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Logistics

• I’ll release the weekly quiz later this afternoon. Due
Monday as usual.

• I’ll also release Pset 4 shortly.
• 2 page project progress report due 4/16.
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Summary

Subspace Embedding:

• Given A ∈ Rn×d, want S ∈ Rm×n such that ∥SAx∥2 ≈ ∥Ax∥2 for all
x. I.e., ∥Sy∥2 ≈ ∥y∥2 for all y ∈ col(A). Want m ≪ n.

• For a single y, we can apply the Johnson-Lindenstrauss Lemma.
Here, we want to preserve the norms of infinite y.

• Proof via Johnson-Lindenstrauss Lemma and ϵ-net argument.

Today:
• Finish the subspace embedding proof.

• Prove the Johnson-Lindenstrauss lemma itself via the
Hanson-Wright inequality.

• Possibly give a simple application of subspace embedding to
fast linear regression.
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Subspace Embedding

Definition (Subspace Embedding)
S ∈ Rm×d is an ϵ-subspace embedding for A ∈ Rn×d if, for all x ∈ Rd,

(1− ϵ)∥Ax∥2 ≤ ∥SAx∥2 ≤ (1+ ϵ)∥Ax∥2.

I.e., S preserves the norm of any vector Ax in the column span of A.
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Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O
(

d+log(1/δ)
ϵ2

)
, for any A ∈ Rn×d, with probability ≥ 1− δ, S is

an ϵ-subspace embedding of A.

• S can be computed without any knowledge of A.

• Still achieves near optimal compression.

• Constructions where S is sparse or structured, allow efficient
computation of SA (fast JL-transform, input-sparsity time
algorithms via Count Sketch) 5



Proof Outline

1. Distributional Johnson-Lindenstrauss: For S ∈ Rm×d with i.i.d.
±1/

√
m entries, for any fixed y ∈ Rn, with probability 1− δ for

very small δ, (1− ϵ)∥y∥2 ≤ ∥Sy∥2 ≤ (1+ ϵ)∥y∥2.

2. Via a union bound, have that for any fixed set of vectors
N ⊂ Rn, with probability 1− |N | · δ, ∥Sy∥2 ≈ϵ ∥y∥2 for all y ∈ N .

3. But we want ∥Sy∥2 ≈ϵ ∥y∥2 for all y = Ax with x ∈ Rd. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N , called an ϵ-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.
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Discretization of Unit Ball

Theorem
For any ϵ ≤ 1, there exists a set of points Nϵ ⊂ SV with
|Nϵ| =

(4
ϵ

)d such that, for all y ∈ SV ,
min
w∈Nϵ

∥y− w∥2 ≤ ϵ.

Proof last class via volume argument. By the distributional JL
lemma, if we set δ′ = δ ·

(
ϵ
4
)d then, via a union bound, with

probability at least 1− δ′ · |Nϵ| = 1− δ, for all w ∈ Nϵ,
(1− ϵ)∥w∥2 ≤ ∥Sw∥2 ≤ (1+ ϵ)∥w∥2.

Requires S ∈ Rm×n where

m = O
(
log(1/δ′)

ϵ2

)
O
(
d log(4/ϵ) + log(1/δ)

ϵ2

)
= Õ

(
d
ϵ2

)
.
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Proof Via ϵ-net

So Far: If we set m = Õ(d/ϵ2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ∥Sw∥2 ≈ϵ ∥w∥2 for all w ∈ Nϵ.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nϵ

= w0 + c1 · e1 for c1 = ∥y− w0∥2 and e1 =
y− w0

∥y− w0∥2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nϵ

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ∥e1 − w1∥2 and e2 =
e1 − w1

∥e1 − w1∥2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ ϵi.
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Proof Via ϵ-net

Have written y ∈ SV as y = w0 + c1w1 + c2w2 + . . . where
w0,w1, . . . ∈ Nϵ, and ci ≤ ϵi. By triangle inequality:

∥Sy∥2 = ∥Sw0 + c1Sw1 + c2Sw2 + . . . ∥2
≤ ∥Sw0∥2 + c1∥Sw1∥2 + c2∥Sw2∥2 + . . .

≤ (1+ ϵ) + ϵ(1+ ϵ) + ϵ2(1+ ϵ) + . . .

(since via the union bound, ∥Sw∥2 ≈ ∥w∥2 for all w ∈ Nϵ)

≤ 1+ ϵ

1− ϵ
≈ 1+ 2ϵ

Similarly, can prove that ∥Sy∥2 ≥ 1− 2ϵ, giving, for all y ∈ SV
(and hence all y ∈ V):

(1− 2ϵ)∥y∥2 ≤ ∥Sy∥2 ≤ (1+ 2ϵ)∥y∥2.
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Full Argument

• There exists an ϵ-net Nϵ over the unit ball in A’s column
span, SV with |Nϵ| ≤

(4
ϵ

)d.
• By distributional JL, for m = O

(
d log(1/ϵ)+log(1/δ)

ϵ2

)
, with

probability ≥ 1− δ, for all w ∈ Nϵ, ∥Sw∥2 ≈ϵ ∥w∥2.
=⇒ for all y ∈ SV , ∥Sy∥2 ≈ϵ ∥y∥2.
=⇒ for all y ∈ V , i.e., for all y = Ax for x ∈ Rd,
∥Sy∥2 ≈ϵ ∥y∥2.
=⇒ S ∈ Rm×n is an ϵ-subspace embedding for A.

10



Distributional JL Lemma Proof
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Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

• Let S ∈ Rm×n have i.i.d. Gaussian entries. Observe that each
entry of Sy is distributed as N (0, ∥y∥22), and give a proof via
concentration of independent Chi-Squared random variables
(see 514 slides).

• Write ∥Sy∥22 =
∑m

i=1
∑n

j=1
∑n

k=1 Si,jSi,kyjyk and prove
concentration of this sum, even though the terms are not all
independent of each other (only pairwise independent within
one row).

• Apply the Hanson-Wright inequality – an exponential
concentration inequality for random quadratic forms.

• This inequality comes up in a lot of places, including in the tight
analysis of Hutchinson’s trace estimator.
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Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)
Let x ∈ Rn be a vector of i.i.d. random ±1 values. For any matrix
A ∈ Rn×n,

Pr[
∣∣xTAx− tr(A)

∣∣ ≥ t] ≤ 2 exp
(
−c ·min

{
t2

∥A∥2F
,

t
∥A∥2

})
.

Observe that sTAs =
∑m

i=1
∑n

j=1
∑n

k=1 Si,jSi,kyjyk = ∥Sy∥22 and that

tr(A) = m · tr(yyT) = m · ∥y∥22.
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Distributional JL via Wright Inequality

Let x =
√
m · s, so x has i.i.d. ±1 entries. Assume w.l.o.g. that ∥y∥2 = 1.

Pr[
∣∣∥Sy∥22 − 1

∣∣ ≥ ϵ] = Pr[
∣∣sTAs− 1

∣∣ ≥ ϵ]

= Pr[
∣∣xTAx−m

∣∣ ≥ ϵm]

= Pr[
∣∣xTAx− tr(A)

∣∣ ≥ ϵm]

≤ 2 exp
(
−c ·min

{
(ϵm)2

∥A∥2F
,
ϵm
∥A∥2

})
.

∥A∥2F = m · ∥yyT∥2F = m · ∥y∥22 = m

∥A∥2 = ∥yyT∥2 = ∥y∥2 = 1

Pr[
∣∣∥Sy∥22 − 1

∣∣ ≥ ϵ] ≤ 2 exp
(
−c ·min

{
(ϵm)2

m ,
ϵm
1

})
= 2 exp(−cϵ2m)

If we set m = O
(

log(1/δ)
ϵ2

)
, Pr[

∣∣∥Sy∥22 − 1
∣∣ ≥ ϵ] ≤ δ, giving the

distributional JL lemma.
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Application to Linear Regression
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Subspace Embedding Application

Theorem (Sketched Linear Regression)
Consider A ∈ Rn×d and b ∈ Rn. We seek to find an approximate
solution to the linear regression problem:

argmin
x∈Rd

∥Ax− b∥2.

Let S ∈ Rm×d be an ϵ-subspace embedding for [A;b] ∈ Rn×d+1. Let
x̃ = argminx∈Rd ∥SAx− Sb∥2. Then we have:

∥Ax̃− b∥2 ≤
1+ ϵ

1− ϵ
· min
x∈Rd

∥Ax− b∥2.

• Time to compute x∗ = argminx∈Rd ∥Ax− b∥2 is O(nd2).

• Time to compute x̃ is just O(md2). For large n (i.e., a highly
over-constrained problem) can set m ≪ n.
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Sketched Regression Proof

Claim: Since S is a subspace embedding for [A;b], for all x ∈ Rd,

(1− ϵ)∥Ax− b∥2 ≤ ∥SAx− Sb∥2 ≤ (1+ ϵ)∥Ax− b∥2.
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Sketched Regression Proof

Claim: Since S is a subspace embedding for [A;b], for all x ∈ Rd,

(1− ϵ)∥Ax− b∥2 ≤ ∥SAx− Sb∥2 ≤ (1+ ϵ)∥Ax− b∥2.

Let x∗ = argminx∈Rd ∥Ax− b∥2 and x̃ = argminx∈Rd ∥SAx− Sb∥2.
We have:

∥Ax̃− b∥2 ≤
1

1− ϵ
∥SAx− Sb∥2 ≤

1
1− ϵ

· ∥SAx∗ − Sb∥2

≤ 1+ ϵ

1− ϵ
· ∥Ax∗ − b∥2.
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