COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 12

Logistics

- The midterm is the Thursday after break in class.
- I will hold a review session Monday from 3-4:30pm and Tuesday in class.
- There is no real quiz this week, but see Weekly Quizzes section on Moodle for a single question quiz where you can mark if you attended Sally Dong's job talk for extra credit.
- Practice míderm in moodle. Lolling
L study gide

Summary

Last Time:

- Finish up fast low-rank approximation via approximate matrix multiplication.
- Start on stochastic trace estimation and motivation for matrix-vector query algorithms.

Summary

Last Time:

- Finish up fast low-rank approximation via approximate matrix multiplication.
- Start on stochastic trace estimation and motivation for matrix-vector query algorithms.

Today:

- Finish stochastic trace estimation.
- Hutchinson's estimator and full analysis.
- k-means $t+$

Matrix Trace

The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of it diagonal entries.

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i j} .
$$

When A is diagonalizable (e.g., when it is symmetric) with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}, \operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$.

Main question: How many matrix-vector multiplication "queries" $A x_{1}, \ldots, A x_{m}$ are required to approximate $\operatorname{tr}(A)$?

Motivating Example

- Explicitly forming B^{3} and computing $\operatorname{tr}\left(B^{3}\right)$ takes $O\left(n^{3}\right)$ time.
- Can multiply B^{3} by a vector in $3 \cdot|E|=O\left(n^{2}\right)$ operations.
- So a trace estimation algorithm using m queries, yields an $O(m \cdot|E|)$ time approximate triangle counting algorithm.

Other Examples

Example 2: Hessian/Jacobian matrix-vector products.
rnxn Vecalion, nxen Hession

- For vector $x, \nabla f(y) x$ and $\nabla^{2} f(y) x$ can often be computed efficiently using finite difference methods or explicit differentiation (e.g., via backpropagation).
- Do not need to fully form $\nabla f(y)$ or $\nabla^{2} f(y)$.
- Many applications of estimating the traces of these matrices, e.g., in analyzing neural network convergence, in optimization of score-based methods, etc.
- $\operatorname{tr}\left(\nabla^{2} f(y) x\right)$: Laplacian
- $\operatorname{tr}(\nabla f(y) x)$: Divergence

Other Examples

Example 3: A is a function of another (explicit) matrix $B, A=f(B)$ that can be applied efficiently via an iterative method.

Other Examples

$$
\Sigma^{1 / 2} \cdot \Sigma^{112}=\Sigma
$$

Example 3: A is a function of another (explicit) matrix $B, A=f(B)$ that can be applied efficiently via an iterative method.

- Repeated multiplication to apply $A=B^{3}$.
- Conjugate gradient, MINRES, or any linear system solver:

$$
A=B^{-1} .
$$

- Lanczos method, polynomial/rational approximation:

$$
A=\exp (B), A=\sqrt{B}, A=\log (B), \text { etc. }
$$

- These methods run in n^{2}. C time, where C depends on properties of B. Typically $C \ll n$ so $n^{2} \cdot C \ll n^{3}$.

Matrix Function Examples

- Log-likelihood computation in Bayesian optimization, experimental design. $\operatorname{tr}(\log (B))=\log \operatorname{det}(B) .=\sum \log \left(\lambda_{i}\right)$
- Estrada index, a measure of protein folding degree and more generally, network connectivity. $\operatorname{tr}(\exp (B))$.
- Trace inverse, which is important in uncertainty quantification and many other scientific computing applications. $\operatorname{tr}\left(B^{-1}\right)$

- Information about the matrix eigenvalue spectrum, since $\underline{\operatorname{tr}(f(B)})=\sum_{i=1}^{n} f\left(\lambda_{i}\right)$, where λ_{i} is B^{\prime} s $i^{\text {th }}$ eigenvalue.
- E.g., counting the number of eigenvalues in an interval, spectral density estimation, matrix norms
- See e.g., [Ubaru, and Saad 2017].

Hutchinson's Method

Hutchinson 1991, Gerard 1987:

$$
\left[\begin{array}{lll}
1-1 & - & 1
\end{array}\right]\left[A\left[\begin{array}{l}
1 \\
-1 \\
1 \\
1
\end{array}\right]\right.
$$

- Draw $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathbf{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{\top} A \mathbf{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

- One of the earliest examples I know of a randomized algorithm for linear algebraic computation.

Hutchinson's Method Error Bound

Theorem

Let $\overline{\mathrm{T}}$ be the trace estimate returned by Hutchinson's method. If $m=O\left(\frac{1}{\delta \epsilon^{2}}\right)$, then with probability $\geq 1-\delta$,

$$
|\overline{\mathrm{T}}-\operatorname{tr}(A)| \leq \epsilon\|A\|_{F}
$$

Hutchinson's Method Error Bound

Theorem

Let $\overline{\mathbf{T}}$ be the trace estimate returned by Hutchinson's method. If $m=O\left(\frac{1}{\delta \epsilon^{2}}\right)$, then with probability $\underset{\operatorname{tr}(A)}{\geq 1-\delta,}$

$$
|\overline{\mathrm{T}}-\operatorname{tr}(A)| \leq \epsilon\|A\|_{F}
$$

- non-wjatie eigenvalues

If A is symmetric positive semidefinite (PSD) then

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \lambda_{i}^{2}} \leq \sum_{i=1}^{n} \lambda_{i}=\operatorname{tr}(A)
$$

So for PSD A:

$$
(1-\epsilon) \operatorname{tr}(A) \leq \overline{\mathrm{T}} \leq(1+\epsilon) \operatorname{tr}(A) .
$$

Proof Approach

Theorem

Let $\overline{\mathrm{T}}$ be the trace estimate returned by Hutchinson's method. If $m=O\left(\frac{1}{\delta \epsilon^{2}}\right)$, then with probability $\geq 1-\delta$,

$$
|\overline{\mathrm{T}}-\operatorname{tr}(A)| \leq \epsilon\|A\|_{F}
$$

1. Show that $\mathbb{E}[\overline{\mathrm{T}}]=\operatorname{tr}(A)$.
2. Bound $\operatorname{Var}[\bar{T}]$.
3. Apply Chebyshev's inequality.

Proof Approach

Theorem
Let $\overline{\mathrm{T}}$ be the trace estimate returned by Hutchinson's method. If $m=O\left(\frac{1}{\delta \epsilon^{2}}\right)$, then with probability $\geq 1-\delta$,

$$
|\overline{\mathbf{T}}-\operatorname{tr}(A)| \leq \epsilon\|A\|_{F}
$$

1. Show that $\mathbb{E}[\bar{T}]=\operatorname{tr}(A)$.
2. Bound $\operatorname{Var}[\overline{\mathrm{T}}]$.
3. Apply Chebyshev's inequality.

$$
\left[\begin{array}{llll}
1 & -1 & 1 & 1
\end{array}\right][A]\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

A tighter proof that uses the Hanson-Wright inequality, an exponential concentration inequality for quadratic forms, can improve the δ dependence to $\log (1 / \delta)$ - we'll cover this later in the class.

Expectation Analysis

Hutchinson's Estimator::

- Draw $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=\underline{x_{i}^{\top} A x_{i}}}^{\underline{n}}$ as an approximation to $\operatorname{tr}(A)$.

By linearity of expectation, $\mathbb{E}[\bar{T}]=\mathbb{E}\left[x^{\top} A x\right]$ for a single random ± 1 vector x .

Expectation Analysis

Hutchinson's Estimator::

- Draw $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{X}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

By linearity of expectation, $\mathbb{E}[\bar{T}]=\mathbb{E}\left[\mathbf{x}^{\top} A \mathbf{x}\right]$ for a single random ± 1 vector x .

$$
\begin{array}{r}
\mathbb{E}\left[x^{\top} A x\right]=\mathbb{E} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} A_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} \cdot\left[\begin{array}{l}
\mathbb{E}\left[x_{i} x_{j}\right] \\
\mathbb{V} \text { if } \quad i \neq j \\
1 \\
\text { if } \quad i=j
\end{array}\right)
\end{array}
$$

Expectation Analysis

Hutchinson's Estimator::

- Draw $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathbf{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{X}_{i}^{\top} A \mathbf{x}_{i}$ as an approximation to $\operatorname{tr}(A)$.

By linearity of expectation, $\mathbb{E}[\bar{T}]=\mathbb{E}\left[\mathbf{x}^{\top} A \mathbf{x}\right]$ for a single random ± 1 vector x .

$$
\mathbb{E}\left[\mathrm{x}^{\top} A \mathrm{x}\right]=\mathbb{E} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{x}_{i} \mathrm{x}_{\mathrm{j}} A_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} \cdot \mathbb{E}\left[\mathrm{x}_{i} \mathrm{x}_{j}\right]
$$

- When $i \neq j, x_{i} x_{j}=1$ with probability $1 / 2$ and -1 with probability $1 / 2$, so $\mathbb{E}\left[\mathrm{x}_{i} \mathrm{x}_{\mathrm{j}}\right]=0$. When $i=j, \mathrm{x}_{i} \mathrm{x}_{j}=1$, so $\mathbb{E}\left[\mathrm{x}_{i} \mathrm{x}_{\mathrm{j}}\right]=1$.

Expectation Analysis

Hutchinson's Estimator::

- Draw $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{X}_{i}^{\top} A \mathbf{x}_{i}$ as an approximation to $\operatorname{tr}(A)$.

By linearity of expectation, $\mathbb{E}[\bar{T}]=\mathbb{E}\left[\mathbf{x}^{\top} A \mathbf{x}\right]$ for a single random ± 1 vector x .

$$
\mathbb{E}\left[x^{\top} A x\right]=\mathbb{E} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} A_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} \cdot \mathbb{E}\left[x_{i} x_{j}\right]=\sum_{i=1}^{n} A_{i j} .
$$

- When $i \neq j, x_{i} x_{j}=1$ with probability $1 / 2$ and -1 with probability $1 / 2$, so $\mathbb{E}\left[\mathrm{x}_{i} \mathrm{x}_{\mathrm{j}}\right]=0$. When $i=j, \mathrm{x}_{i} \mathrm{x}_{j}=1$, so $\mathbb{E}\left[\mathrm{x}_{i} \mathrm{x}_{j}\right]=1$.

Expectation Analysis
Hutchinson's Estimator:: $\quad\left(x x^{\top}\right)_{i j}=x_{i}^{\prime} x_{j}=1 i F_{i=j}$ ont .

- Draw $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{x}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

$$
\mathbb{E} \operatorname{tr}\left(x^{\top} A x\right)=\mathbb{E}+r\left(x x^{\top} A\right)=\operatorname{tr}\left(\mathbb{E} x x^{\top} A\right)=t_{j}(A)
$$

By linearity of expectation, $\mathbb{E}[\bar{T}]=\mathbb{E}\left[\mathbf{x}^{\top} A \mathbf{x}\right]$ for a single random ± 1 vector x .

$$
\mathbb{E}\left[x^{\top} A x\right]=\mathbb{E} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} A_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} \cdot \mathbb{E}\left[x_{i} x_{j}\right]=\sum_{i=1}^{n} A_{i i}=f_{j}(A)
$$

- When $i \neq j, x_{i} x_{j}=1$ with probability $1 / 2$ and -1 with probability $1 / 2$, so $\mathbb{E}\left[\mathrm{x}_{i} \mathrm{x}_{j}\right]=0$. When $i=j, \mathrm{x}_{i} \mathrm{x}_{j}=1$, so $\mathbb{E}\left[\mathrm{x}_{i} \mathrm{x}_{j}\right]=1$.
- So the estimator is correct in expectation: $\mathbb{E}[\bar{T}]=\operatorname{tr}(A)$.

Variance Bound

Hutchinson's Estimator::

- $\operatorname{Draw} \mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{X}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

Variance Bound

Hutchinson's Estimator::

- Draw $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathcal{X}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

$$
\operatorname{Var}[\overline{\mathbf{T}}]=\frac{1}{m} \operatorname{Var}\left[\mathbf{x}^{\top} A \mathbf{x}\right]
$$

Variance Bound

Hutchinson's Estimator::

- Draw $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{X}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

$$
\operatorname{Var}[\overline{\mathrm{T}}]=\frac{1}{m} \operatorname{Var}\left[\mathbf{x}^{\top} A \mathbf{x}\right]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{x}_{i} \mathrm{x}_{\mathrm{j}} A_{i j}\right]
$$

Variance Bound

Hutchinson's Estimator::

- $\operatorname{Draw} \mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{X}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

$$
\operatorname{Var}[\overline{\mathrm{T}}]=\frac{1}{m} \operatorname{Var}\left[\mathbf{x}^{\top} A \mathbf{x}\right]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{x}_{i} \mathrm{x}_{\mathrm{j}} A_{i j}\right]
$$

Can we apply linearity of variance here?

Variance Bound

Hutchinson's Estimator::

- Draw $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{x}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

$$
\operatorname{Var}[\overline{\mathrm{T}}]=\frac{1}{m} \operatorname{Var}\left[\mathrm{x}^{\top} \mathrm{Ax}\right]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{x}_{i} \mathrm{x}_{\mathrm{j}} \mathrm{~A}_{\mathrm{ij}}\right]
$$

Can we apply linearity of variance here? Almost - need to remove repeated terms, and then can use pairwise independence.

Variance Bound

Hutchinson's Estimator::

- Draw $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{x}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

Can we apply linearity of variance here? Almost - need to remove -repeated terms, and then can use pairwise independence.

$$
\operatorname{Var}[\overline{\mathrm{T}}]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} A_{i j}+\sum_{i=1}^{n} \sum_{j>i} \mathrm{x}_{i} \mathrm{x}_{j}\left(A_{i j}+A_{j i}\right)\right] \quad \hat{X}_{1} x_{2}\left(A_{12}+A_{21}\right)
$$

Variance Bound

Hutchinson's Estimator::

- Draw $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{x}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

$$
\operatorname{Var}[\overline{\mathrm{T}}]=\frac{1}{m} \operatorname{Var}\left[\mathbf{x}^{\top} A \mathbf{x}\right]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{x}_{i} \mathrm{x}_{\mathrm{j}} A_{i j}\right]
$$

Can we apply linearity of variance here? Almost - need to remove repeated terms, and then can use pairwise independence.

$$
\begin{aligned}
& \operatorname{Var}[\overline{\mathbf{T}}]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} A_{i j}+\sum_{i=1}^{n} \sum_{j>i} \mathrm{x}_{i} \mathrm{x}_{j}\left(A_{i j}+A_{j i}\right)\right] \\
&\left.=\frac{1}{m} \sum_{i=1}^{n} \sum_{j>i} \underset{\left(\operatorname { V a r } \left[\mathrm{x}_{i} x_{i} x_{j}\right.\right.}{=\stackrel{1}{=}}\right) \cdot\left(A_{i j}+A_{j i}\right)^{2} \\
& \leq
\end{aligned}
$$

Variance Bound

Hutchinson's Estimator::

- Draw $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{x}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

$$
(A-B)^{2}
$$

$$
=A^{2}+B^{2}-2 A B
$$

$2 A B \leqslant A^{2}+B^{2}$

$$
\operatorname{Var}[\overline{\mathrm{T}}]=\frac{1}{m} \operatorname{Var}\left[\mathrm{x}^{\top} A \mathrm{x}\right]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{x}_{i} \mathrm{x}_{\mathrm{j}} A_{i j}\right]
$$

Can we apply linearity of variance here? Almost - need to remove repeated terms, and then can use pairwise independence. "avitlemetic

$$
\begin{aligned}
& \operatorname{Var}[\overline{\mathbf{T}}]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} A_{i i}+\sum_{i=1}^{n} \sum_{j>i} \mathrm{x}_{i} \mathrm{x}_{j}\left(A_{i j}+A_{j i}\right)\right] \\
& \text { yeoutac } \\
& \text { meanality" } \\
& \sqrt{A B}=\frac{A+B}{2} \\
& =\frac{1}{m} \sum_{i=1}^{n} \sum_{j>i} V_{\neq r}{ }^{l}\left[x_{i} x_{j}\right] \cdot\left(A_{i j}+A_{j i}\right)^{2} \leq \frac{1}{m} \sum_{i=1}^{n} \sum_{j>i} 2 A_{i j}^{2}+2 A_{j i}^{2} \\
& A_{i j}^{2}+A_{j i}^{2}+2 A_{i,} A_{j i} \leq 2 \cdot\left(A_{i j^{2}}+A_{j i}^{2}\right)
\end{aligned}
$$

Variance Bound

Hutchinson's Estimator::

- Draw $\mathrm{x}_{1}, \ldots, \mathrm{x}_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathbf{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{x}_{i}^{\top} A \mathrm{x}_{i}$ as an approximation to $\operatorname{tr}(\mathrm{A})$.

$$
\left[\begin{array}{c|c}
A_{1} & \therefore \\
\hline \because & A_{2}
\end{array}\right]
$$

$$
\operatorname{Var}[\overline{\mathrm{T}}]=\frac{1}{m} \operatorname{Var}\left[\mathbf{x}^{\top} A \mathbf{x}\right]=\frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{x}_{i} \mathrm{x}_{\mathrm{j}} A_{i j}\right]
$$

Can we apply linearity of variance here? Almost - need to remove repeated terms, and then can use pairwise independence.

$$
\begin{aligned}
& \operatorname{Var}[\bar{T}]= \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} A_{i j}+\sum_{i=1}^{n} \sum_{j>i} x_{i} x_{j}\left(A_{i j}+A_{j i}\right)\right] \\
&=\frac{1}{m} \sum_{i=1}^{n} \sum_{j>i} \operatorname{Var}\left[x_{i} x_{j}\right] \cdot\left(A_{i j}+A_{j i}\right)^{2} \leq \frac{1}{m} \sum_{i=1}^{n} \sum_{j>i j} 2 A_{i j}^{2}+2 A_{j i}^{2} \|_{F}^{2} \\
& \leqslant \frac{1}{m} \cdot 2 \cdot \sum_{i=1}^{n} \sum_{j=1}^{2} A_{i j}{ }^{2}
\end{aligned}
$$

Final Analysis

Hutchinson's Estimator::

- Draw $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{X}_{i}^{\top} A \mathbf{x}_{i}$ as an approximation to $\operatorname{tr}(A)$.

Chebyshev's inequality implies that, for $m=\frac{2}{\delta \epsilon^{\epsilon}}$:

$$
\begin{aligned}
& \operatorname{Pr}\left[|\overline{\mathrm{T}}-\operatorname{tr}(A)| \geq \epsilon\|A\|_{F}\right] \leq \frac{2\|A\|_{F}^{2} / m}{\epsilon^{2}\|A\|_{F}^{2}}=\delta . \\
& \frac{2}{m \varepsilon^{2}}
\end{aligned}
$$

Final Analysis

Hutchinson's Estimator::

- Draw $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{\top} A \mathbf{x}_{i}$ as an approximation to $\operatorname{tr}(A)$.

Chebyshev's inequality implies that, for $m=\frac{2}{\delta \epsilon^{2}}$:

$$
\begin{array}{r}
\operatorname{Pr}\left[|\overline{\mathbf{T}}-\operatorname{tr}(A)| \geq \epsilon\|A\|_{F}\right] \leq \frac{2\|A\|_{F}^{2} / m}{\epsilon^{2}\|A\|_{F}^{2}}=\delta \\
\mathbf{X}_{1} \mathbf{x}_{2}=1 \quad \mathbf{x}_{2} \mathbf{x}_{3}=1 \Rightarrow \mathbf{x}_{1} \mathbf{x}_{3}=1
\end{array}
$$

Could we have gotten a better bound by applying Bernstein's inequality to $\sum_{i=1}^{n} \sum_{j>i} x_{i} x_{j}\left(A_{i j}+A_{j i}\right)$?

$$
\begin{aligned}
& \text { - upper bonds an } A_{i j}+A_{j i} \text { ? } \\
& \text { - pairwise intepertit }
\end{aligned}
$$

Final Analysis

Hutchinson's Estimator::

- Draw $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ i.i.d. with random $\{+1,-1\}$ entries.
- Return $\overline{\mathrm{T}}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{\top} A \mathbf{x}_{i}$ as an approximation to $\operatorname{tr}(A)$.

Chebyshev's inequality implies that, for $m=\frac{2}{\delta \epsilon^{2}}$:

$$
\operatorname{Pr}\left[|\overline{\mathrm{T}}-\operatorname{tr}(A)| \geq \epsilon\|A\|_{F}\right] \leq \frac{2\|A\|_{F}^{2} / m}{\epsilon^{2}\|A\|_{F}^{2}}=\delta .
$$

Could we have gotten a better bound by applying Bernstein's inequality to $\sum_{i=1}^{n} \sum_{j>i} \mathrm{x}_{i} \mathrm{x}_{j}\left(\mathrm{~A}_{i j}+A_{j i}\right)$?

Hanson-Wright is an exponential concentration bound that can be used in the specific case - improves bound to $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$.

Optimality of Hutchinson's Method

The $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$ bound given by the Hanson-Wright inequality is tight.

- Any algorithm that only uses queries of the form $\mathbf{x}_{i}^{\top} A \mathbf{x}_{i}$ requires $\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$ samples to estimate $\operatorname{tr}(A)$ to error $\pm \epsilon \operatorname{tr}(A)$ for PSD A [Wimmer, Wu, Zhang 2014].
$\varepsilon\|A\|_{F}$

Optimality of Hutchinson's Method

The $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$ bound given by the Hanson-Wright inequality is tight.

- Any algorithm that only uses queries of the form $\mathbf{x}_{i}^{\top} A x_{i}$ requires $\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$ samples to estimate tr (A) to error $\pm \epsilon \operatorname{tr}(A)$ for PSD A [Wimmer, Wu, Bhang 2014]. Ax. .. Ax m
- We recently showed that using the full power of matrix-vector queries, one can achieve $O\left(\frac{\log (1 / \delta)}{\epsilon}\right)$ queries for PSD matrices.
(Much +t

