COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024. Lecture 7

Logistics

- I'll return midterms at the end of class.
- Overall the class did well mean was a 25.5 out of 34 (\approx 75%).
- Generally speaking people felt the test was a bit rushed.
- If you are not happy with your performance, message me and we can chat about it. I'm also happy to review solutions in office hours.
- I plan to release Problem Set 4 by end of this week.
- 2 page progress report on Final Project due 4/16.

Summary

Randomized Linear Algebra Before Break:

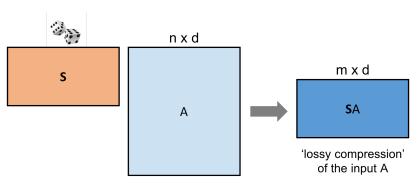
- Approximate matrix multiplication via norm-based sampling.
 Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.
- Hutchinson's method for trace estimation. Analysis via linearity of variance for pairwise-independent random variables.
- Random linear sketching for ℓ_0 sampling and ℓ_2 heavy-hitters (Count Sketch).

Today:

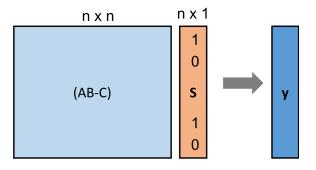
- Linear sketching for dimensionality reduction and the Johnson-Lindenstrauss lemma.
- Subspace embedding and ϵ -net arguments.

Linear Sketching

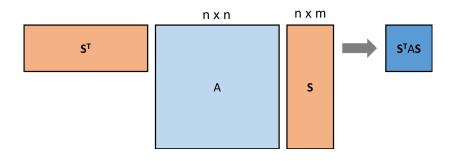
Given a large matrix $A \in \mathbb{R}^{n \times d}$, we pick a random linear transformation $S \in \mathbb{R}^{m \times n}$ and compute SA (alternatively, pick $S \in \mathbb{R}^{d \times m}$ and compute AS). Using SA we can approximate many computations involving A.



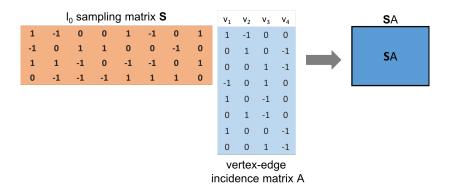
Freivald's Algorithm:



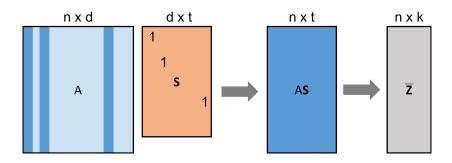
Hutchinson's Trace Estimator:



Graph Connectivity via ℓ_0 sampling:



Norm-Based Sampling for AMM/Low-Rank Approximation:



Subspace Embedding

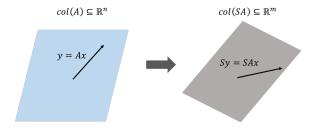
It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times d}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^d$,

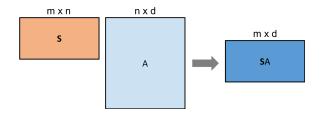
$$(1 - \epsilon) \|Ax\|_2 \le \|SAx\|_2 \le (1 + \epsilon) \|Ax\|_2.$$

I.e., S preserves the norm of any vector Ax in the column span of A.



Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that $\operatorname{rank}(A) = d$. If $S \in \mathbb{R}^{m \times n}$ an is an ϵ -subspace embedding for A with $\epsilon < 1$, how large must m be? **Hint:** Think about $\operatorname{rank}(SA)$ and/or the nullspace of SA.



Think-Pair-Share 2: Describe how to deterministically compute a subspace embedding S with m = d and $\epsilon = 0$ in $O(nd^2)$ time.

Optimal Subspace Embedding

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A. Then any vector Ax in A's column span can be written as Qy for some $y \in \mathbb{R}^d$.

Let
$$S = Q^T$$
. $S \in \mathbb{R}^{d \times n}$ (i.e., $m = d$) and further, for any $x \in \mathbb{R}^d$

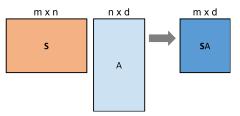
$$||SAx||_2^2 = ||Q^TQy||_2^2 = ||y||_2^2 = ||Ax||_2^2.$$

How would you compute Q?

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1 - \delta$, \mathbf{S} is an ϵ -subspace embedding of A.



- S can be computed without any knowledge of A.
- · Still achieves near optimal compression.
- Constructions where S is sparse or structured, allow efficient computation of SA (fast JL-transform, input-sparsity time algorithms via Count Sketch)

Oblivious Subspace Embedding Proof

Proof Outline

- 1. **Distributional Johnson-Lindenstrauss**: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.
- 3. But we want $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!
- 4. 'Discretize' this subspace by rounding to a finite set of vectors N, called an ε-net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

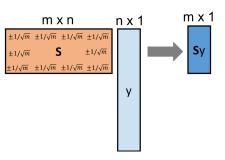
Remark: ϵ -nets are a key proof technique in theoretical computer science, learning theory (generalization bounds), random matrix theory, and beyond. They are a key take-away from this lecture.

Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon) \|y\|_2 \leq \|\mathbf{S}y\|_2 \leq (1 + \epsilon) \|y\|_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

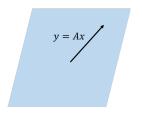


Restriction to Unit Ball

Want to show that with high probability, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all $y \in \{Ax : x \in \mathbb{R}^d\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span.

Observation: Suffices to prove $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2 = 1$ for all $y \in S_{\mathcal{V}}$ where

$$S_{\mathcal{V}} = \{ y : y \in \mathcal{V} \text{ and } ||y||_2 = 1 \}.$$



Proof: For any $y \in \mathcal{V}$, can write $y = ||y||_2 \cdot \bar{y}$ where $\bar{y} = y/||y||_2 \in S_{\mathcal{V}}$.

$$(1 - \epsilon) \le \|\mathbf{S}\overline{y}\|_2 \le (1 + \epsilon) \implies$$

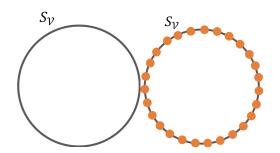
$$(1 - \epsilon) \cdot \|y\|_2 \le \|\mathbf{S}\overline{y}\|_2 \cdot \|y\|_2 \le (1 + \epsilon) \cdot \|y\|_2 \implies$$

$$(1 - \epsilon)\|y\|_2 \le \|\mathbf{S}y\|_2 \le (1 + \epsilon)\|y\|_2.$$

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} \|y - w\|_2 \leq \epsilon.$



By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound with probability at least $1 - \delta' \cdot |\mathcal{N}_{\epsilon}| = 1 - \delta$ for

Proof Via ϵ -net

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $\|Sw\|_2 \approx_{\epsilon} \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any $y \in S_{\mathcal{V}}$, we can write:

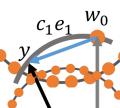
$$y = w_0 + (y - w_0) \qquad \text{for } w_0 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot e_1 \qquad \text{for } c_1 = \| \mathbf{y} \, \mathbf{w}_{\mathbf{v}_0} \|_2 \text{ and } e_1 = \frac{y - w_0}{\| y - w_0 \|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) \qquad \text{for } w_1 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 \qquad \text{for } c_2 + c_1 \cdot \| e_1 - w_1 \|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\| e_1 - w_1 \|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot w_2 + c_3 \cdot w_3 + \dots$$



Proof Via ϵ -net

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality:

$$\begin{split} \| \mathbf{S} \mathbf{y} \|_2 &= \| \mathbf{S} w_0 + c_1 \mathbf{S} w_1 + c_2 \mathbf{S} w_2 + \dots \|_2 \\ &\leq \| \mathbf{S} w_0 \|_2 + c_1 \| \mathbf{S} w_1 \|_2 + c_2 \| \mathbf{S} w_2 \|_2 + \dots \\ &\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^2 (1 + \epsilon) + \dots \\ (\text{since via the union bound, } \| \mathbf{S} \mathbf{w} \|_2 \approx \| \mathbf{w} \|_2 \text{ for all } \mathbf{w} \in \mathcal{N}_{\epsilon}) \\ &\leq \frac{1 + \epsilon}{1 - \epsilon} \approx 1 + 2\epsilon \end{split}$$

Similarly, can prove that $\|\mathbf{S}y\|_2 \ge 1 - 2\epsilon$, giving, for all $y \in S_{\mathcal{V}}$ (and hence all $y \in \mathcal{V}$):

$$(1-2\epsilon)||y||_2 \le ||Sy||_2 \le (1+2\epsilon)||y||_2.$$

Full Argument

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.
 - \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies for all $y \in \mathcal{V}$, i.e., for all y = Ax for $x \in \mathbb{R}^d$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|\mathbf{y}\|_2$.
 - \implies **S** $\in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for A.

Net Construction

Theorem (ϵ -net over ℓ_2 ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$,

$$\min_{w \in \mathcal{N}_{\epsilon}} \|y - w\|_2 \le \epsilon.$$

Theoretical algorithm for constructing \mathcal{N}_{ϵ} :

- · Initialize $\mathcal{N}_{\epsilon} = \{\}$.
- While there exists $v \in S_{\mathcal{V}}$ where $\min_{w \in \mathcal{N}_{\epsilon}} \|v w\|_2 > \epsilon$, pick an arbitrary such v and let $\mathcal{N}_{\epsilon} := \mathcal{N}_{\epsilon} \cup \{v\}$.

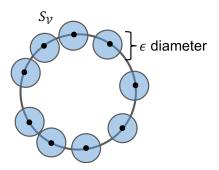
If the algorithm terminates in T steps, we have $|\mathcal{N}_{\epsilon}| \leq T$ and \mathcal{N}_{ϵ} is a valid ϵ -net.

Net Construction

How large is the net constructed by our theoretical algorithm?

Consider $w, w' \in \mathcal{N}_{\epsilon}$. We must have $||w - w'||_2 > \epsilon$, or we would have not added both to the net.

Thus, we can place an $\epsilon/2$ radius ball around each $w \in \mathcal{N}_{\epsilon}$, and none of these balls will intersect.



Note that all these balls lie within the ball of radius $(1 + \epsilon/2)$.

Volume Argument

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

In d dimensions, the radius r ball has volume $c_d \cdot r^d$, where c_d is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

$$|\mathcal{N}_{\epsilon}| \leq \frac{(1+\epsilon/2)^d}{(\epsilon/2)^d} \leq \left(\frac{4}{\epsilon}\right)^d.$$

Remark: We never actually construct an ϵ -net. We just use the fact that one exists (the output of this theoretical algorithm) in our subspace embedding proof.