COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.

Lecture 9 14 ?

Logistics

- I'll return midterms at the end of class.
- Overall the class did well mean was a 25.5 out of 34 (\approx 75%).
- Generally speaking people felt the test was a bit rushed.
- If you are not happy with your performance, message me and we can chat about it. I'm also happy to review solutions in office hours.
- I plan to release Problem Set 4 by end of this week.
- · 2 page progress report on Final Project due 4/16.

Summary

Randomized Linear Algebra Before Break: importance sampling

- Approximate matrix multiplication via norm-based sampling. Analysis via outer-product view of matrix multiplication.
- \cdot Application to fast randomized low-rank approximation.
- Hutchinson's method for trace estimation. Analysis via linearity of variance for pairwise-independent random variables.
- Random linear sketching for ℓ_0 sampling and ℓ_2 heavy-hitters (Count Sketch).

Summary

Randomized Linear Algebra Before Break:

- Approximate matrix multiplication via norm-based sampling.
 Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.
- Hutchinson's method for trace estimation. Analysis via linearity of variance for pairwise-independent random variables.
- Random linear sketching for ℓ_0 sampling and ℓ_2 heavy-hitters (Count Sketch).

Today:

- Linear sketching for dimensionality reduction and the Johnson-Lindenstrauss lemma.
- Subspace embedding and ϵ -net arguments.

random patrix ...

Linear Sketching

Given a large matrix $A \in \mathbb{R}^{n \times d}$, we pick a random linear transformation $S \in \mathbb{R}^{m \times n}$ and compute SA (alternatively, pick $S \in \mathbb{R}^{d \times m}$ and compute AS). Using SA we can approximate many computations involving A.

, Honework 1

Freivald's Algorithm:

5

Hutchinson's Trace Estimator:

Graph Connectivity via ℓ_0 sampling:

Norm-Based Sampling for AMM/Low-Rank Approximation:

It is helpful to define general guarantees for sketches, that are useful in many problems.

It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times d}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax\|_2 \le \|SAx\|_2 \le (1 + \epsilon) \|Ax\|_2.$$

I.e., S preserves the norm of any vector Ax in the column span of A.

It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times d}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^d$, $(1 - \epsilon) \|SAx\|_2 \le \|Ax\|_2 \le (1 + \epsilon) \|Ax\|_2$.

I.e., S preserves the norm of any vector Ax in the column span of A.

It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times d}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) ||Ax||_2 \le ||SAx||_2 \le (1 + \epsilon) ||Ax||_2.$$

I.e., S preserves the norm of any vector Ax in the column span of A. Tons of applications. E.g.,

- Fast linear regression (next class) and preconditioning.
- · Approximation of A's singular values.
- Approximate matrix multiplication and near optimal low-rank approximation. (ا+ جرا المحالة الم-١٠٠٠)
- · Compressed sensing/sparse recovery (related to ℓ_0 sampling).

Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that $\operatorname{rank}(A) = d$. If $S \in \mathbb{R}^{m \times n}$ an is an ϵ -subspace embedding for A with $\epsilon < 1$, how large

Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that $\operatorname{rank}(A) = d$. If $S \in \mathbb{R}^{m \times n}$ an is an ϵ -subspace embedding for A with $\epsilon < 1$, how large must m be? Hint: Think about $\operatorname{rank}(SA)$ and/or the nullspace of SA.

Think-Pair-Share 2: Describe how to deterministically compute a subspace embedding S with m=d and $\epsilon=0$ in $O(nd^2)$ time.

Luell show m=d of condited embeddays

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A. Then any vector Ax in A's column span can be written as Qy for some $y \in \mathbb{R}^d$.

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A. Then any vector Ax in A's column span can be written as Qy for some $y \in \mathbb{R}^d$.

Let
$$\underline{S=Q^T}$$
. $S \in \mathbb{R}^{d \times n}$ (i.e., $m=d$) and further, for any $x \in \mathbb{R}^d$
$$\|SAx\|_2^2 = \|Q^T/Qy\|_2^2 - \|y\|_2^2 .$$

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A. Then any vector Ax in A's column span can be written as Qy for some $y \in \mathbb{R}^d$.

Let
$$S = Q^T$$
. $S \in \mathbb{R}^{d \times n}$ (i.e., $m = d$) and further, for any $x \in \mathbb{R}^d$

$$||SAx||_2^2 = ||Q^TQy||_2^2 = ||y||_2^2$$

$$S = Q^T = [I]$$
 $A = I [IO]$ $S = A^T$ $Q^T = (A^T A)^{-1} A^T$
 $SAx = I \cdot IO \cdot X \cdot Ax$ $Ax = IO \times$

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A. Then any vector Ax in A's column span can be written as Qy for some $y \in \mathbb{R}^d$.

Let $S = Q^T$. $S \in \mathbb{R}^{d \times n}$ (i.e., m = d) and further, for any $x \in \mathbb{R}^d$

$$||SAx||_{2}^{2} = ||Q^{T}Qy||_{2}^{2} = ||y||_{2}^{2} = ||Ax||_{2}^{2}.$$

$$||Ax||_{1}^{2} = ||Qy||_{2}^{2}$$

$$||Ax||_{1}^{2} = ||Qy||_{2}^{2}$$

$$||Ax||_{2}^{2} = ||Qy||_{2}^{2}$$

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A. Then any vector Ax in A's column span can be written as Qy for some $y \in \mathbb{R}^d$.

Let $S = Q^T$. $S \in \mathbb{R}^{d \times n}$ (i.e., m = d) and further, for any $x \in \mathbb{R}^d$

$$||SAx||_2^2 = ||Q^TQy||_2^2 = ||y||_2^2 = ||Ax||_2^2.$$

How would you compute Q?

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1 - \delta$, \mathbf{S} is an ϵ -subspace embedding of A.

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1 - \delta$, \mathbf{S} is an ϵ -subspace embedding of A.

- S can be computed without any knowledge of A.
- · Still achieves near optimal compression.
- Constructions where S is sparse or structured, allow efficient computation of SA (fast JL-transform, input-sparsity time algorithms via Count Sketch)

Oblivious Subspace Embedding Proof

1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d.

 $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability $1 - \delta$ for very small δ , $(1 - \epsilon) \|y\|_2 \le \|\mathsf{S}y\|_2 \le (1 + \epsilon) \|y\|_2$.

- 1. **Distributional Johnson-Lindenstrauss**: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.

- 1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}\mathbf{y}||_2 \approx_{\epsilon} ||\mathbf{y}||_2$ for all $\mathbf{y} \in \mathcal{N}$.
- 3. But we want $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!

- 1. **Distributional Johnson-Lindenstrauss**: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}\mathbf{y}||_2 \approx_{\epsilon} ||\mathbf{y}||_2$ for all $\mathbf{y} \in \mathcal{N}$.
- 3. But we want $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!

- 1. **Distributional Johnson-Lindenstrauss**: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.
- 3. But we want $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!
- 4. 'Discretize' this subspace by rounding to a finite set of vectors N, called an ε-net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

Remark: ϵ -nets are a key proof technique in theoretical computer science, learning theory (generalization bounds), random matrix theory, and beyond. They are a key take-away from this lecture.

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon)||y||_2 \leq ||\mathbf{S}y||_2 \leq (1 + \epsilon)||y||_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon)||y||_2 \leq ||\mathbf{S}y||_2 \leq (1 + \epsilon)||y||_2$.

l.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

$$\mathbb{E}[\|\mathsf{S}y\|_2^2] = \sum_{i=1}^m \mathbb{E}[\langle \mathsf{S}_{i,:}, y \rangle^2]$$

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon) \|y\|_2 \leq \|\mathbf{S}y\|_2 \leq (1 + \epsilon) \|y\|_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

tion:
$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}] = \sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathbf{S}_{ij} \cdot y_{j}\right)^{2}\right]$$

$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}] = \sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathbf{S}_{ij} \cdot y_{j}\right)^{2}\right]$$

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon) \|y\|_2 \leq \|\mathbf{S}y\|_2 \leq (1 + \epsilon) \|y\|_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

Ation:

$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}] = \sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathbf{S}_{ij} \cdot y_{j}\right)^{2}\right]$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{Var}(\mathbf{S}_{ij} \cdot y_{j})$$

$$\pm \underbrace{\mathbf{Y}}_{i}$$

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon)||y||_2 \leq ||Sy||_2 \leq (1 + \epsilon)||y||_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

Example 2.5 Signal in the second section is
$$\mathbb{E}[\|\mathbf{S}y\|_2^2] = \sum_{i=1}^m \mathbb{E}\left[\left(\sum_{j=1}^n \mathbf{S}_{ij} \cdot y_j\right)^2\right]$$

$$= \sum_{i=1}^m \sum_{j=1}^n \mathsf{Var}(\mathbf{S}_{ij} \cdot y_j)$$

$$= \sum_{i=1}^m \sum_{j=1}^n \frac{1}{m} \cdot y_j^2$$

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon)||y||_2 \leq ||Sy||_2 \leq (1 + \epsilon)||y||_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}] = \sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathbf{S}_{ij} \cdot y_{j}\right)^{2}\right]$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} Var(\mathbf{S}_{ij} \cdot y_{j})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{m} \cdot y_{j}^{2} = \|y\|_{2}^{2}.$$

Restriction to Unit Ball

Want to show that with high probability, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all $y \in \{Ax : x \in \mathbb{R}^d\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span.

Restriction to Unit Ball

Want to show that with high probability, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all $y \in \{Ax : x \in \mathbb{R}^d\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span.

Observation: Suffices to prove $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2 = 1$ for all $y \in S_{\mathcal{V}}$ where

$$S_{\mathcal{V}} = \{ y : y \in \mathcal{V} \text{ and } ||y||_2 = 1 \}.$$

Restriction to Unit Ball

Want to show that with high probability, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all $y \in \{Ax : x \in \mathbb{R}^d\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span.

Observation: Suffices to prove $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2 = 1$ for all $y \in S_{\mathcal{V}}$ where

$$S_{\mathcal{V}} = \{y : y \in \mathcal{V} \text{ and } ||y||_2 = 1\}.$$

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound, with probability at least $1 - \delta' \cdot |\mathcal{N}_{\epsilon}| = 1 - \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $(1 - \epsilon)||w||_2 \le ||\mathbf{S}w||_2 \le (1 + \epsilon)||w||_2.$

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound, with probability at least $1 - \delta' \cdot |\mathcal{N}_{\epsilon}| = 1 - \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $(1 - \epsilon)||w||_2 \le ||\mathbf{S}w||_2 \le (1 + \epsilon)||w||_2.$

Requires $S \in \mathbb{R}^{m \times n}$ where

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$$

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound, with probability at least $1 - \delta' \cdot |\mathcal{N}_{\epsilon}| = 1 - \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $(1 - \epsilon)||w||_2 < ||\mathbf{S}w||_2 < (1 + \epsilon)||w||_2.$

Requires $S \in \mathbb{R}^{m \times n}$ where

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{d\log(4/\epsilon) + \log(1/\delta)}{\epsilon^2}\right) = \tilde{O}\left(\frac{d}{\epsilon^2}\right).$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0)$$
 for $w_0 \in \mathcal{N}_{\epsilon}$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0)$$
 for $w_0 \in \mathcal{N}_{\epsilon}$
= $w_0 + c_1 \cdot e_1$ for $c_1 = \|y - w_0\|_2$ and $e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$\begin{split} y &= w_0 + (y - w_0) & \text{for } w_0 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot e_1 & \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}} \\ &= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) & \text{for } w_1 \in \mathcal{N}_{\epsilon} \end{split}$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $\|Sw\|_2 \approx_{\epsilon} \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$\begin{aligned} y &= w_0 + (y - w_0) & \text{for } w_0 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot e_1 & \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}} \\ &= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) & \text{for } w_1 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 & \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}} \end{aligned}$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$\begin{aligned} y &= w_0 + (y - w_0) & \text{for } w_0 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot e_1 & \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}} \\ &= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) & \text{for } w_1 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 & \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}} \\ &= w_0 + c_1 \cdot w_1 + c_2 \cdot w_2 + c_3 \cdot w_3 + \dots \end{aligned}$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any $y \in S_{\mathcal{V}}$, we can write:

$$\begin{aligned} y &= w_0 + (y - w_0) & \text{for } w_0 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot e_1 & \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}} \\ &= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) & \text{for } w_1 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 & \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}} \\ &= w_0 + c_1 \cdot w_1 + c_2 \cdot w_2 + c_3 \cdot w_3 + \dots \end{aligned}$$

For all *i*, have $c_i \leq \epsilon^i$.

$$\|\mathbf{S}y\|_2 = \|\mathbf{S}w_0 + c_1\mathbf{S}w_1 + c_2\mathbf{S}w_2 + \dots\|_2$$

$$\|\mathbf{S}y\|_2 = \|\mathbf{S}w_0 + c_1\mathbf{S}w_1 + c_2\mathbf{S}w_2 + \dots\|_2$$

 $\leq \|\mathbf{S}w_0\|_2 + c_1\|\mathbf{S}w_1\|_2 + c_2\|\mathbf{S}w_2\|_2 + \dots$

$$\begin{split} \| \mathbf{S} \mathbf{y} \|_2 &= \| \mathbf{S} w_0 + c_1 \mathbf{S} w_1 + c_2 \mathbf{S} w_2 + \dots \|_2 \\ &\leq \| \mathbf{S} w_0 \|_2 + c_1 \| \mathbf{S} w_1 \|_2 + c_2 \| \mathbf{S} w_2 \|_2 + \dots \\ &\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^2 (1 + \epsilon) + \dots \\ &(\text{since via the union bound, } \| \mathbf{S} \mathbf{w} \|_2 \approx \| \mathbf{w} \|_2 \text{ for all } \mathbf{w} \in \mathcal{N}_\epsilon) \end{split}$$

$$\begin{split} \| \mathbf{S} \mathbf{y} \|_2 &= \| \mathbf{S} w_0 + c_1 \mathbf{S} w_1 + c_2 \mathbf{S} w_2 + \dots \|_2 \\ &\leq \| \mathbf{S} w_0 \|_2 + c_1 \| \mathbf{S} w_1 \|_2 + c_2 \| \mathbf{S} w_2 \|_2 + \dots \\ &\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^2 (1 + \epsilon) + \dots \\ (\text{since via the union bound, } \| \mathbf{S} \mathbf{w} \|_2 \approx \| \mathbf{w} \|_2 \text{ for all } \mathbf{w} \in \mathcal{N}_{\epsilon}) \\ &\leq \frac{1 + \epsilon}{1 - \epsilon} \approx 1 + 2\epsilon \end{split}$$

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality:

$$\begin{split} \| \mathbf{S} \mathbf{y} \|_2 &= \| \mathbf{S} w_0 + c_1 \mathbf{S} w_1 + c_2 \mathbf{S} w_2 + \dots \|_2 \\ &\leq \| \mathbf{S} w_0 \|_2 + c_1 \| \mathbf{S} w_1 \|_2 + c_2 \| \mathbf{S} w_2 \|_2 + \dots \\ &\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^2 (1 + \epsilon) + \dots \\ (\text{since via the union bound, } \| \mathbf{S} \mathbf{w} \|_2 \approx \| \mathbf{w} \|_2 \text{ for all } \mathbf{w} \in \mathcal{N}_{\epsilon}) \\ &\leq \frac{1 + \epsilon}{1 - \epsilon} \approx 1 + 2\epsilon \end{split}$$

Similarly, can prove that $\|\mathbf{S}y\|_2 \ge 1 - 2\epsilon$, giving, for all $y \in S_{\mathcal{V}}$ (and hence all $y \in \mathcal{V}$):

$$(1-2\epsilon)||y||_2 \le ||Sy||_2 \le (1+2\epsilon)||y||_2.$$

• There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$. \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.
 - \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies for all $y \in \mathcal{V}$, i.e., for all y = Ax for $x \in \mathbb{R}^d$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{\epsilon}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.
 - \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies for all $y \in \mathcal{V}$, i.e., for all y = Ax for $x \in \mathbb{R}^d$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies **S** \in $\mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for A.

Theorem (ϵ -net over ℓ_2 ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$,

$$\min_{w \in \mathcal{N}_{\epsilon}} \|y - w\|_2 \le \epsilon.$$

Theorem (ϵ -net over ℓ_2 ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^a$ such that, for all $y \in S_{\mathcal{V}}$,

$$\min_{w \in \mathcal{N}_{\epsilon}} \|y - w\|_2 \le \epsilon.$$

Theoretical algorithm for constructing \mathcal{N}_{ϵ} :

- · Initialize $\mathcal{N}_{\epsilon} = \{\}.$
- While there exists $v \in S_{\mathcal{V}}$ where $\min_{w \in \mathcal{N}_{\epsilon}} \|v w\|_2 > \epsilon$, pick an arbitrary such v and let $\mathcal{N}_{\epsilon} := \mathcal{N}_{\epsilon} \cup \{v\}$.

Theorem (ϵ -net over ℓ_2 ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$,

$$\min_{w \in \mathcal{N}_{\epsilon}} \|y - w\|_2 \le \epsilon.$$

Theoretical algorithm for constructing \mathcal{N}_{ϵ} :

- · Initialize $\mathcal{N}_{\epsilon} = \{\}$.
- While there exists $v \in S_{\mathcal{V}}$ where $\min_{w \in \mathcal{N}_{\epsilon}} \|v w\|_2 > \epsilon$, pick an arbitrary such v and let $\mathcal{N}_{\epsilon} := \mathcal{N}_{\epsilon} \cup \{v\}$.

If the algorithm terminates in T steps, we have $|\mathcal{N}_{\epsilon}| \leq T$ and \mathcal{N}_{ϵ} is a valid ϵ -net.

How large is the net constructed by our theoretical algorithm?

How large is the net constructed by our theoretical algorithm?

Consider $\underline{w}, \underline{w'} \in \mathcal{N}_{\epsilon}$. We must have $\|w - w'\|_2 > \epsilon$, or we would have not added both to the net.

How large is the net constructed by our theoretical algorithm?

Consider $w, w' \in \mathcal{N}_{\epsilon}$. We must have $||w - w'||_2 > \epsilon$, or we would have not added both to the net.

Thus, we can place an $\epsilon/2$ radius ball around each $w \in \mathcal{N}_{\epsilon}$, and none of these balls will intersect.

How large is the net constructed by our theoretical algorithm?

Consider $w, w' \in \mathcal{N}_{\epsilon}$. We must have $||w - w'||_2 > \epsilon$, or we would have not added both to the net.

Thus, we can place an $\epsilon/2$ radius ball around each $w \in \mathcal{N}_{\epsilon}$, and none of these balls will intersect.

Note that all these balls lie within the ball of radius $(1 + \epsilon/2)$.

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

In d dimensions, the radius r ball has volume $c_d \cdot r^d$, where c_d is a constant that depends on d but not r.

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

In d dimensions, the radius r ball has volume $c_d \cdot r^d$, where c_d is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

$$|\mathcal{N}_{\epsilon}| \leq \frac{(1+\epsilon/2)^d}{(\epsilon/2)^d} \leq \left(\frac{4}{\epsilon}\right)^d.$$

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

In d dimensions, the radius r ball has volume $c_d \cdot r^d$, where c_d is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

$$|\mathcal{N}_{\epsilon}| \leq \frac{(1+\epsilon/2)^d}{(\epsilon/2)^d} \leq \left(\frac{4}{\epsilon}\right)^d.$$

Remark: We never actually construct an ϵ -net. We just use the fact that one exists (the output of this theoretical algorithm) in our subspace embedding proof.