COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture / Y?

Logistics

- I'll return midterms at the end of class.
- Overall the class did well - mean was a 25.5 out of 34 ($\approx 75 \%$) .
- Generally speaking people felt the test was a bit rushed.
- If you are not happy with your performance, message me and we can chat about it. I'm also happy to review solutions in office hours.
- I plan to release Problem Set 4 by end of this week.
- 2 page progress report on Final Project due 4/16.

Summary

Randomized Linear Algebra Before Break: importana sanpling

- Approximate matrix multiplication via norm-based sampling. Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.
- Hutchinson's method for trace estimation. Analysis via linearity of variance for pairwise-independent random variables.
- Random linear sketching for ℓ_{0} sampling and ℓ_{2} heavy-hitters (Count Sketch).

Summary

Randomized Linear Algebra Before Break:

- Approximate matrix multiplication via norm-based sampling. Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.
- Hutchinson's method for trace estimation. Analysis via linearity of variance for pairwise-independent random variables.
- Random linear sketching for ℓ_{0} sampling and ℓ_{2} heavy-hitters (Count Sketch).

Today:

- Linear sketching for dimensionality reduction and the Johnson-Lindenstrauss lemma.
- Subspace embedding and ϵ-net arguments.

L leaning deary
random matrix...

Linear Sketching

Given a large matrix $A \in \mathbb{R}^{n \times d}$, we pick a random linear transformation $\mathbf{S} \in \mathbb{R}^{m \times n}$ and compute SA (alternatively, pick $S \in \mathbb{R}^{d \times m}$ and compute $A S$). Using $S A$ we can approximate many computations involving A.

Linear Sketching Examples

, Wonwwork I

Freivald's Algorithm:

Linear Sketching Examples

Hutchinson's Trace Estimator:

Linear Sketching Examples

Graph Connectivity via ℓ_{0} sampling:

Linear Sketching Examples

Norm-Based Sampling for AMM/Low-Rank Approximation:

S bonds on A
"ron-abliviws" sketch

Subspace Embedding

Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful in many problems.

Subspace Embedding
It is helpful to define general guarantees for sketches, that are useful in many problems.
Definition (Subspace Embedding)
$S \in \mathbb{R}^{m \times \hat{d}}$ is an ϵ-subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^{d}$,

$$
(1-\epsilon)\|A x\|_{2} \leq\|S A x\|_{2} \leq(1+\epsilon)\|A x\|_{2} .
$$

I.e., S preserves the norm of any vector $A x$ in the column span of A.

Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

$S \in \mathbb{R}^{m \times d}$ is an ϵ-subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^{d}$, $(1-\varepsilon)\|S A x\|_{2} \leq\|A \times\|_{2} \leq(+\varepsilon)\|S A x\|_{2}$

$$
(1-\epsilon)\|A x\|_{2} \leq\|S A x\|_{2} \leq(1+\epsilon)\|A x\|_{2} .
$$

$$
\frac{1}{1 F \varepsilon}\|S A x\| \leq\|A x\| \approx(1-\varepsilon)\|S A x\|_{2} \leq\|A N\|
$$

I.e., S preserves the norm of any vector $A x$ in the column span of A.
$\operatorname{col}(A) \subseteq \mathbb{R}^{n}$

$$
\operatorname{col}(S A) \subseteq \mathbb{R}^{m}
$$

Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

$S \in \mathbb{R}^{m \times d}$ is an ϵ-subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^{d}$,

$$
(1-\epsilon)\|A x\|_{2} \leq\|S A x\|_{2} \leq(1+\epsilon)\|A x\|_{2} .
$$

I.e., S preserves the norm of any vector $A x$ in the column span of A. Tons of applications. E.g.,
-. Fast linear regression (next class) and preconditioning.

- Approximation of A's singular values.
- Approximate matrix multiplication and near optimal low-rank approximation. $\quad(1+\varepsilon) \underset{\substack{\text { mink } \\ \text { mink }}}{\text { ma-m }} \|$
- Compressed sensing/sparse recovery (related to ℓ_{0} sampling).

Subspace Embedding Intuition

Think-Pair-Share 1: Assume that $n>d$ and that $\operatorname{rank}(A)=d$. If $S \in \mathbb{R}^{m \times n}$ an is an ϵ-subspace embedding for A with $\epsilon<1$, how large must m be? Hint: Think about rank(SA) and/ or the nullspace of SA.

Subspace Embedding Intuition

Think-Pair-Share 1: Assume that $n>d$ and that $\operatorname{rank}(A)=d$. If $S \in \mathbb{R}^{m \times n}$ an is an ϵ-subspace embedding for A with $\epsilon<1$, how large must m be? Hint: Think about rank(SA) and/or the nullspace of SA.

Think-Pair-Share 2: Describe how to deterministically compute a subspace embedding S with $m=d$ and $\epsilon=0$ in $O\left(n d^{2}\right)$ time.
lue'll shaw $n=d \quad w /$ rundrized embed logs
much fitter

Optimal Subspace Embedding

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A.
Then any vector $A x$ in A 's column span can be written as $Q y$ for some $y \in \mathbb{R}^{d}$.

Optimal Subspace Embedding

$$
n\left[A^{C} \int_{\mathbb{R}^{n \times d}} \rightarrow\left[\begin{array}{l}
\text { ortng and } \\
Q
\end{array}\right] \quad S=d\left[Q^{n}\right]\right.
$$

Then any vector $A x$ in A 's column span can be written as Qy for some $y \in \mathbb{R}^{d}$.

$$
\text { Let } S=Q^{\top} . S \in \mathbb{R}^{d \times n}(\text { i.e., } m=d) \text { and further, for any } x \in \mathbb{R}^{d}
$$

$$
\|S A x\|_{2}^{2}=\left\|Q^{\top} Q Q\right\|_{2}^{2}=\|y\|_{z}^{2}
$$

Optimal Subspace Embedding

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A.
Then any vector $A x$ in A 's column span can be written as Qy for some $y \in \mathbb{R}^{d}$.
Let $S=Q^{\top} . S \in \mathbb{R}^{d \times n}$ (i.e., $m=d$) and further, for any $x \in \mathbb{R}^{d}$

$$
\|S A x\|_{2}^{2}=\left\|Q^{\top} Q y\right\|_{2}^{2}=\|y\|_{2}^{2}
$$

Optimal Subspace Embedding

$$
\begin{array}{cc|cc}
S=Q^{\top}=[1] & A=1[10] & S=A^{\top} & Q^{\top}=\left(A^{\top} A\right)^{-1 / 2} A^{\top} \\
S A x=1 \cdot 10 \cdot x-A x & A x=10 x & =[10] &
\end{array}
$$

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A.
Then any vector Ax in A's column span can be written as Dy for some $y \in \mathbb{R}^{d}$.
Let $S=Q^{\top}$. $S \in \mathbb{R}^{d \times n}$ (i.e., $m=d$) and further, for any $x \in \mathbb{R}^{d}$

$$
\begin{aligned}
\|S A x\|_{2}^{2}=\left\|Q^{\top} Q y\right\|_{2}^{2}=\|y\|_{2}^{2}= & \|A x\|_{2}^{2} . \\
& \|A x\|_{2}^{2}= \\
& \|Q y\|_{2}^{2} \\
& y^{\top} Q^{\top} Q y \\
& y^{\top} y \\
& =\|y\|_{z}^{2}
\end{aligned}
$$

Optimal Subspace Embedding

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A.
Then any vector $A x$ in A 's column span can be written as Dy for some $y \in \mathbb{R}^{d}$.
Let $S=Q^{\top} . S \in \mathbb{R}^{d \times n}$ (ie., $m=d$) and further, for any $x \in \mathbb{R}^{d}$

$$
\|S A x\|_{2}^{2}=\left\|Q^{\top} Q y\right\|_{2}^{2}=\|y\|_{2}^{2}=\|A x\|_{2}^{2} .
$$

How would you compute Q?

$$
\begin{aligned}
& \text { L gr diomp. } \\
& L \text { gram schmidt (orth) } \\
& \text { L sro, inks of } A^{\top} A
\end{aligned}
$$

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\frac{d+\log (1 / \delta)}{\epsilon^{2}}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1-\delta$, S is an ϵ-subspace embedding of A.

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\frac{d+\log (1 / \delta)}{\epsilon^{2}}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1-\delta$, S is an ϵ-subspace embedding of A.

- S can be computed without any knowledge of A.
- Still achieves near optimal compression.
- Constructions where S is sparse or structured, allow efficient computation of SA (fast JL-transform, input-sparsity time algorithms via Count Sketch)

Oblivious Subspace Embedding Proof

Proof Outline

1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1 / \sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^{n}$, with probability $1-\delta$ for very small $\delta,(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$. for $m=0\left(\frac{\log (\| \delta)}{r^{2}}\right)$

Proof Outline

1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1 / \sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^{n}$, with probability $1-\delta$ for very small $\delta,(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^{n}$, with probability $1-|\mathcal{N}| \cdot \delta,\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y \in \mathcal{N}$.

Proof Outline

1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1 / \sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^{n}$, with probability $1-\delta$ for very small $\delta,(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^{n}$, with probability $1-|\mathcal{N}| \cdot \delta,\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y \in \mathcal{N}$.
3. But we want $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y=A x$ with $x \in \mathbb{R}^{d}$. This is a linear subspace, i.e., an infinite set of vectors!

Proof Outline

1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1 / \sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^{n}$, with probability $1-\delta$ for very small $\delta,(1-\epsilon)\|y\|_{2} \leq\|\operatorname{Sy}\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^{n}$, with probability $1-|\mathcal{N}| \cdot \delta,\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y \in \mathcal{N}$.
3. But we want $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y=A x$ with $x \in \mathbb{R}^{d}$. This is a linear subspace, i.e., an infinite set of vectors!
4. 'Discretize' this subspace by rounding to a finite set of vectors \mathcal{N}, called an ϵ-net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

$$
y=A_{i, 1}-A_{i, 2} \approx 0
$$

Proof Outline

1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1 / \sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^{n}$, with probability $1-\delta$ for very small $\delta,(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^{n}$, with probability $1-|\mathcal{N}| \cdot \delta,\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y \in \mathcal{N}$.
3. But we want $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y=A x$ with $x \in \mathbb{R}^{d}$. This is a linear subspace, i.e., an infinite set of vectors!
4. 'Discretize' this subspace by rounding to a finite set of vectors \mathcal{N}, called an ϵ-net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

Remark: ϵ-nets are a key proof technique in theoretical computer science, learning theory (generalization bounds), random matrix theory, and beyond. They are a key take-away from this lecture.

Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$, for any fixed $y \in \mathbb{R}^{n}$, with probability $\geq 1-\delta$, $(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
I.e., via a random matrix, we can compress any vector from n to $\approx \log (1 / \delta) / \epsilon^{2}$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$, for any fixed $y \in \mathbb{R}^{n}$, with probability $\geq 1-\delta$, $(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
I.e., via a random matrix, we can compress any vector from n to $\approx \log (1 / \delta) / \epsilon^{2}$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

$$
\mathbb{E}\left[\|S y\|_{2}^{2}\right]=\sum_{i=1}^{m} \mathbb{E}\left[\left\langle S_{i, i}, y\right\rangle^{2}\right]
$$

Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$, for any fixed $y \in \mathbb{R}^{n}$, with probability $\geq 1-\delta$, $(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
I.e., via a random matrix, we can compress any vector from n to $\approx \log (1 / \delta) / \epsilon^{2}$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

$$
\mathbb{E}\left[\|S y\|_{2}^{2}\right]=\sum_{i=1}^{m} \mathbb{E}\left[\left\langle S_{i, i}, y\right\rangle^{2}\right]=\sum_{i=1}^{m} \mathbb{E}[\underbrace{\left(\frac{?}{=} 0\right.}_{\left.\underset{\mathbb{E}\left\langle s_{i j} y_{i}\right.}{\left(\sum_{j=1}^{n} S_{i j} \cdot y_{j}\right)^{2}}\right]}
$$

Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$, for any fixed $y \in \mathbb{R}^{n}$, with probability $\geq 1-\delta$, $(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
I.e., via a random matrix, we can compress any vector from n to $\approx \log (1 / \delta) / \epsilon^{2}$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

$$
\begin{aligned}
\mathbb{E}\left[\|S y\|_{2}^{2}\right]=\sum_{i=1}^{m} \mathbb{E}\left[\left\langle S_{i, i}, y\right\rangle^{2}\right] & =\sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} s_{i j} \cdot y_{j}\right)^{2}\right]_{i=1}^{2} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \underbrace{\operatorname{Var}\left(S_{i j} \cdot y_{j}\right)}_{\|} \overbrace{m}^{y_{j}^{\prime 2}} \\
& \frac{y_{j}}{\sqrt{m}}
\end{aligned}
$$

Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$, for any fixed $y \in \mathbb{R}^{n}$, with probability $\geq 1-\delta$, $(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
I.e., via a random matrix, we can compress any vector from n to $\approx \log (1 / \delta) / \epsilon^{2}$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

$$
\begin{aligned}
\mathbb{E}\left[\|S y\|_{2}^{2}\right]=\sum_{i=1}^{m} \mathbb{E}\left[\left\langle\mathrm{~S}_{i, i}, y\right\rangle^{2}\right] & =\sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathrm{~S}_{i j} \cdot y_{j}\right)^{2}\right] \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Var}\left(\mathrm{~S}_{i j} \cdot y_{j}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{m} \cdot y_{j}^{2}
\end{aligned}
$$

Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1 / \sqrt{m}$ entries. Then if $m=O\left(\log (1 / \delta) / \epsilon^{2}\right)$, for any fixed $y \in \mathbb{R}^{n}$, with probability $\geq 1-\delta$, $(1-\epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+\epsilon)\|y\|_{2}$.
I.e., via a random matrix, we can compress any vector from n to $\approx \log (1 / \delta) / \epsilon^{2}$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

$$
\begin{aligned}
& \widehat{\mathbb{E}\left[\|S y\|_{2}^{2}\right\rangle}=\sum_{i=1}^{m} \mathbb{E}\left[\left\langle S_{i,:}, y\right\rangle^{2}\right]=\sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathrm{~S}_{i j} \cdot y_{j}\right)^{2}\right] \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Var}\left(\mathrm{~S}_{i j} \cdot y_{j}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{m} \cdot y_{j}^{2}=\|y\|_{2}^{2} .
\end{aligned}
$$

Restriction to Unit Ball

Want to show that with high probability, $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $\underline{y \in\left\{A x: x \in \mathbb{R}^{d}\right\}}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span. ${ }^{(} \mathrm{CO} \mid(A)$

Restriction to Unit Ball

Want to show that with high probability, $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y \in\left\{A x: x \in \mathbb{R}^{d}\right\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A^{\prime} s column span.

Observation: Suffices to prove $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}=1$ for all $y \in S_{\mathcal{V}}$ where

$$
S_{\mathcal{V}}=\left\{y: y \in \mathcal{V} \text { and }\|y\|_{2}=1\right\} .
$$

Restriction to Unit Ball

Want to show that with high probability, $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$ for all $y \in\left\{A x: x \in \mathbb{R}^{d}\right\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A^{\prime} s column span.

Observation: Suffices to prove $\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}=1$ for all $y \in S_{\mathcal{V}}$ where

$$
S_{\mathcal{V}}=\left\{y: y \in \mathcal{V} \text { and }\|y\|_{2}=1\right\} .
$$

Proof: For any $y \in \mathcal{V}$, can write $y=\|y\|_{2} \cdot \bar{y}$ where $\bar{y}=y /\|y\|_{2} \in S \mathcal{V}$.

$$
(1-\epsilon) \leq\|S\|_{2} \|_{2} \leq(1+\epsilon) \xrightarrow{\|-\bar{y}\|_{2}}
$$

$$
\begin{aligned}
(1-\epsilon) \cdot\|y\|_{2} \leq & \|\underline{S \bar{y}}\|_{2} \cdot\|\underline{y}\|_{2} \leq \\
& (1+\epsilon) \cdot\|y\|_{2} \Longrightarrow \\
& (1-\epsilon)\|y\|_{2} \leq\|\underline{S y}\|_{2} \leq(1+\epsilon)\|y\|_{2} .
\end{aligned}
$$

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with
$\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon .
$$

Discretization of Unit Ball

Theorem
For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with
$\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon .
$$

"E-Net"

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with
$\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon
$$

By the distributional JL lemma, if we set $\delta^{\prime}=\delta \cdot\left(\frac{\epsilon}{4}\right)^{d}$ then, via a union bound, with probability at least $1-\delta^{\prime} \cdot\left|\mathcal{N}_{\epsilon}\right|=1-\delta$, for all $w \in \mathcal{N}_{\epsilon}$,

$$
(1-\epsilon)\|w\|_{2} \leq\|S w\|_{2} \leq(1+\epsilon)\|w\|_{2} .
$$

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with
$\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon
$$

By the distributional JL lemma, if we set $\delta^{\prime}=\delta \cdot\left(\frac{\epsilon}{4}\right)^{d}$ then, via a union bound, with probability at least $1-\delta^{\prime} \cdot\left|\mathcal{N}_{\epsilon}\right|=1-\delta$, for all $w \in \mathcal{N}_{\epsilon}$,

$$
(1-\epsilon)\|w\|_{2} \leq\|S w\|_{2} \leq(1+\epsilon)\|w\|_{2} .
$$

Requires $S \in \mathbb{R}^{m \times n}$ where

$$
m=O\left(\frac{\log \left(1 / \delta^{\prime}\right)}{\epsilon^{2}}\right)
$$

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with
$\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon
$$

By the distributional JL lemma, if we set $\delta^{\prime}=\delta \cdot\left(\frac{\epsilon}{4}\right)^{d}$ then, via a union bound, with probability at least $1-\delta^{\prime} \cdot\left|\mathcal{N}_{\epsilon}\right|=1-\delta$, for all $w \in \mathcal{N}_{\epsilon}$,

$$
(1-\epsilon)\|w\|_{2} \leq\|S w\|_{2} \leq(1+\epsilon)\|w\|_{2} .
$$

Requires $S \in \mathbb{R}^{m \times n}$ where

$$
m=O\left(\frac{\log \left(1 / \delta^{\prime}\right)}{\epsilon^{2}}\right)=O\left(\frac{d \log (4 / \epsilon)+\log (1 / \delta)}{\epsilon^{2}}\right)=\tilde{O}\left(\frac{d}{\epsilon^{2}}\right) .
$$

Proof Via ϵ-net

So Far: If we set $m=\tilde{O}\left(d / \epsilon^{2}\right)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1-\delta,\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$.

Proof Via ϵ-net

So Far: If we set $m=\tilde{O}\left(d / \epsilon^{2}\right)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1-\delta,\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any y $\in \mathcal{S}_{\mathcal{V}}$, we can write:
$y=w_{0}+\left(y-w_{0}\right) \quad$ for $w_{0} \in \mathcal{N}_{\epsilon}$

Proof Via ϵ-net

So Far: If we set $m=\tilde{O}\left(d / \epsilon^{2}\right)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1-\delta,\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any $y \in \mathcal{S}_{\mathcal{V}}$, we can write:

$$
\begin{aligned}
y & =w_{0}+\left(y-w_{0}\right) \quad \text { for } w_{0} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot e_{1} \quad \text { for } c_{1}=\left\|y-w_{0}\right\|_{2} \text { and } e_{1}=\frac{y-w_{0}}{\left\|y-w_{0}\right\|_{2}} \in S_{\mathcal{V}}
\end{aligned}
$$

Proof Via ϵ-net

So Far: If we set $m=\tilde{O}\left(d / \epsilon^{2}\right)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1-\delta,\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any y $\in \mathcal{S}_{\mathcal{V}}$, we can write:

$$
\begin{aligned}
y & =w_{0}+\left(y-w_{0}\right) \quad \text { for } w_{0} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot e_{1} \quad \text { for } c_{1}=\left\|y-w_{0}\right\|_{2} \text { and } e_{1}=\frac{y-w_{0}}{\left\|y-w_{0}\right\|_{2}} \in S_{\mathcal{V}} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{1} \cdot\left(e_{1}-w_{1}\right) \quad \text { for } w_{1} \in \mathcal{N}_{\epsilon}
\end{aligned}
$$

Proof Via ϵ-net

So Far: If we set $m=\tilde{O}\left(d / \epsilon^{2}\right)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1-\delta,\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any $y \in \mathcal{S}_{\mathcal{V}}$, we can write:

$$
\begin{aligned}
y & =w_{0}+\left(y-w_{0}\right) \quad \text { for } w_{0} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot e_{1} \quad \text { for } c_{1}=\left\|y-w_{0}\right\|_{2} \text { and } e_{1}=\frac{y-w_{0}}{\left\|y-w_{0}\right\|_{2}} \in S_{\mathcal{V}} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{1} \cdot\left(e_{1}-w_{1}\right) \quad \text { for } w_{1} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{2} \cdot e_{2} \quad \text { for } c_{2}=c_{1} \cdot\left\|e_{1}-w_{1}\right\|_{2} \text { and } e_{2}=\frac{e_{1}-w_{1}}{\left\|e_{1}-w_{1}\right\|_{2}} \in S_{\mathcal{V}}
\end{aligned}
$$

Proof Via ϵ-net

So Far: If we set $m=\tilde{O}\left(d / \epsilon^{2}\right)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1-\delta,\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any y $\in \mathcal{S}_{\mathcal{V}}$, we can write:

$$
\begin{aligned}
y & =w_{0}+\left(y-w_{0}\right) \quad \text { for } w_{0} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot e_{1} \quad \text { for } c_{1}=\left\|y-w_{0}\right\|_{2} \text { and } e_{1}=\frac{y-w_{0}}{\left\|y-w_{0}\right\|_{2}} \in S_{\mathcal{V}} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{1} \cdot\left(e_{1}-w_{1}\right) \quad \text { for } w_{1} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{2} \cdot e_{2} \quad \text { for } c_{2}=c_{1} \cdot\left\|e_{1}-w_{1}\right\|_{2} \text { and } e_{2}=\frac{e_{1}-w_{1}}{\left\|e_{1}-w_{1}\right\|_{2}} \in S_{\mathcal{V}} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{2} \cdot w_{2}+c_{3} \cdot w_{3}+\ldots
\end{aligned}
$$

Proof Via ϵ-net

So Far: If we set $m=\tilde{O}\left(d / \epsilon^{2}\right)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1-\delta,\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any y $\in \mathcal{S}_{\mathcal{V}}$, we can write:

$$
\begin{aligned}
y & =w_{0}+\left(y-w_{0}\right) \quad \text { for } w_{0} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot e_{1} \quad \text { for } c_{1}=\left\|y-w_{0}\right\|_{2} \text { and } e_{1}=\frac{y-w_{0}}{\left\|y-w_{0}\right\|_{2}} \in S_{\mathcal{V}} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{1} \cdot\left(e_{1}-w_{1}\right) \quad \text { for } w_{1} \in \mathcal{N}_{\epsilon} \\
& =w_{0}+c_{1} \cdot w_{1}+c_{2} \cdot e_{2} \quad \text { for } c_{2}=c_{1} \cdot\left\|e_{1}-w_{1}\right\|_{2} \text { and } e_{2}=\frac{e_{1}-w_{1}}{\left\|e_{1}-w_{1}\right\|_{2}} \in S_{\mathcal{V}}
\end{aligned}
$$

$$
=w_{0}+c_{1} \cdot w_{1}+c_{2} \cdot w_{2}+c_{3} \cdot w_{3}+\ldots
$$

For all i, have $c_{i} \leq \epsilon^{i}$.

Proof Via ϵ-net

Have written $y \in S_{\mathcal{V}}$ as $y=w_{0}+c_{1} w_{1}+c_{2} w_{2}+\ldots$ where $w_{0}, w_{1}, \ldots \in \mathcal{N}_{\epsilon}$, and $c_{i} \leq \epsilon^{i}$.

Proof Via ϵ-net

Have written $y \in S_{\mathcal{V}}$ as $y=w_{0}+c_{1} w_{1}+c_{2} w_{2}+\ldots$ where
$w_{0}, w_{1}, \ldots \in \mathcal{N}_{\epsilon}$, and $c_{i} \leq \epsilon^{i}$. By triangle inequality:
$\|S y\|_{2}=\left\|S w_{0}+c_{1} S w_{1}+c_{2} S w_{2}+\ldots\right\|_{2}$

Proof Via ϵ-net

Have written $y \in S_{\mathcal{V}}$ as $y=w_{0}+c_{1} w_{1}+c_{2} w_{2}+\ldots$ where
$w_{0}, w_{1}, \ldots \in \mathcal{N}_{\epsilon}$, and $c_{i} \leq \epsilon^{i}$. By triangle inequality:

$$
\begin{aligned}
\|S y\|_{2} & =\left\|S w_{0}+c_{1} S w_{1}+c_{2} S w_{2}+\ldots\right\|_{2} \\
& \leq\left\|S w_{0}\right\|_{2}+c_{1}\left\|S w_{1}\right\|_{2}+c_{2}\left\|S w_{2}\right\|_{2}+\ldots
\end{aligned}
$$

Proof Via ϵ-net

Have written $y \in S_{\mathcal{V}}$ as $y=w_{0}+c_{1} w_{1}+c_{2} w_{2}+\ldots$ where
$w_{0}, w_{1}, \ldots \in \mathcal{N}_{\epsilon}$, and $c_{i} \leq \epsilon^{i}$. By triangle inequality:

$$
\begin{aligned}
\|S y\|_{2} & =\left\|S w_{0}+c_{1} S w_{1}+c_{2} S w_{2}+\ldots\right\|_{2} \\
& \leq\left\|S w_{0}\right\|_{2}+c_{1}\left\|S w_{1}\right\|_{2}+c_{2}\left\|S w_{2}\right\|_{2}+\ldots \\
& \leq(1+\epsilon)+\epsilon(1+\epsilon)+\epsilon^{2}(1+\epsilon)+\ldots
\end{aligned}
$$

(since via the union bound, $\|S w\|_{2} \approx\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$)

Proof Via ϵ-net

Have written $y \in S_{\mathcal{V}}$ as $y=w_{0}+c_{1} w_{1}+c_{2} w_{2}+\ldots$ where
$w_{0}, w_{1}, \ldots \in \mathcal{N}_{\epsilon}$, and $c_{i} \leq \epsilon^{i}$. By triangle inequality:

$$
\begin{aligned}
\|S y\|_{2} & =\left\|S w_{0}+c_{1} S w_{1}+c_{2} S w_{2}+\ldots\right\|_{2} \\
& \leq\left\|S w_{0}\right\|_{2}+c_{1}\left\|S w_{1}\right\|_{2}+c_{2}\left\|S w_{2}\right\|_{2}+\ldots \\
& \leq(1+\epsilon)+\epsilon(1+\epsilon)+\epsilon^{2}(1+\epsilon)+\ldots
\end{aligned}
$$

(since via the union bound, $\|S w\|_{2} \approx\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$)
$\leq \frac{1+\epsilon}{1-\epsilon} \approx 1+2 \epsilon$

Proof Via ϵ-net

Have written $y \in S_{\mathcal{V}}$ as $y=w_{0}+c_{1} w_{1}+c_{2} w_{2}+\ldots$ where
$w_{0}, w_{1}, \ldots \in \mathcal{N}_{\epsilon}$, and $c_{i} \leq \epsilon^{i}$. By triangle inequality:

$$
\begin{aligned}
\|S y\|_{2} & =\left\|S w_{0}+c_{1} S w_{1}+c_{2} S w_{2}+\ldots\right\|_{2} \\
& \leq\left\|S w_{0}\right\|_{2}+c_{1}\left\|S w_{1}\right\|_{2}+c_{2}\left\|S w_{2}\right\|_{2}+\ldots \\
& \leq(1+\epsilon)+\epsilon(1+\epsilon)+\epsilon^{2}(1+\epsilon)+\ldots
\end{aligned}
$$

(since via the union bound, $\|S w\|_{2} \approx\|w\|_{2}$ for all $w \in \mathcal{N}_{\epsilon}$)
$\leq \frac{1+\epsilon}{1-\epsilon} \approx 1+2 \epsilon$
Similarly, can prove that $\|S y\|_{2} \geq 1-2 \epsilon$, giving, for all $y \in S_{\mathcal{V}}$ (and hence all $y \in \mathcal{V}$):

$$
(1-2 \epsilon)\|y\|_{2} \leq\|S y\|_{2} \leq(1+2 \epsilon)\|y\|_{2} .
$$

Full Argument

- There exists an ϵ-net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right| \leq\left(\frac{4}{\epsilon}\right)^{d}$.

Full Argument

- There exists an ϵ-net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right| \leq\left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m=O\left(\frac{d \log (1 / \epsilon)+\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $\geq 1-\delta$, for all $w \in \mathcal{N}_{\epsilon},\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$.

Full Argument

- There exists an ϵ-net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right| \leq\left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m=O\left(\frac{d \log (1 / \epsilon)+\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $\geq 1-\delta$, for all $w \in \mathcal{N}_{\epsilon},\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$.
\Longrightarrow for all $y \in \mathcal{S}_{\mathcal{V}},\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$.

Full Argument

- There exists an ϵ-net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right| \leq\left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m=O\left(\frac{d \log (1 / \epsilon)+\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $\geq 1-\delta$, for all $w \in \mathcal{N}_{\epsilon},\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$.
\Longrightarrow for all $y \in \mathcal{S}_{\mathcal{V}},\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$.
\Longrightarrow for all $y \in \mathcal{V}$, i.e., for all $y=A x$ for $x \in \mathbb{R}^{d}$,
$\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$.

Full Argument

- There exists an ϵ-net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right| \leq\left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m=O\left(\frac{d \log (1 / \epsilon)+\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $\geq 1-\delta$, for all $w \in \mathcal{N}_{\epsilon},\|S w\|_{2} \approx_{\epsilon}\|w\|_{2}$.
\Longrightarrow for all $y \in \mathcal{S}_{\mathcal{V}},\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$.
\Longrightarrow for all $y \in \mathcal{V}$, i.e., for all $y=A x$ for $x \in \mathbb{R}^{d}$,
$\|S y\|_{2} \approx_{\epsilon}\|y\|_{2}$.
$\Longrightarrow S \in \mathbb{R}^{m \times n}$ is an ϵ-subspace embedding for A.

Net Construction

Theorem (ϵ-net over ℓ_{2} ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon
$$

Net Construction

Theorem (ϵ-net over ℓ_{2} ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{V}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon
$$

Theoretical algorithm for constructing \mathcal{N}_{ϵ} :

- Initialize $\mathcal{N}_{\epsilon}=\{ \}$.
- While there exists $v \in S_{\mathcal{V}}$ where $\min _{w \in \mathcal{N}_{\epsilon}}\|v-w\|_{2}>\epsilon$, pick an arbitrary such v and let $\mathcal{N}_{\epsilon}:=\mathcal{N}_{\epsilon} \cup\{v\}$.

Net Construction

Theorem (ϵ-net over ℓ_{2} ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $\left|\mathcal{N}_{\epsilon}\right|=\left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{V}$,

$$
\min _{w \in \mathcal{N}_{\epsilon}}\|y-w\|_{2} \leq \epsilon
$$

Theoretical algorithm for constructing \mathcal{N}_{ϵ} :

- Initialize $\mathcal{N}_{\epsilon}=\{ \}$.
- While there exists $v \in S_{\mathcal{V}}$ where $\min _{w \in \mathcal{N}_{\epsilon}}\|v-w\|_{2}>\epsilon$, pick an arbitrary such v and let $\mathcal{N}_{\epsilon}:=\mathcal{N}_{\epsilon} \cup\{v\}$.

If the algorithm terminates in T steps, we have $\left|\mathcal{N}_{\epsilon}\right| \leq T$ and \mathcal{N}_{ϵ} is a valid ϵ-net.

Net Construction

How large is the net constructed by our theoretical algorithm?

Net Construction

How large is the net constructed by our theoretical algorithm?
Consider $\underline{w}, \underline{w^{\prime}} \in \mathcal{N}_{\epsilon}$. We must have $\left\|w-w^{\prime}\right\|_{2}>\epsilon$, or we would have not added both to the net.

Net Construction

How large is the net constructed by our theoretical algorithm?
Consider $w, w^{\prime} \in \mathcal{N}_{\epsilon}$. We must have $\left\|w-w^{\prime}\right\|_{2}>\epsilon$, or we would have not added both to the net.

Thus, we can place an $\epsilon / 2$ radius ball around each $w \in \mathcal{N}_{\epsilon}$, and none of these balls will intersect.

Net Construction

How large is the net constructed by our theoretical algorithm?
Consider $w, w^{\prime} \in \mathcal{N}_{\epsilon}$. We must have $\left\|w-w^{\prime}\right\|_{2}>\epsilon$, or we would have not added both to the net.

Thus, we can place an $\epsilon / 2$ radius ball around each $w \in \mathcal{N}_{\epsilon}$, and none of these balls will intersect.

orang

Note that all these balls lie within the ball of radius $(1+\epsilon / 2)$.

Volume Argument

We have $\left|\mathcal{N}_{\epsilon}\right|$ disjoint balls with radius $\epsilon / 2$, lying within a ball of radius $(1+\epsilon / 2)$.

Volume Argument

We have $\left|\mathcal{N}_{\epsilon}\right|$ disjoint balls with radius $\epsilon / 2$, lying within a ball of radius $(1+\epsilon / 2)$.
In d dimensions, the radius r ball has volume $c_{d} \cdot r^{d}$, where c_{d} is a constant that depends on d but not r.

Volume Argument

We have $\left|\mathcal{N}_{\epsilon}\right|$ disjoint balls with radius $\epsilon / 2$, lying within a ball of radius $(1+\epsilon / 2)$.

In d dimensions, the radius r ball has volume $c_{d} \cdot r^{d}$, where c_{d} is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

$$
\left|\mathcal{N}_{\epsilon}\right| \leq \frac{(1+\epsilon / 2)^{d}}{(\epsilon / 2)^{d}} \leq\left(\frac{4}{\epsilon}\right)^{d}
$$

Volume Argument

We have $\left|\mathcal{N}_{\epsilon}\right|$ disjoint balls with radius $\epsilon / 2$, lying within a ball of radius $(1+\epsilon / 2)$.
In d dimensions, the radius r ball has volume $c_{d} \cdot r^{d}$, where c_{d} is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

$$
\left|\mathcal{N}_{\epsilon}\right| \leq \frac{(1+\epsilon / 2)^{d}}{(\epsilon / 2)^{d}} \leq\left(\frac{4}{\epsilon}\right)^{d}
$$

Remark: We never actually construct an ϵ-net. We just use the fact that one exists (the output of this theoretical algorithm) in our subspace embedding proof.

