ where $w_{0}, w_{1}, \ldots \in \mathcal{N}_{\epsilon}$, and $c_{i} \leq \epsilon^{i}$. By triangle inequality:

$$
\begin{aligned}
\|S y\|_{2} & =\left\|S w_{0}+c_{1} S w_{1}+c_{2} S w_{2}+\ldots\right\|_{2} \\
& \leq\left\|S w_{0}\right\|_{2}+c_{1}\left\|S w_{1}\right\|_{2}+c_{2}\left\|S w_{2}\right\|_{2}+\ldots \\
& \leq(1+\epsilon)+\epsilon(1+\epsilon)+\epsilon^{2}(1+\epsilon)+\ldots
\end{aligned}
$$

(since via the union bound, $\|S w\|_{2} \approx\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$)
$\leq \frac{1+\epsilon}{1-\epsilon} \approx 1+2 \epsilon$
Similarly, can prove that $\left\|S_{y}\right\|_{2} \geq 1-2 \epsilon$, giving, for all $y \in S_{\mathcal{V}}$ (and hence all $y \in \mathcal{V}$):

$$
(1-2 \epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+2 \epsilon)\|y\|_{2} .
$$

Full Argument

- There exists an ϵ-net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right| \leq\left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m=O\left(\frac{d \log (1 / \epsilon)+\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $\geq 1-\delta$, for all $w \in \mathcal{N}_{\epsilon},\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$.
\Longrightarrow for all $y \in \mathcal{S}_{\mathcal{V}},\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$.
\Longrightarrow for all $y \in \mathcal{V}$, i.e., for all $y=A x$ for $x \in \mathbb{R}^{d}$, $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$.
$\Longrightarrow S \in \mathbb{R}^{m \times n}$ is an ϵ-subspace embedding for A.

Distributional JL Lemma Proof

Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let $S \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries. Observe that each entry of Sy is distributed as $\mathcal{N}\left(0,\|y\|_{2}^{2}\right)$, and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).
- Write $\|S y\|_{2}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{n} S_{i, j} S_{i, k} y_{j} y_{k}$ and prove concentration of this sum, even though the terms are not all independent of each other (only pairwise independent within one row).
- Apply the Hanson-Wright inequality - an exponential concentration inequality for random quadratic forms.
- This inequality comes up in a lot of places, including in the tight analysis of Hutchinson's trace estimator.

Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)

Let $\mathbf{x} \in \mathbb{R}^{n}$ be a vector of i.i.d. random ± 1 values. For any matrix $A \in \mathbb{R}^{n \times n}$,

$$
\operatorname{Pr}\left[\left|x^{\top} A x-\operatorname{tr}(A)\right| \geq t\right] \leq 2 \exp \left(-c \cdot \min \left\{\frac{t^{2}}{\|A\|_{F}^{2}}, \frac{t}{\|A\|_{2}}\right\}\right) .
$$

Observe that $\mathbf{s}^{\top} A \mathbf{s}=\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{n} S_{i, j} S_{i, k} y_{j} y_{k}=\|S y\|_{2}^{2}$ and that

$$
\operatorname{tr}(A)=m \cdot \operatorname{tr}\left(y y^{\top}\right)=m \cdot\|y\|_{2}^{2} .
$$

Distributional JL via Wright Inequality

Let $\mathbf{x}=\sqrt{m} \cdot \mathbf{s}$, so x has i.i.d. ± 1 entries. Assume w.l.o.g. that $\|y\|_{2}=1$.

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\|\operatorname{Sy}\|_{2}^{2}-1\right| \geq \epsilon\right] & =\operatorname{Pr}\left[\left|\mathbf{s}^{\top} A s-1\right| \geq \epsilon\right] \\
& =\operatorname{Pr}\left[\left|\mathbf{x}^{\top} A \mathbf{x}-m\right| \geq \epsilon m\right] \\
& =\operatorname{Pr}\left[\left|\mathbf{x}^{\top} A \mathbf{x}-\operatorname{tr}(A)\right| \geq \epsilon m\right] \\
& \leq 2 \exp \left(-c \cdot \min \left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right) .
\end{aligned}
$$

$\|A\|_{F}^{2}=m \cdot\left\|y y^{\top}\right\|_{F}^{2}=m \cdot\|y\|_{2}^{2}=m$
$\|A\|_{2}=\left\|y y^{\top}\right\|_{2}=\|y\|_{2}=1$
$\operatorname{Pr}\left[\left|\|\operatorname{Sy}\|_{2}^{2}-1\right| \geq \epsilon\right] \leq 2 \exp \left(-c \cdot \min \left\{\frac{(\epsilon m)^{2}}{m}, \frac{\epsilon m}{1}\right\}\right)=2 \exp \left(-C \epsilon^{2} m\right)$
If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right), \operatorname{Pr}\left[\left|\|\operatorname{Sy}\|_{2}^{2}-1\right| \geq \epsilon\right] \leq \delta$, giving the distributional JL lemma.

Application to Linear Regression

Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$. We seek to find an approximate solution to the linear regression problem:

$$
\underset{x \in \mathbb{R}^{d}}{\arg \min }\|A x-b\|_{2}
$$

Let $S \in \mathbb{R}^{m \times d}$ be an ϵ-subspace embedding for $[A ; b] \in \mathbb{R}^{n \times d+1}$. Let $\tilde{x}=\arg \min _{x \in \mathbb{R}^{d}}\|S A x-S b\|_{2}$. Then we have:

$$
\|A \tilde{x}-b\|_{2} \leq \frac{1+\epsilon}{1-\epsilon} \cdot \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2} .
$$

- Time to compute $x^{*}=\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}$ is $O\left(n d^{2}\right)$.
- Time to compute \tilde{x} is just $O\left(m d^{2}\right)$. For large n (i.e., a highly over-constrained problem) can set $m \ll n$.

Sketched Regression Proof

Claim: Since S is a subspace embedding for $[A ; b]$, for all $x \in \mathbb{R}^{d}$,

$$
(1-\epsilon)\|A x-b\|_{2} \leq\|S A x-S b\|_{2} \leq(1+\epsilon)\|A x-b\|_{2} .
$$

Sketched Regression Proof

Claim: Since S is a subspace embedding for $[A ; b]$, for all $x \in \mathbb{R}^{d}$,

$$
(1-\epsilon)\|A x-b\|_{2} \leq\|S A x-S b\|_{2} \leq(1+\epsilon)\|A x-b\|_{2} .
$$

Let $x^{*}=\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}$ and $\tilde{x}=\arg \min _{x \in \mathbb{R}^{d}}\|S A x-S b\|_{2}$.
We have:

$$
\begin{aligned}
\|A \tilde{x}-b\|_{2} \leq \frac{1}{1-\epsilon}\|S A x-S b\|_{2} & \leq \frac{1}{1-\epsilon} \cdot\left\|S A x^{*}-S b\right\|_{2} \\
& \leq \frac{1+\epsilon}{1-\epsilon} \cdot\left\|A x^{*}-b\right\|_{2} .
\end{aligned}
$$

