COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024. Lecture 15

- I'll release the weekly quiz later this afternoon. Due Monday as usual.
- I'll also release Pset 4 shortly.
- 2 page project progress report due 4/16.

Summary

Subspace Embedding:

- Given $A \in \mathbb{R}^{n \times d}$, want $S \in \mathbb{R}^{m \times n}$ such that $||SAx||_2 \approx ||Ax||_2$ for all x. i.e., $||Sy||_2 \approx ||y||_2$ for all $y \in col(A)$. Want $m \ll n$.
- For a single *y*, we can apply the Johnson-Lindenstrauss Lemma. Here, we want to preserve the norms of infinite *y*.
- Proof via Johnson-Lindenstrauss Lemma and ϵ -net argument.

Today:

- Finish the subspace embedding proof.
- Prove the Johnson-Lindenstrauss lemma itself via the Hanson-Wright inequality.
- Possibly give a simple application of subspace embedding to fast linear regression.

Subspace Embedding

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times d}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^{d}$,

 $(1-\epsilon) \|Ax\|_2 \le \|SAx\|_2 \le (1+\epsilon) \|Ax\|_2.$

I.e., S preserves the norm of any vector Ax in the column span of A.

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1 - \delta$, \mathbf{S} is an ϵ -subspace embedding of A.

- S can be computed without any knowledge of A.
- Still achieves near optimal compression.
- Constructions where **S** is sparse or structured, allow efficient computation of **S**A (fast JL-transform, input-sparsity time algorithms via Count Sketch)

Proof Outline

- 1. Distributional Johnson-Lindenstrauss: For $\mathbf{S} \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon) ||y||_2 \le ||\mathbf{S}y||_2 \le (1 + \epsilon) ||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.
- 3. But we want $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!
- 'Discretize' this subspace by rounding to a finite set of vectors *N*, called an ε-net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_{2} \leq \epsilon.$

Proof last class via volume argument. By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound, with

Proof Via ϵ -net

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $\|Sw\|_2 \approx_{\epsilon} \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any $y \in S_{\mathcal{V}}$, we can write:

$$y = w_{0} + (y - w_{0}) \quad \text{for } w_{0} \in \mathcal{N}_{\epsilon}$$

$$= w_{0} + c_{1} \cdot e_{1} \quad \text{for } c_{1} = \| \mathbf{y} \cdot \mathbf{w}_{0} \|_{2} \text{ and } e_{1} = \frac{y - w_{0}}{\| y - w_{0} \|_{2}} \in S_{\mathcal{V}}$$

$$= w_{0} + c_{1} \cdot w_{1} + c_{1} \cdot (e_{1} - w_{1}) \quad \text{for } w_{1} \in \mathcal{N}_{\epsilon}$$

$$= w_{0} + c_{1} \cdot w_{1} + c_{2} \cdot w_{2} \quad \text{for } c_{2} = c_{1} \cdot \| e_{1} - w_{1} \|_{2} \text{ and } e_{2} = \frac{e_{1} - w_{1}}{\| e_{1} - w_{1} \|_{2}} \in S_{\mathcal{V}}$$

$$= w_{0} + c_{1} \cdot w_{1} + c_{2} \cdot w_{2} + c_{3} \cdot w_{3} + \dots$$

$$C_{1} e_{1} \quad w_{0}$$

$$y$$

$$S_{1} = w_{0} + c_{1} \cdot w_{1} + c_{2} \cdot w_{2} + c_{3} \cdot w_{3} + \dots$$

Proof Via ϵ -net

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality: $\|\mathbf{S}y\|_2 = \|\mathbf{S}w_0 + c_1\mathbf{S}w_1 + c_2\mathbf{S}w_2 + \dots\|_2$ $\leq \|\mathbf{S}w_0\|_2 + c_1\|\mathbf{S}w_1\|_2 + c_2\|\mathbf{S}w_2\|_2 + \dots$ $\leq (1 + \epsilon) + \epsilon(1 + \epsilon) + \epsilon^2(1 + \epsilon) + \dots$ (since via the union bound, $\|\mathbf{S}w\|_2 \approx \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$) $\leq \frac{1 + \epsilon}{1 - \epsilon} \approx 1 + 2\epsilon$

Similarly, can prove that $||Sy||_2 \ge 1 - 2\epsilon$, giving, for all $y \in S_{\mathcal{V}}$ (and hence all $y \in \mathcal{V}$):

$$(1-2\epsilon)\|y\|_2 \le \|\mathbf{S}y\|_2 \le (1+2\epsilon)\|y\|_2$$

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.

$$\implies$$
 for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.

 $\implies \text{ for all } y \in \mathcal{V}, \text{ i.e., for all } y = Ax \text{ for } x \in \mathbb{R}^d, \\ \|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2.$

 \implies **S** $\in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for A.

Distributional JL Lemma Proof

There are many proofs of the distributional JL Lemma:

- Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries. Observe that each entry of $\mathbf{S}y$ is distributed as $\mathcal{N}(0, \|y\|_2^2)$, and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).
- Write $\|\mathbf{S}y\|_2^2 = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k$ and prove concentration of this sum, even though the terms are not all independent of each other (only pairwise independent within one row).
- Apply the Hanson-Wright inequality an exponential concentration inequality for random quadratic forms.
- This inequality comes up in a lot of places, including in the tight analysis of Hutchinson's trace estimator.

Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector of i.i.d. random ± 1 values. For any matrix $A \in \mathbb{R}^{n \times n}$,

$$\Pr[|\mathbf{x}^{\mathsf{T}}A\mathbf{x} - \operatorname{tr}(A)| \ge t] \le 2 \exp\left(-c \cdot \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_2}\right\}\right).$$

Observe that $\mathbf{s}^T A \mathbf{s} = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k = \|\mathbf{S}y\|_2^2$ and that $\operatorname{tr}(A) = m \cdot \operatorname{tr}(yy^T) = m \cdot \|y\|_2^2.$

Distributional JL via Wright Inequality

Let $\mathbf{x} = \sqrt{m} \cdot \mathbf{s}$, so \mathbf{x} has i.i.d. ± 1 entries. Assume w.l.o.g. that $\|\mathbf{y}\|_2 = 1$.

$$\begin{aligned} \Pr[\left|\|\mathbf{S}y\|_{2}^{2}-1\right| \geq \epsilon] &= \Pr[\left|\mathbf{s}^{T}A\mathbf{s}-1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-\mathrm{tr}(A)\right| \geq \epsilon m] \\ &\leq 2\exp\left(-c\cdot\min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}},\frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{aligned}$$

$$\begin{aligned} \|A\|_{F}^{2} &= m \cdot \|yy^{T}\|_{F}^{2} = m \cdot \|y\|_{2}^{2} = m \\ \|A\|_{2} &= \|yy^{T}\|_{2} = \|y\|_{2} = 1 \\ \Pr[\|\mathbf{S}y\|_{2}^{2} - 1| \geq \epsilon] \leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{m}, \frac{\epsilon m}{1}\right\}\right) = 2 \exp(-c\epsilon^{2}m) \\ \text{If we set } m = O\left(\frac{\log(1/\delta)}{\epsilon^{2}}\right), \Pr[\|\mathbf{S}y\|_{2}^{2} - 1| \geq \epsilon] \leq \delta, \text{ giving the distributional JL lemma.} \end{aligned}$$

Application to Linear Regression

Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$. We seek to find an approximate solution to the linear regression problem:

 $\underset{x \in \mathbb{R}^d}{\arg\min} \|Ax - b\|_2.$

Let $S \in \mathbb{R}^{m \times d}$ be an ϵ -subspace embedding for $[A; b] \in \mathbb{R}^{n \times d+1}$. Let $\tilde{x} = \arg \min_{x \in \mathbb{R}^d} ||SAx - Sb||_2$. Then we have:

$$\|A\tilde{x}-b\|_2 \leq \frac{1+\epsilon}{1-\epsilon} \cdot \min_{x \in \mathbb{R}^d} \|Ax-b\|_2.$$

- Time to compute $x^* = \arg \min_{x \in \mathbb{R}^d} ||Ax b||_2$ is $O(nd^2)$.
- Time to compute \tilde{x} is just $O(md^2)$. For large n (i.e., a highly over-constrained problem) can set $m \ll n$.

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1-\epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1+\epsilon) \|Ax - b\|_2$$

Let $x^* = \arg \min_{x \in \mathbb{R}^d} ||Ax - b||_2$ and $\tilde{x} = \arg \min_{x \in \mathbb{R}^d} ||SAx - Sb||_2$. We have:

$$\|A\tilde{x} - b\|_2 \leq \frac{1}{1 - \epsilon} \|SAx - Sb\|_2 \leq \frac{1}{1 - \epsilon} \cdot \|SAx^* - Sb\|_2$$
$$\leq \frac{1 + \epsilon}{1 - \epsilon} \cdot \|Ax^* - b\|_2.$$