COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024. Lecture 12

- The midterm is the Thursday after break in class.
- I will hold a review session Monday from 3-4:30pm and Tuesday in class.
- There is no real quiz this week, but see Weekly Quizzes section on Moodle for a single question quiz where you can mark if you attended Sally Dong's job talk for extra credit.

Last Time:

- Finish up fast low-rank approximation via approximate matrix multiplication.
- Start on stochastic trace estimation and motivation for matrix-vector query algorithms.

Last Time:

- Finish up fast low-rank approximation via approximate matrix multiplication.
- Start on stochastic trace estimation and motivation for matrix-vector query algorithms.

Today:

- Finish stochastic trace estimation.
- Hutchinson's estimator and full analysis.

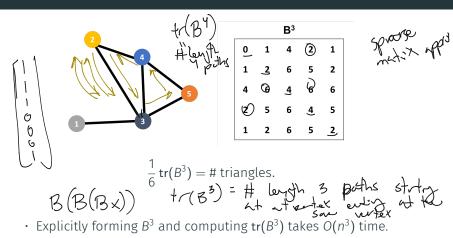
The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of it diagonal entries.

$$tr(A) = \sum_{i=1}^{n} A_{ii}.$$

When A is diagonalizable (e.g., when it is symmetric) with eigenvalues $\lambda_1, \ldots, \lambda_n$, tr(A) = $\sum_{i=1}^n \lambda_i$.

Main question: How many matrix-vector multiplication "queries" Ax_1, \ldots, Ax_m are required to approximate tr(A)?

Motivating Example



- Can multiply B^3 by a vector in $3 \cdot |E| = O(n^2)$ operations.
- So a trace estimation algorithm using m queries, yields an $O(m \cdot |E|)$ time approximate triangle counting algorithm.

Example 2: Hessian/Jacobian matrix-vector products.

- For vector x, $\nabla f(y)x$ and $\nabla^2 f(y)x$ can often be computed efficiently using finite difference methods or explicit differentiation (e.g., via backpropagation).
- Do not need to fully form $\nabla f(y)$ or $\nabla^2 f(y)$.
- Many applications of estimating the traces of these matrices, e.g., in analyzing neural network convergence, in optimization of score-<u>based methods</u>, etc.
- $tr(\nabla^2 f(y)x)$: Laplacian
- $tr(\nabla f(y)x)$: Divergence

Example 3: A is a function of another (explicit) matrix B, A = f(B) that can be applied efficiently via an iterative method.

Other Examples

5 112. 7 112= 5 **Example 3:** A is a function of another (explicit) matrix B, A = f(B) that can be applied efficiently via an iterative method. $X \sim N(0, E)$ $\Sigma^{1/2} q \sim 1 id 6 consiston$

- Repeated multiplication to apply $A = B^3$.
- Conjugate gradient, MINRES, or any linear system solver: 2"Elgy 52"

$$A=B^{-1}.$$

• Lanczos method, polynomial/rational approximation:

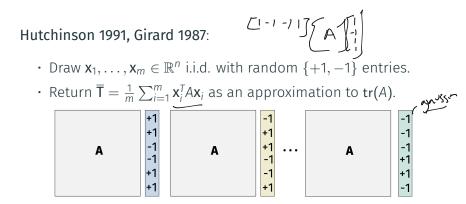
$$A = \exp(B), A = \sqrt{B}, A = \log(B), \text{ etc.}$$

• These methods run in $n^2 \cdot C$ time, where C depends on properties of B. Typically $C \ll n$ so $n^2 \cdot C \ll n^3$.

Matrix Function Examples

- Log-likelihood computation in Bayesian optimization, experimental design. tr(log(B)) = log det(B). $f \in \mathcal{O}(\mathcal{N})$
- Estrada index, a measure of protein folding degree and more generally, network connectivity. tr(exp(B)).
- Trace inverse, which is important in uncertainty quantification and many other scientific computing applications. $tr(B^{-1})$
- Information about the matrix eigenvalue spectrum, since $\underline{tr}(f(B)) = \sum_{i=1}^{n} f(\lambda_i)$, where λ_i is *B*'s *i*th eigenvalue.
- E.g., counting the number of eigenvalues in an interval, spectral density estimation, matrix norms
- See e.g., [Ubaru, and Saad 2017].

Hutchinson's Method



• One of the earliest examples I know of a randomized algorithm for linear algebraic computation.

Hutchinson's Method Error Bound

Theorem

Let $\overline{\mathbf{T}}$ be the trace estimate returned by Hutchinson's method. If $m = O\left(\frac{1}{\delta\epsilon^2}\right)$, then with probability $\geq 1 - \delta$,

 $\left|\overline{\mathsf{T}} - \mathsf{tr}(\mathsf{A})\right| \le \epsilon \|\mathsf{A}\|_{\mathsf{F}}$

Hutchinson's Method Error Bound

Theorem

Let $\overline{\mathbf{T}}$ be the trace estimate returned by Hutchinson's method. If $m = O\left(\frac{1}{\delta\epsilon^2}\right)$, then with probability $\geq 1 - \delta$, $\mathcal{F}(\mathbf{A})$ $|\overline{\mathbf{T}} - \operatorname{tr}(\mathbf{A})| \leq \epsilon ||\mathbf{A}||_F$

- non-regatie eigenvales

If A is symmetric positive semidefinite (PSD) then

$$\|A\|_F = \sqrt{\sum_{i=1}^n \lambda_i^2} \leq \sum_{i=1}^n \lambda_i = \operatorname{tr}(A).$$

So for PSD A: $(1 - \epsilon) \operatorname{tr}(A) \leq \overline{\mathsf{T}} \leq (1 + \epsilon) \operatorname{tr}(A).$

Proof Approach

Theorem

Let $\overline{\mathbf{T}}$ be the trace estimate returned by Hutchinson's method. If $m = O\left(\frac{1}{\delta\epsilon^2}\right)$, then with probability $\geq 1 - \delta$,

$$\left|\overline{\mathsf{T}} - \mathsf{tr}(\mathsf{A})\right| \leq \epsilon \|\mathsf{A}\|_{\mathsf{F}}$$

- 1. Show that $\mathbb{E}[\overline{T}] = tr(A)$.
- 2. Bound Var[T].
- 3. Apply Chebyshev's inequality.

Proof Approach

Theorem

Let $\overline{\mathbf{T}}$ be the trace estimate returned by Hutchinson's method. If $m = O\left(\frac{1}{\delta\epsilon^2}\right)$, then with probability $\geq 1 - \delta$,

$$\left|\overline{\mathsf{T}} - \mathsf{tr}(\mathsf{A})\right| \leq \epsilon \|\mathsf{A}\|_{F}$$

1. Show that $\mathbb{E}[\overline{T}] = tr(A)$.

*∧*3. Apply Chebyshev's inequality.

E-I I JTA TI

A tighter proof that uses the Hanson-Wright inequality, an exponential concentration inequality for quadratic forms, can improve the δ dependence to $\log(1/\delta)$ – we'll cover this later in the class.

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

By linearity of expectation, $\mathbb{E}[\overline{T}] = \mathbb{E}[\mathbf{x}^T A \mathbf{x}]$ for a single random ±1 vector \mathbf{x} .

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{\mathbf{T}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{X}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

By linearity of expectation, $\mathbb{E}[\overline{T}] = \mathbb{E}[\mathbf{x}^T A \mathbf{x}]$ for a single random ± 1 vector \mathbf{x} .

$$\mathbb{E}[\mathbf{x}^{T}A\mathbf{x}] = \mathbb{E}\sum_{i=1}^{n}\sum_{j=1}^{n}x_{j}x_{j}A_{ij} = \sum_{i=1}^{n}\sum_{j=1}^{n}A_{ij} \cdot \mathbb{E}[\mathbf{x}_{i}\mathbf{x}_{j}]$$

$$\bigcup_{i=1}^{n}\sum_{j=1}^{n}A_{ij} \cdot \mathbb{E}[\mathbf{x}_{i}\mathbf{x}_{j}]$$

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{X}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

By linearity of expectation, $\mathbb{E}[\overline{T}] = \mathbb{E}[\mathbf{x}^T A \mathbf{x}]$ for a single random ± 1 vector \mathbf{x} .

$$\mathbb{E}[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = \mathbb{E} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i} \mathbf{x}_{j} A_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} \cdot \mathbb{E}[\mathbf{x}_{i} \mathbf{x}_{j}]$$

• When $i \neq j$, $\mathbf{x}_i \mathbf{x}_j = 1$ with probability 1/2 and -1 with probability 1/2, so $\mathbb{E}[\mathbf{x}_i \mathbf{x}_j] = 0$. When i = j, $\mathbf{x}_i \mathbf{x}_j = 1$, so $\mathbb{E}[\mathbf{x}_i \mathbf{x}_j] = 1$.

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{X}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

By linearity of expectation, $\mathbb{E}[\overline{T}] = \mathbb{E}[\mathbf{x}^T A \mathbf{x}]$ for a single random ± 1 vector \mathbf{x} .

$$\mathbb{E}[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = \mathbb{E} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i} \mathbf{x}_{j} A_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} \cdot \mathbb{E}[\mathbf{x}_{i} \mathbf{x}_{j}] = \sum_{i=1}^{n} A_{ii}.$$

• When $i \neq j$, $\mathbf{x}_i \mathbf{x}_j = 1$ with probability 1/2 and -1 with probability 1/2, so $\mathbb{E}[\mathbf{x}_i \mathbf{x}_j] = 0$. When i = j, $\mathbf{x}_i \mathbf{x}_j = 1$, so $\mathbb{E}[\mathbf{x}_i \mathbf{x}_j] = 1$.

Hutchinson's Estimator:: $(XX^T)_{ij} = X_i X_j = 1$, $F_i = j$ only.

• Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.

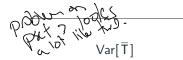
• Return
$$\overline{T} = \frac{1}{m} \sum_{i=1}^{m} x_i^T A x_i$$
 as an approximation to tr(A).
 $\mathbb{E} + r (x^T A x) = \mathbb{E} + r (x x^T A) = + r (\mathbb{E} x x^T A) = +_J (A)$

By linearity of expectation, $\mathbb{E}[\overline{T}] = \mathbb{E}[\mathbf{x}^T A \mathbf{x}]$ for a single random ± 1 vector \mathbf{x} .

$$\mathbb{E}[\mathbf{x}^{T}A\mathbf{x}] = \mathbb{E}\sum_{i=1}^{n}\sum_{j=1}^{n}\mathbf{x}_{i}\mathbf{x}_{j}A_{ij} = \sum_{i=1}^{n}\sum_{j=1}^{n}A_{ij} \cdot \mathbb{E}[\mathbf{x}_{i}\mathbf{x}_{j}] = \sum_{i=1}^{n}A_{ii} \cdot \mathbf{\nabla} \left(A\right)$$

- When $i \neq j$, $\mathbf{x}_i \mathbf{x}_j = 1$ with probability 1/2 and -1 with probability 1/2, so $\mathbb{E}[\mathbf{x}_i \mathbf{x}_j] = 0$. When i = j, $\mathbf{x}_i \mathbf{x}_j = 1$, so $\mathbb{E}[\mathbf{x}_i \mathbf{x}_j] = 1$.
- So the estimator is correct in expectation: $\mathbb{E}[\overline{T}] = tr(A)$.

- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).



- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}$ as an approximation to tr(A).

$$\operatorname{Var}[\overline{\mathsf{T}}] = \frac{1}{m} \operatorname{Var}[\mathsf{x}^{\mathsf{T}} \mathsf{A} \mathsf{x}]$$

- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{\mathbf{T}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

$$\operatorname{Var}[\overline{\mathsf{T}}] = \frac{1}{m} \operatorname{Var}[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i} \mathbf{x}_{j} A_{ij}\right]$$

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{\mathbf{T}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{X}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

$$\operatorname{Var}[\overline{\mathsf{T}}] = \frac{1}{m} \operatorname{Var}[\mathsf{x}^{\mathsf{T}} A \mathsf{x}] = \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} A_{ij}\right]$$
Can we apply linearity of variance here?
$$\underbrace{(X_{1}, X_{1}, A_{1}, \dots, A_{n})}_{(X_{1}, X_{2}, X_{1}, A_{n})}$$

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{\mathbf{T}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{X}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

$$\operatorname{Var}[\overline{\mathsf{T}}] = \frac{1}{m} \operatorname{Var}[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i} \mathbf{x}_{j} A_{ij}\right]$$

Can we apply linearity of variance here? Almost – need to remove repeated terms, and then can use pairwise independence.

- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

$$Var[\overline{T}] = \frac{1}{m} Var[x^{T}Ax] = \frac{1}{m} Var \left[\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}x_{j}A_{ij} \right]_{\substack{I \in \mathcal{O} \text{ form } i \neq ed}}$$

Can we apply linearity of variance here? Almost - need to remove
repeated terms, and then can use pairwise independence.
$$Var[\overline{T}] = \frac{1}{m} Var \left[\sum_{i=1}^{n} A_{ii} + \sum_{i=1}^{n} \sum_{j>i}^{n} x_{i}x_{j}(A_{ij} + A_{ji}) \right]_{\substack{X_{1} X_{2}}} (A_{12} + A_{12})$$

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{\mathbf{T}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{X}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

$$\operatorname{Var}[\overline{\mathsf{T}}] = \frac{1}{m} \operatorname{Var}[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i} \mathbf{x}_{j} A_{ij}\right]$$

Can we apply linearity of variance here? Almost – need to remove repeated terms, and then can use pairwise independence.

$$\operatorname{Var}[\overline{\mathbf{T}}] = \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} A_{ii} + \sum_{i=1}^{n} \sum_{j>i} \mathbf{x}_{i} \mathbf{x}_{j} (A_{ij} + A_{ji})\right]$$
$$= \frac{1}{m} \sum_{i=1}^{n} \sum_{j>i} \left(\operatorname{Var}[\mathbf{x}_{i} \mathbf{x}_{j}] \cdot (A_{ij} + A_{ji})^{2} \right)$$

Hutchinson's Estimator::

- itchinson's Estimator::• Draw $x_1, \ldots, x_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.• Return $\overline{T} = \frac{1}{m} \sum_{i=1}^m x_i^T A x_i$ as an approximation to tr(A).

$$\operatorname{Var}[\overline{\mathsf{T}}] = \frac{1}{m} \operatorname{Var}[\mathbf{x}^{\mathsf{T}} A \mathbf{x}] = \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i} \mathbf{x}_{j} A_{ij}\right]$$

Can we apply linearity of variance here? Almost – need to remove 1 withemetic repeated terms, and then can use pairwise independence.

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{\mathbf{T}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

$$\begin{bmatrix} A_1 \\ \vdots \\ A_2 \end{bmatrix}$$

$$\operatorname{Var}[\overline{\mathsf{T}}] = \frac{1}{m} \operatorname{Var}[\mathbf{x}^{\mathsf{T}} \mathsf{A} \mathbf{x}] = \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i} \mathbf{x}_{j} \mathsf{A}_{ij}\right]$$

Can we apply linearity of variance here? Almost – need to remove repeated terms, and then can use pairwise independence.

$$\begin{aligned} \nabla \operatorname{ar}[\overline{\mathsf{T}}] &= \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} A_{ii} + \sum_{i=1}^{n} \sum_{j>i} \mathsf{x}_{i} \mathsf{x}_{j} (A_{ij} + A_{ji})\right] \\ &= \frac{1}{m} \sum_{i=1}^{n} \sum_{j>i} \operatorname{Var}[\mathsf{x}_{i} \mathsf{x}_{j}] \cdot (A_{ij} + A_{ji})^{2} \leq \frac{1}{m} \sum_{i=1}^{n} \sum_{j>i} 2A_{ij}^{2} + 2A_{ji}^{2} \notin \frac{2||A||_{F}^{2}}{m} \\ &\leq \frac{1}{m} \cdot 2 \cdot \sum_{j=1}^{n} \sum_{j>i} A_{jj} \cdot \sum_{j=1}^{n} A_{j$$

Final Analysis

- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}$ as an approximation to tr(A).

Chebyshev's inequality implies that, for
$$m = \frac{2}{\delta\epsilon^2}$$
:

$$\Pr\left[|\overline{T} - tr(A)| \ge \epsilon ||A||_F\right] \le \frac{2||A||_F^2/m}{\epsilon^2 ||A||_F^2} = \delta.$$

$$\frac{2}{m\epsilon^2}$$

Final Analysis

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

Chebyshev's inequality implies that, for $m = \frac{2}{\delta \epsilon^2}$:

$$\Pr\left[\left|\overline{\mathsf{T}} - \mathsf{tr}(A)\right| \ge \epsilon \|A\|_{F}\right] \le \frac{2\|A\|_{F}^{2}/m}{\epsilon^{2}\|A\|_{F}^{2}} = \delta.$$

$$\chi_{1}\chi_{2}= \lambda_{1}\chi_{3}= \lambda_{1}\chi_{3}= \lambda_{1}\chi_{3}= \lambda_{1}\chi_{3}= \lambda_{1}\chi_{3}= \lambda_{1}\chi_{3}= \lambda_{2}\chi_{3}= \lambda_{1}\chi_{3}= \lambda_{2}\chi_{3}= \lambda_{2}\chi_{3}= \lambda_{2}\chi_{3}= \lambda_{2}\chi_{3}= \lambda_{2}\chi_{3}= \lambda_{2}\chi_{3}= \lambda_{2}\chi_{3}= \lambda_{3}\chi_{3}= \lambda_{$$

Could we have gotten a better bound by applying Bernstein's inequality to $\sum_{i=1}^{n} \sum_{j>i} \mathbf{x}_i \mathbf{x}_j (A_{ij} + A_{ji})$? - $pper bands on A_{ij} + A_{ji}$? - painise independent

√Ax

VIAV

Final Analysis

Hutchinson's Estimator::

- Draw $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\overline{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} A \mathbf{x}_{i}$ as an approximation to tr(A).

Chebyshev's inequality implies that, for $m = \frac{2}{\delta\epsilon^2}$:

$$\Pr\left[\left|\overline{\mathsf{T}} - \mathsf{tr}(\mathsf{A})\right| \ge \epsilon \|\mathsf{A}\|_{\mathsf{F}}\right] \le \frac{2\|\mathsf{A}\|_{\mathsf{F}}^2/m}{\epsilon^2\|\mathsf{A}\|_{\mathsf{F}}^2} = \delta.$$

Could we have gotten a better bound by applying Bernstein's inequality to $\sum_{i=1}^{n} \sum_{j>i} \mathbf{x}_i \mathbf{x}_j (A_{ij} + A_{ji})$?

Hanson-Wright is an exponential concentration bound that can be used in the specific case – improves bound to $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$.

The $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ bound given by the Hanson-Wright inequality is tight.

• Any algorithm that only uses queries of the form $\mathbf{x}_i^T A \mathbf{x}_i$ requires $\Omega\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ samples to estimate tr(A) to error $\pm \epsilon \operatorname{tr}(A)$ for PSD A [Wimmer, Wu, Zhang 2014]. The $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ bound given by the Hanson-Wright inequality is tight.

- Any algorithm that only uses queries of the form $x_i^T A x_i$ requires $\Omega\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ samples to estimate tr(A) to error $\pm \epsilon \operatorname{tr}(A)$ for PSD A [Wimmer, Wu, Zhang 2014].
- We recently showed that using the full power of matrix-vector queries, one can achieve $O\left(\frac{\log(1/\delta)}{\epsilon}\right)$ queries for PSD matrices. (H, H) + + Mexer et M.